ECEN 449 — Microprocessor System Design

Verilog

Texas A&M University 1

Objectives of this Lecture Uniq

o (et a feel for the basics of Verilog
— The focus of this unit will be along two separate but equally relevant
axes
* We will cover the semantics of Verilog and different modeling styles
» Also we will cover syntax issues. For this portion, additional resources
are also provided on the website.
— In general Verilog is quite rich, and therefore, there are many ways to
achieve the same design goal

» We will focus on the syntax that is most common, especially from a
synthesizability point of view.

 What is a HDL, why is it useful
 The Verilog HDL
e Modelling a simple circuit in Verilog
— Gate level
— Dataflow
— Procedural
— Synthesizable Verilog
» Testbenches

e Syntax coverage

Texas A&M University

Hardware Description Language (HDLs)

« A HDL is a programming language which is tuned to describe
hardware

« HDLs allow us to design and simulate a design at a higher level of
abstraction

— Result = higher designer productivity

 HDLs also have accompanying synthesis tools which allow the
designer to obtain an implementation from HDL code.

— Further improvement in designer productivity
 FPGA based design flows use HDLs heavily!

Common HDLs

* There are mainly two HDLs in use today
— Verilog HDL
— VHDL
 VHDL Is the somewhat more common
— Standard developed by US DoD
— VHDL = (Very High Speed Integrated Circuit) HDL
* We choose Verilog for this class because
— It is easier to use and teach
— Resembles “C” and hence easier to learn.
* Which one is “better”?
— This is the topic of much debate

» Verilog constructs are use defined keywords

— Examples: and, or, wire, input, output
* One Important construct is the module

— Modules have inputs and outputs

— Modules can be built up of Verilog primitives or of user defined
submodules.

Texas A&M University

A Structural Design - XOR _J

module name

_______________.- _____________________

module ' Xor_gate ! (out a, bD); . port list
mput""""""éf,"'b, """""""""""
output out;
wire abar, bbar, tl1, t2; declarations
Built-in gates
\not invA (abar, a); statements

not 1nvB (bbar, b); i
and andl (tl, a, bbar); andl) t1
and and2 (t2, b, abar); —m—/_ out
or orl (out, tl, t2); b
and2
t

e

endmodule interconnections invA

2

Instance name
— Composition of primitive gates to form more complex module

Another Simple Circuit (in Strﬂjctural Verilog)
A 1 \ e

B g / g3 X

C —{}c 1 y

Fig. 3-37 Circuit to Demonstrate HDL

modulle smpl circuit(A,B,C,X,yY);

input A,B,C;
output X,Yy;
wire e;
and gl(e,A,B);
not g2(y, C);

or g3(x,e,y);
endmodule

Structural Verilog

 Just specifies primitive gates and wires
— In other words, the structure of a logical netlist

o Useful if you know exactly what logic you want to generate

— Not useful for large designs, where we want to specify the design at a
higher level of abstraction

 Itis crucial to design at a higher level of abstraction in this case, since
structural design would be tedious and error prone

— In such a case, we will describe the circuit at a high level of
abstraction, and let the CAD tools realize the detailed design (by
performing the steps of synthesis, mapping, placement+routing, and
generation of the netlist (in an FPGA, this is the bitgen file)

— In special cases, delay or area-critical sub-blocks can be designed in
structural manner, while the rest of the logic could be at a higher level
of abstraction (typically described in the behavioral fashion).

Simple Circuit — Comments

e The module starts with modu e keyword and finishes with
endmodule.

 Internal signals are named with wire.
e Comments follow 7/

e Input and output are ports. These are placed at the start of the
module definition.

« Each statement ends with a semicolon, except endmodule.

Adding Delays

e To simulate a circuit’s real world behaviour it is important that
propagation delays are included.

* The units of time for the simulation can be specified with
timescale.

— Default is 1ns with precision of 100ps
e Component delays are specified as #(delay)

« BUT REMEMBER - these delays will NOT synthesize.
— Useful only for simulation and verification of your design.

A—] ¢
DT>

Simple Circuit with Delay J e

module Fig. 3-37 Circuit to Demonstrate HDL
circuilt_with _delay Time Input Output
(A1B’C7X’y); (ns) ABC yeX
Input A,B,C; 0 000 101
output X,y,; 0 111 101
wire e; 10 111 001
and #(30) gl(e,A,B); 20 111 001
or #(20) g3(x,e,y); | ¥ 111 | 010
not #(10) g2(y,C): 40 111 010
50 111 011
endmodule

e Built-in gate primitives:
and, nand, nor, or, xor, xnor, buf, not, bufifO, bufifl,
notifO, notifl

e Usage:
nand (out, Inl, 1In2); 2-input NAND without delay
and #2 (out, Inl, in2, In3); 3-input AND with 2 t.u. delay
not #1 N1(out, in); NOT with 1t.u. delay and instance name
xor X1(out, inl, In2); 2-input XOR with instance name

Texas A&M University

Dataflow modelling

 Another level of abstraction is to model dataflow.

» In dataflow models, signals are continuously assigned values using the assign
keyword.

e assign can be used with Boolean expressions.
— Verilog uses & (and), | (or), ™ (xor) and ~ (not)
e Logic expressions and binary arithmetic are also possible.

assign #10 out = 11 & 12;

« Left hand side must be a net of some kind (scalar or vector), not a register
e Right hand side can be registers, nets.

« Continuous assignments are always active. Execution hard to trace

e They are evaluated whenever a right hand side operand changes value

» Delays (inertial) can be added to represent component delays

* LHS evaluates when there is an event on the RHS (therefore independent of
ordering of assign statements in the code)

Fig. 3-37 Circuit to Demonstrate HDL

B+C

1
>

X

y

I
Ol

Texas A&M University

15

Dataflow Description of Simpl}e Circuit

//Circuilt specified with Boolean
equations

module circuit bln (x,y,A,B,C);
input A,B,C;
output X,y;
assign x = (A & B) | ~C;} Order does not
assign y = ~C ; matter!

endmodule

« Multiplexor is a combinational circuit where an input is chosen by a
select signal.

— Two input mux
— output =A if select =1
— output= B if select =0

Texas A&M University

Dataflow description of 2-input Mux

« Conditional operator ? :takes three operands:
condition? true_expression : false_ expression

modulle mux2x1l df (A,B,select,0UT);
input A,B,select;
output OUT;
assign OUT = select ? A - B;
endmodule

Behavioural Modelling

» Represents circuits at functional and algorithmic level.

o Use procedural statements similar in concept to procedural
programming languages (e.g. C, Java),

« Behavioural modelling is mostly used to represent sequential
circuits.

o We still specify a module in Verilog with inputs and outputs...

— But inside the module we write code to specify the behavior we want,
NOT what gates (structure) to connect to make it happen

* Why use behavioral models
— For high-level specs to drive logic synthesis tools

Behavioural Modelling

« Behavioural models place procedural statements in a block after the
always keyword.

 The allways keyword takes a list of variables which represent a
trigger condition. The block of statements is executed whenever
the trigger is TRUE.

« The target variables are of type reg. This type retains its value
until a new value is assigned.

e Behavioral models may also have initial blocks.

— The block executes only once

— By default, starts at time 0
— Often used for initialization

 Module may have any number of always blocks
» Allow us to represent parallelism in hardware.

madule
always
bhedgin
|
|
|
always ¥
bhegin el
1
I
|
|
end always
begin
|
I
|
¥
end

Texas A&M University

Behavioral Description of an *OR

modulle xorB(X, Y, 2);
input X, Y;
output Z;
reg Z;
always @ (X or Y)
Z = X NY;
endmodule

« Unusual parts of above Verilog

—“always @ (X or Y)” =>whenever X orY changes, do
the following statement

—“reg” is only type of behavioral data that can be changed in
assignment, so must redeclare Z

— Default is single bit data types: X, Y, Z

Behavioural description of 2-input Mux

modulle mux2x1l bh(A,B,select,0UT);
input A,B,select;
output OUT;
reg OUT;
always @ (select or A or B)
IT (select == 1) OUT = A;
else OUT = B;
endmodule

vioral edge-triggered DFF

em
ule dff(Q, D, CIK);

put Q;
ut D, Clk;

reg Q;
wire D, CIk;

always @(posedge Clk)
Q = D;

endmodule

Texas A&M University

24

always @(res or posedge clk) begin
iIT (res) begin
Y = 0;
W = 0;
end
else begin
Y = a & b;
W = ~c;
end

end

Texas A&M University

e Represented with an = sign
— All blocking assignments are executed in sequence

module dummy;
reg X, vy, ZzZ;
reg [15:0] reg a, reg b;
integer count;
initial
begin
x =0, v=1; z = 1;
count = 0;
reg a = 16'b0;
reg b = reg a;
reg al2] = #15 1;
reg b[15:13] = #10 {x, vy, z};
count = count + 1;
end

Texas A&M University

e Represented with a <= sign

— All non-blocking assignments are executed in parallel
— Try not to m|x Wlth blocking assignments

module dummy;

reg x, YV, Z;

reg [15:0] reg a, reg b;

integer count;

initial

begin
x =0, v=1; z = 1;
count = 0;
reg al2] <= #15 1;
reg b[15:13] <= #10 {x, vy, z};
count = count + 1;

end

Texas A&M University

Blocking or Non-blocking???

» Blocking is harder to reason about.
» Also hardware does not work in a blocking (sequential way)
» So generally you should use non-blocking assignments

— Easier to synthesize
— Models parallelism which is inherent in the hardware

Two kinds of Delays In Verilob

 |nertial Delay — consider the
statement
assign #4 x = z;

— It’s delay behavior is called “inertial”
delay

— Applicable for gate level primitives
and continuous assignments z i

 Transport delay — consider the
statement * =

always @(z) y i
y <= #4 yd 4 13 14 23
— Its delay is called “transport” delay

— Applicable in non-blocking
assignments

Delving Deeper

e So far, we saw how some sample circuits are represented in the
three styles
 In the next part of this lecture unit, we will talk about
— Logic values in Verilog
— How to represent hierarchical designs
— Testbenches
— How to represent sequential logic
— Synthesizability Tips
— Syntax examples (will not go over in class in any detail, this portion
of the notes is for your reference)

Four-Valued Logic
“eVerilog Logic values
— The underlying data representation allows for any bit to have one of
four values
— 1, 0, X (unknown), z (high impedance)
— X—one of: 1, 0, z, or In the state of change
— z — the high impedance output of a tri-state gate.

« What basis do these have in reality?

— z ... Anoutput is high impedance. Tri-stated outputs are a real
electrical affect.

— X ... hot a real value. There is no real gate that drives an x on to a
wire. X Is used as a debugging aid. x means the simulator can’t
determine the answer and so maybe you should worry! All values
In a simulation start as X.

» Verilog keeps track of more values than these in some situations.

» Logic with multi-level logic values

— Logic with these four values make sense

* Nand anything with a 0, and you get a 1. This includes having an x or z
on the other input. That’s the nature of the nand gate

* Nand two x’s and you get an X — makes sense!
— Note: z treated as an x on input. Their rows and columns are the same
— If you forget to connect an input ... it will be seen as an z.
— At the start of simulation, everything is an X.

Input B g:..

A 4-valued truth table for a
Nand gate with two inputs

Texas A&M University

How to Represent Hierarchy id your Design

» First write the modules for each block of the hierarchy
— Then wire them up (next page)

module Bl(a, b, c);

endmodule
module B2(a, b, c, d);

endmodule
module B3(x, vy, 2);

endmodule

Port Mapping (Connecting th

ir}gs up)

module B1(q, w, e, f);
input g, w;
input [3:0] e;
output [1:0] F;

~

endmodule

module top(a,b,c,d);

Bl bi(w, q, a, c);

endmodule

>~ Module B1 declared

Y Bl

w
q__ |
a

v

. Module B1 instantiated,
Instance 1s called myinst
In this case

A S ;

e T module half adder(S, C, A, B);
output S, C;

B | Adder B C input A, B:

wire S, C, A, B;

_ji:) S assign S = A ™ B;

B assign C

C
— endmodule

>

Texas A&M University

Creating a Full Adder using Ij-lalf Adder instances

———

in1 A | Half S=§ 11 A Half S=§ sum
i B Adder 1 cil2 g Adder c i
| g hal g i > ha2 g D&Ut
cin
module full _adder(sum, cout, Inl, In2, cin);
output sum, cout;
input 1nl, In2, cin;
wire sum, cout, Inl, In2, cin;
Module wire 11, 12, 13; Instance
name nName

half_adder hal(ll, 12, inl, iIn2);
half_adder ha2(sum, 13, 11, cin);

assign cout = 12 || 13;

endmodule

S 11 A Half S sum

A 4
A 4

S
N
" oo
E \4
:L 4
E \4
=
T QD
LN
:L____‘[___
(@)
Y
[
—

cin

Remember to use instance names,
not module names

Texas A&M University

Verification

o Use testbench to verify your design
— Special Verilog file for simulating and testing your design
— Instantiates the module to be tested

— Contains code to apply stimulus to the module under test, and monitor
the correctness of the response

Stimulus Response
Test-Bench —» & =) — &
Control Signa Verification

\

\

\ Module under Test

Sample Testbench

modulle top_ test;

wire [1:0] t _out; // Top’s signals
reg [3:0] t_in;

reg clk;

top Inst(t out, t in, clk); // Top’s instance

initial begin // Generate clock
clk = 0O;
forever #10 clk = ~clk;
end
initial begin // Generate remaining Inputs
$monitor($time, " %b -> %b', t In, t out);
#5 t 1In = 47pb0101;
#20 t 1n = 4"b1110;
#20 t_In[0] = 1;
#300 $finish;
end

endmodule

Sequential Logic J
/7ParalTel to Serial converter
module ParToSer(LD, X, out, CLK);

X3

input [3:0] X;

FF

FF

FF

FF

out
_|

input LD, CLK; ? {0
output out;

reg out;

reg [3:0] Q; * Notes:

assign out = Q[O];
always @ (posedge CLK)
ifT (LD) Q=X;
else Q = Q>>1;
endmodulle // mux2

-

-

-

clk

In a zero on the left).
module FF (CLK,Q,D); — Shifts on non-reg variables can be

input D, CLK;

output Q; reg Q;

always @ (posedge CLK) Q=D;
endmodule // FF

done with concatenation:
wire [3:0] A, B;
assign B

{1°b0, A[3:1]1}

— “always @ (posedge CLK)” forces Q
register to be rewritten every
simulation cycle.

— “>>" operator does right shift (shifts

Sequential Logic — another exz%mple

module mealy (A, CLK, Z): * Notes:
input A, CLK; . .
output Z; — If we have a state machine updating
o9 = on a rising clock edge, then we
B ete. /7 synchronous part create the always block (triggered
O e (Pstarey | o COMBINPART on the posedge of clock).
?;E’ééin — Also we write the state machine
2L s behavior as a case statement.
ojond « For example if we are in state STO,
Z=0; and A is 1, then we move to state
ST ST3 in the next clock.
beain . — This kind of code for a state
S = ST machine is very similar to the state
o1 o transition diagram based behavior.
SETCo<ETC> Hence easy to write.

end
endmodule

 |f you want to synthesize your Verilog code, here are some tips
— Do not use delays in your code
— Watch for blocking and non-blocking assignments (next slide)
— Watch out for complete assignments (2 slides after next)

Texas A&M University

Bad: Circuit from blocking assignment. Good: Circuit from nonblocking assignment.
always @(posedge clk) always @(posedge clk)
begin begin
b=a; b<=a;
a=b; a<=b;
end

Texas A&M University

“Complete” Assignments

e |fan always block executes, and a variable is not assigned

— Variable keeps its old value (this needs state!!)
— Hence latch is inserted (inferred memory)
— This i1s usually not what you want: dangerous for the novice!

* So to aviod this, any variable assigned in an always block should
be assigned for any (and every!) execution of the block

Incomplete Triggers

o [eaving out an input trigger usually results in a sequential circuit

« Example: The output of this “and” gate depends on the input
history (a latch will be inferred on In2).

modulle and gate (out, Inl, In2);

input inl, 1n2;
output out;
reg out;

always @(inl) begin
out = 1INl & 1IN2;
end

endmodule

Some Verilog Syntax Notes fo} Your Reference..

* You may find the following slides handy as a partial Verilog

reference.
— It Is not meant to be a complete reference — see the resources on the
class website for more detailed references.
— It is meant to help you with the syntax for common Verilog
constructs.

e Formed from {[A-Z], [a-Z], [0-9], , $}, but ..
e .. can’t begin with $ or [0-9]
— myidentifier
— m_y i1dentifier
— 3my_i1dentifier
— $my_identifier

— myidentifier$
o (Case sensitivity
— myid # Myid

Texas A&M University

The rest of the line 1s a comment

Multiple line
comment */

e /* Nesting /* comments */ do NOT work */

Texas A&M University

<size>’<radix> <value>

] T~

Noof | | Binary — b orB | consecutive chars
bits Octal —>o0o0r0O

Decimal —>dorD
Hexadecimal - h or H

— 8’h ax = 1010xxxx
— 12°0 3zx7 = 011zzzxxx111

Texas A&M University

e You can insert “ " for readability
— 12’b 000 111 010 100
— 12’b 000111010100 \
— 12’007 24
o Bit extension
— MS bit =0, x or z = extend this ~
e ’bx1=4"bxx x1
— MS bit =1 = zero extension
« 4’b1x =4’ 00 1x

. Represent the same number

Texas A&M University

o |f size iIs ommitted it
— Is inferred from the value or
— takes the simulation specific number of bits or
— takes the machine specific number of bits

e |f radix 1Is ommitted too .. decimal Is assumed
— 15 = <size>’d 15

Texas A&M University

e Can be thought as hardware wires driven by logic
e Equal z when unconnected

* Various types of nets
— wire
— wand (wired-AND)
— wor (wired-OR)
— tri (tri-state)
 In following examples: Y is evaluated, automatically,
every time A or B changes

Texas A&M University

v wire Y; // declaration
::::>————' assign Y = A & B;

A,
wand Y; // declaration Y o 1
4 - — A-
assign Y = A; ol o o0
assign Y = B; B
1 o 1
—
B A
wor Y:; // declaration T 0 1
X assign Y = A; ol o 1
assign Y = B; E
1 1 1
Idr
tri Y; // declaration
A [Y

| assign Y = (dr) ? A : z;

Texas A&M University

Registers

e Variables that store values
Do not represent real hardware but ..
.. real hardware can be implemented with registers

Only one type: reg
reg A, C; // declaration
// assignments are always done i1nside a procedure
A=1;
C =A; // C gets the logical value 1
A=0; // Cis still 1
C=0; //Cis now O

Register values are updated explicitly!!

Vectors

e Represent buses
wire [3:0] busA;
reg [1:4] busB;
reg [1:0] busC;

o Left number is MS bit

« Slice management

busC = busA[2:1]; N busC[1] busA[2];
busC[O0] = busA[1l];

« Vector assignment (by position!!)

 busB[1] = busA[3];
busB[2] = busA[2];
busB[3] = busA[1];
_ busB[4] = busA[O0];

busB = busA; < <

e Declaration
integer 1, k;
real r;

» Use as registers (inside procedures)

1 = 1; // assignments occur iInside procedure
r = 2.9;
k =r; // k 1s rounded to 3

 Integers are not initialized!!
e Reals are initialized to 0.0

Texas A&M University

« Special data type for simulation time measuring
» Declaration
time my time;
« Use inside procedure
my time = $time; // get current sim time

e Simulation runs at simulation time, not real time

Texas A&M University

Arrays (1)

e Syntax
integer count[1:5]; // 5 integers
reg var[-15:16]; // 32 1-bit regs
reg [7:0] mem[0:1023]; // 1024 8-bit regs
o Accessing array elements
— Entire element: mem[10] = 8”b 10101010;

— Element subfield (needs temp storage):
reg [7:0] temp;

temp = mem[10];
var[6] = temp[2];
» Concatenating bits/vectors into a vector
— e.g., sign extend
— BL7:01 = {A[3]. AL3]. AL3]. AL3]. A[3:01};
— BL7:0] = {3{A[31}, A[3:0]};
o Style: Use a[7:0] = b[7:0] + c;
Not:a = b + cC; I/ need to look at declaration

e Limitation: Cannot access array subfield or entire array at once
var[2:9] = ???; // WRONG!!
var = ??7?; // WRONG!!

No multi-dimentional arrays
reg var[1:10] [1:100]; 7/ WRONG!!

Arrays don’t work for the Real data type
real r[1:10]; // WRONG !!

Texas A&M University

e Implemented with regs:
reg [8*13:1] string val; // can hold up to 13 chars

string_val = “Hello Verilog”;
string val = “hello”; // MS Bytes are fTilled with O
string val = “I am overflowed”; // “l > 1s truncated

o Escaped chars:

— \n newline
— \t tab

— %% %

— \\ \
O\ «

Texas A&M University

- && — logical AND
e || — logical OR
- I —ogical NOT
* Operands evaluated to ONE bit value: 0, 1 or x
e Result is ONE bit value: 0, 1 or X
A= 6: A& B > 1& 0 - 0
B = 0 ‘A“ B> 1] 11
C = X; CJlJI B—->x]] 0 X

but C&&B=0 I

Texas A&M University

- & — bitwise AND
e | — bitwise OR

- ~ — bitwise NOT
- A — bitwise XOR

e ~AOr ~~ — bitwise XNOR

« Operation on bit by bit basis for bitwise operators.

Texas A&M University

o)

Zero
extended

-

C = —a,
Q] 0] 0 S
= 4’b1010; e
oo B VIVVIY
c=anb: C 0] 0]
=
11ifolif1]i]o
olifloli[1]i]7
- a = 4’b1010;
VYV Y b = 2711
11i[oli[o]]

c =a & b;
] 0141 0
& | & & &
]] Ofi|0

Texas A&M University

— AND
— OR
— XOR
— NAND
— NOR
e ~N Or N~ — XNOR

* One multi-bit operand — One single-bit result
a = 4’b1001;

c = Ja; // c = 1]0]0]J1 =1

 If A='b0110, and B = “b0100 then |B=1, &B=0, ~*A=1

e [f C=4’b01x0, then "C=x.

Texas A&M University

64

shift right
shift left

IS same size as first operand, always zero filled

a = 4’b1010;

d = a > 2; // d = 0010
C = a << 1; // c = 0100

Texas A&M University

65

Concatenation Operator

e {opl, op2, ..} —> concatenates opl, op2, .. to single number

e Operands must be sized !!
reg a,;
reg [2:0] b, c;

a=1b 1;

b = 3”b 010;

c = 3’b 101;

catx = {a, b, c}; // catx = 1 010 _101
caty = {b, 2°bll, a}; // caty = 010 11 1
catz = {b, 1}; // WRONG 1!

* Replication ..
catr = {4{a}, b, 2{c}}; // catr = 1111 010_101101

—> greater than
— less than
— greater or equal than
e <= — lessorequal than

e Result is one bit value: 0, 1 or x

1 >0 —1
’bilx1l <= 0 — X
10 < z —> X

Texas A&M University

-« == > |ogical equality \

- 1= |ogical inequality Retum, Lorx
- === > case equality i

- 1== — case inequality * ReturnOor1

J

— 4°b 1z0x == 4°b 1z0x — X
— 4°b 1z0x '= 4°b 1z0x —X
— 4°b 1z0x === 4°’b 1z0x —>1
— 4°b 1z0x '== 4°b 1z0x — 0

Texas A&M University

2-t0-1 mux ..

Texas A&M University

expr ? true_expr :

false_expr

“ Y = (sel)? A :

B;

69

* +1_1*1/1%

« |f any operand is x the result is x

* Negative registers:

— regs can be assigned negative but are treated as unsigned
reg [15:0] regdA;

regA = -4°d12; // stored as 216-12 = 65524
regA/3 evaluates to 21861

Texas A&M University

* Negative integers:

— can be assigned negative values

— different treatment depending on base specification or not
reg [15:0] regA;

integer IntA;

INtA = -12/3; // evaluates to -4 (ho base spec)
InNtA = -°d12/3; // evaluates to 1431655761 (base spec)

Texas A&M University

Verilog Operators

> greater than Relational
>= greater than or equal to Relational
< less than Relational
<= less than or equal to Relational
== logical equality Equality
I= logical inequality Equality
=== case equality Equality
I== case inequality Equality
& bit-wise AND Bit-wise

A bit-wise XOR Bit-wise
A~ or AN bit-wise XNOR Bit-wise

| bit-wise OR Bit-wise
&& logical AND Logical

| logical OR Logical
7 conditional Conditional

0 bit-select or part-select

O parenthesis

! logical negation Logical

~ negation Bit-wise

& reduction AND Reduction
| reduction OR Reduction
~& reduction NAND Reduction
~| reduction NOR Reduction
A reduction XOR Reduction
~Nor i reduction XNOR Reduction
+ unary (sign} plus Arithmetic
- unary (sign) minus Arithmetic
{} concatenation Concatenation
{n replication Replication
* multiply Arithmetic
/ divide Arithmetic
% modulus Arithmetic
+ binary plus Arithmetic
- binary minus Arithmetic
<< shift left Shift

>> shift right Shift

Operator Precedence

+-l~unarv

highest precedence

:':II.-"%

b

¥

7

conditional

lowest precedence

Use parentheses to
enforce your
priority

Verilog Variables

e Wire
— Variable used simply to connect components together
* TIeg
— Variable that saves a value as part of a behavioral description
— Usually corresponds to a wire in the circuit
— Is NOT necessarily a register in the circuit
e usage:

— Don’t confuse reg assignments with the combinational
continuous ass1gn statement!

— Reg should only be used with always blocks (sequential logic,
to be presented ...)

Verilog Module

» Corresponds to a circuit component
— “Parameter list” is the list of external connections, aka “ports”

— Ports are declared “input”, “output” or “inout”
e inout ports used on tri-state buses
— Port declarations imply that the variables are wires

module name ports

/

modulle full _addr (A, B, Cin, S, Cout);

input A, B, Cin; <«
output S, Cout; __ inputs/outputs

assign {Cout, S} = A + B + Cin;
endmodule

Verilog Continuous Assignment

e Assignment is continuously evaluated

e assign corresponds to a connection or a simple component
with the described function

e Target is NEVER a reg variable
o Dataflow style

use of Boolean operators

_ (~ for bit-wise, ! for logical negation)
assign A = X | (Y & ~2); f///////
assign B[3:0] = 4"bO1XX; 4/‘Ié)(i)wtslcia;l(,mzk)e on four values

assign C[15:0] = 4"hOOff; <«——__ variables can be n-bits wide
L ! (MSB:LSB)
assign #3 {Cout, S[3:0]} = A[3:0] + B[3:0] + Cin;
\ \use of arithmetic operator
multiple assignment (concatenation)

delay of performing computation, only used by simulator, not synthesis

Verilog 1 f

e Same as C If statement

// Simple 4-1 mux

modulle mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)
IT (sel == 2°b00) Y = A;
else 1t (sel == 2°b01) Y
else 1f (sel == 2°pb10) Y
else 1f (sel == 2°b11) Y

B;
C;
D

endmodule

// Simple 4-1 mux

module mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)
1T (sel[0] == 0)

IT (sel[l] == 0) Y = A;

else Y = B;
else

iIT (sel[l] == 0) Y = C;

else Y = D;
endmodule

Texas A&M University

Verilog case

o Seguential execution of cases

— Only first case that matches is executed (no break)

— Default case can be used
// Simple 4-1 mux

modulle mux4 (sel, A, B, C, D, Y);

input [1:0] sel; // 2-bit control signal
input A, B, C, D;

output Y;

reg Y; // target of assignment

always @(sel or A or B or C or D)
case (sel)

27b00: Y = A; |
27b01: Y = B; Conditions tested in
2°b10: Y = C; top to bottom order
2’b11: Y = D; 1

endcase

endmodule

Verilog case

* Without the default case, this example would create a latch for Y

e Assigning X to a variable means synthesis is free to assign any value

// Simple binary encoder (input i1s 1-hot)

module encode (A, Y);

input [7:0] A; // 8-bit 1nput vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @(A)
case (A)
8”b00000001:
8~”b00000010:
>p00000100:
>p00001000:
>p00010000:
>b00100000:
>b01000000:
>p10000000:
default:
endcase
endmodule

O 00 0O 0O 00 0
<< <<=<=<=<=<=<
TR TR TR R TR TR TR

W~NO U PA~WNPEO

“bX; // Don’t care when input is not 1-hot

Verilog case (cont) J

o (Cases are executed sequentially
— The following implements a priority encoder

// Priority encoder
module encode (A, Y);

input [7:0] A; // 8-bit 1nput vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment

always @(A)
case (1°bl)

A[O]: Y = 0;
Al1l]: Y = 1;
Al2]: Y = 2;
A[3]: Y = 3;
Al4]: Y = 4;
A[5]: Y = 5;
A[6]: Y = 6;
Al7]: Y = 7;
default: Y = 3”’bX; // Don’t care when input is all 0’s
endcase

endmodule

Parallel case

A priority encoder is more expensive than a simple encoder
— If we know the input is 1-hot, we can tell the synthesis tools

— “parallel-case” pragma says the order of cases does not matter
// simple encoder
module encode (A, Y);

input [7:0] A; // 8-bit Input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment
always @(A)
case (1°bl) // synthesis parallel-case

A[O]: Y = 0;

Al1l]: Y = 1;

Al2]: Y = 2;

A[3]: Y = 3;

Al4]: Y = 4;

A[5]: Y = 5;

Al6]: Y = 6;

Al7]: Y = 7;

default: Y = 3”’bX; // Don’t care when input is all 0’s

endcase
endmodule

e case, but cases can include ‘X’
bits not used when evaluating the cases
In other words, you don’t care about those bits!

Texas A&M University

83

// Priority encoder
modulle encode (A, valid, Y);

input [7:0] A; // 8-bit input vector

output [2:0] Y; // 3-bit encoded output

output valid; // Asserted when an input is not all 0’s
reg [2:0] Y; // target of assignment

reg valid;

always @(A) begin
valid = 1;
casex (A)

87 bXXXXXXX1: Y

87bXXXXXX10: Y

87 bXXXXX100: Y

87bXXXX1000: Y

87bXXX10000: Y

Y

Y

Y

i

87bXX100000:
87bX1000000:
8”b10000000:
default: begin
valid = 0;
Y = 3’bX; // Don’t care when input is all 0’s
end
endcase
end
endmodule

~No ohWNPEFO

Texas A&M University

Verilog for

e fTorissimilarto C
= Tor statement is executed at compile time (like macro expansion)
— Useful for parameterized designs.

// simple encoder
module encode (A, Y);

input [7:0] A; // 8-bit i1nput vector

output [2:0] Y; // 3-bit encoded output

reg [2:0] Y; // target of assignment

integer 1i; // Temporary variables for program only

reg [7:0] test;

always @(A) begin
test = 8b”00000001;
Y = 37bX;
for (1 = 0; 1 <8; 1 =1+ 1) begin
IT (A == test) Y = N;
test = test << 1]1;
end
end
endmodule

Verilog whi le/repeat/fo r}ever

< while (expression) statement
— EXecute statement while expression is true
e repeat (expression) statement

— Execute statement a fixed number of times
e forever statement

— Execute statement forever

ful l-case and paral IelJ—case

e // synthesis parallel case

— Tells compiler that ordering of cases is not important

— That Is, cases do not overlap
e €. (., state machine - can’t be in multiple states

— Gives cheaper implementation

e // synthesis full case

— Tells compiler that cases left out can be treated as don’t cares
— Avoids incomplete specification and resulting latches

