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Verilog
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Objectives of this Lecture Unit

• Get a feel for the basics of Verilog
– The focus of this unit will be along two separate but equally relevant 

axes
• We will cover the semantics of Verilog and different modeling styles
• Also we will cover syntax issues. For this portion, additional resources 

are also provided on the website.
– In general Verilog is quite rich, and therefore, there are many ways to 

achieve the same design goal
• We will focus on the syntax that is most common, especially from a 

synthesizability point of view.
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Hardware Description Languages (HDLs)

• What is a HDL, why is it useful
• The Verilog HDL
• Modelling a simple circuit in Verilog

– Gate level
– Dataflow
– Procedural
– Synthesizable Verilog

• Testbenches
• Syntax coverage
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Hardware Description Language (HDLs)

• A HDL is a programming language which is tuned to describe 
hardware

• HDLs allow us to design and simulate a design at a higher level of 
abstraction 
– Result = higher designer productivity

• HDLs also have accompanying synthesis tools which allow the 
designer to obtain an implementation from HDL code.
– Further improvement in designer productivity

• FPGA based design flows use HDLs heavily!
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Common HDLs

• There are mainly two HDLs in use today
– Verilog HDL
– VHDL

• VHDL is the somewhat more common
– Standard developed by US DoD
– VHDL = (Very High Speed Integrated Circuit) HDL

• We choose Verilog for this class because
– It is easier to use and teach
– Resembles “C” and hence easier to learn.

• Which one is “better”?
– This is the topic of much debate
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Verilog HDL

• Verilog constructs are use defined keywords
– Examples: and, or, wire, input, output

• One important construct is the module
– Modules have inputs and outputs 
– Modules can be built up of Verilog primitives or of user defined

submodules.
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module xor_gate ( out, a, b );
input     a, b;
output    out;
wire      abar, bbar, t1, t2;

not invA (abar, a);
not invB (bbar, b);
and and1 (t1, a, bbar);
and and2 (t2, b, abar);
or or1 (out, t1, t2);

endmodule

A Structural Design - XOR

– Composition of primitive gates to form more complex module
Instance name

port list

module name

declarations

statements
Built-in gates

interconnections invA

invB

a

b

outand1

and2

or1

t1

t2
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Another Simple Circuit (in Structural Verilog)

module smpl_circuit(A,B,C,x,y);
input A,B,C;
output x,y;
wire e;
and g1(e,A,B);
not g2(y, C);
or g3(x,e,y);

endmodule
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Structural Verilog

• Just specifies primitive gates and wires
– In other words, the structure of a logical netlist

• Useful if you know exactly what logic you want to generate
– Not useful for large designs, where we want to specify the design at a 

higher level of abstraction
• It is crucial to design at a higher level of abstraction in this case, since 

structural design would be tedious and error prone
– In such a case, we will describe the circuit at a high level of 

abstraction, and let the CAD tools realize the detailed design (by 
performing the steps of synthesis, mapping, placement+routing, and 
generation of the netlist (in an FPGA, this is the bitgen file)

– In special cases, delay or area-critical sub-blocks can be designed in 
structural manner, while the rest of the logic could be at a higher level 
of abstraction (typically described in the behavioral fashion).
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Simple Circuit – Comments 

• The module starts with module keyword and finishes with 
endmodule.

• Internal signals are named with wire.
• Comments follow //
• input and output are ports.  These are placed at the start of the 

module definition.
• Each statement ends with a semicolon, except endmodule.
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Adding Delays

• To simulate a circuit’s real world behaviour it is important that 
propagation delays are included.

• The units of time for the simulation can be specified with 
timescale. 
– Default is 1ns with precision of 100ps

• Component delays are specified as #(delay)
• BUT REMEMBER – these delays will NOT synthesize.

– Useful only for simulation and verification of your design.
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Simple Circuit with Delay
module
circuit_with_delay 
(A,B,C,x,y);

input A,B,C;

output x,y;

wire e;

and #(30) g1(e,A,B);

or #(20) g3(x,e,y);

not #(10) g2(y,C);

endmodule
0 1 11 1 150

0 1 01 1 140

0 1 01 1 130

0 0 11 1 120

0 0 11 1 110

1 0 11 1 10

1 0 10 0 00

Output
y e x

Input
A B C

Time
(ns)
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Structural Model 

• Built-in gate primitives:
and, nand, nor, or, xor, xnor, buf, not, bufif0, bufif1, 
notif0, notif1

• Usage:
nand (out, in1, in2); 2-input NAND without delay
and #2 (out, in1, in2, in3); 3-input AND with 2 t.u. delay
not #1 N1(out, in); NOT with 1 t.u. delay and instance name
xor X1(out, in1, in2); 2-input XOR with instance name
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Dataflow modelling

• Another level of abstraction is to model dataflow.
• In dataflow models, signals are continuously assigned values using the assign

keyword.
• assign can be used with Boolean expressions.

– Verilog uses & (and), | (or), ^ (xor) and ~ (not)
• Logic expressions and binary arithmetic are also possible.

• Left hand side must be a net of some kind (scalar or vector), not a register
• Right hand side can be registers, nets.
• Continuous assignments are always active. Execution hard to trace
• They are evaluated whenever a right hand side operand changes value
• Delays (inertial) can be added to represent component delays
• LHS evaluates when there is an event on the RHS (therefore independent of 

ordering of assign statements in the code)

assign #10 out = i1 & i2;
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Simple Circuit Boolean Expression

x = A.B + C

y = C
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Dataflow Description of Simple Circuit
//Circuit specified with Boolean 
equations

module circuit_bln (x,y,A,B,C);

input A,B,C;

output x,y;

assign x = (A & B) | ~C;

assign y = ~C ;

endmodule

Order does not
matter!
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Multiplexor

• Multiplexor is a combinational circuit where an input is chosen by a 
select signal.
– Two input mux 
– output =A if select =1
– output= B if select =0

A
B x

s
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Dataflow description of 2-input Mux

• Conditional operator ?:takes three operands:
condition? true_expression : false_expression

module mux2x1_df (A,B,select,OUT);
input A,B,select;
output OUT;
assign OUT = select ? A : B;

endmodule
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Behavioural Modelling

• Represents circuits at functional and algorithmic level.
• Use procedural statements similar in concept to procedural 

programming languages (e.g. C, Java),
• Behavioural modelling is mostly used to represent sequential 

circuits.
• We still  specify a module in Verilog with inputs and outputs...

– But inside the module we write code to specify the behavior we want, 
NOT what gates (structure) to connect to make it happen

• Why use behavioral models
– For high-level specs to drive logic synthesis tools
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Behavioural Modelling

• Behavioural models place procedural statements in a block after the 
always keyword.

• The always keyword takes a list of variables which represent a 
trigger condition.  The block of statements is executed whenever
the trigger is TRUE.

• The target variables are of type reg.   This type retains its value 
until a new value is assigned.

• Behavioral models may also have initial blocks.
– The block executes only once
– By default, starts at time 0 
– Often used for initialization
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Always Blocks
• Module may have any number of always blocks
• Allow us to represent parallelism in hardware.
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Behavioral Description of an XOR

module xorB(X, Y, Z);
input X, Y;
output Z;
reg Z;
always @ (X or Y)

Z = X ^ Y;
endmodule

• Unusual parts of above Verilog
– “always @ (X or Y)” => whenever X or Y changes, do 

the following statement
– “reg” is only type of behavioral data that can be changed in 

assignment, so must redeclare Z
– Default is single bit data types: X, Y, Z
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Behavioural description of 2-input Mux

module mux2x1_bh(A,B,select,OUT);
input A,B,select;
output OUT;
reg OUT;    
always @ (select or A or B) 

if (select == 1) OUT = A;
else OUT = B;

endmodule
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Behavioral example

• Behavioral edge-triggered DFF 
implem
module dff(Q, D, Clk);
output Q;

input D, Clk;

reg Q;
wire D, Clk;

always @(posedge Clk)
Q = D;

endmodule
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Another Behavioral Example

a
b

c

Y

W

clk

res
always @(res or posedge clk) begin

if (res) begin
Y = 0;
W = 0;
end

else begin
Y = a & b;
W = ~c;
end

end
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• Represented with an = sign
– All blocking assignments are executed in sequence

Blocking Assignments

module dummy;
reg x, y, z;
reg [15:0] reg_a, reg_b;
integer count;
initial
begin

x = 0; y = 1; z = 1;
count = 0;
reg_a = 16'b0; 
reg_b = reg_a;
reg_a[2] = #15 1;
reg_b[15:13] = #10 {x, y, z};
count = count + 1;

end
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• Represented with a <= sign
– All non-blocking assignments are executed in parallel
– Try not to mix with blocking assignments

Non-blocking Assignments

module dummy;
reg x, y, z;
reg [15:0] reg_a, reg_b;
integer count;
initial
begin

x = 0; y = 1; z = 1;
count = 0;
reg_a[2] <= #15 1;
reg_b[15:13] <= #10 {x, y, z};
count = count + 1;

end
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Blocking or Non-blocking???

• Blocking is harder to reason about. 
• Also hardware does not work in a blocking (sequential way)
• So generally you should use non-blocking assignments

– Easier to synthesize
– Models parallelism which is inherent in the hardware
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• Inertial Delay – consider the 
statement

assign #4 x = z;

– It’s delay behavior is called “inertial”
delay

– Applicable for gate level primitives 
and continuous assignments

• Transport delay – consider the 
statement

always @(z)
y <= #4 z;

– Its delay is called “transport” delay
– Applicable in non-blocking 

assignments

Two kinds of Delays in Verilog

0 9 10 19

4 23

z

x

4 13 14 23
y
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Delving Deeper

• So far, we saw how some sample circuits are represented in the 
three styles

• In the next part of this lecture unit, we will talk about
– Logic values in Verilog
– How to represent hierarchical designs
– Testbenches
– How to represent sequential logic
– Synthesizability Tips
– Syntax examples (will not go over in class in any detail, this portion 

of the notes is for your reference)
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Four-Valued Logic
• Verilog Logic Values

– The underlying data representation allows for any bit to have one of 
four values

– 1, 0, x (unknown), z (high impedance)
– x — one of: 1, 0, z, or in the state of change
– z — the high impedance output of a tri-state gate.

• What basis do these have in reality?
– z … An output is high impedance.  Tri-stated outputs are a real

electrical affect.
– x … not a real value.  There is no real gate that drives an x on to a 

wire.  x is used as a debugging aid.  x means the simulator can’t 
determine the answer and so maybe you should worry!  All values 
in a simulation start as x.

• Verilog keeps track of more values than these in some situations.  



32Texas A&M University

Four-Valued Logic
• Logic with multi-level logic values

– Logic with these four values make sense
• Nand anything with a 0, and you get a 1.  This includes having an x or z 

on the other input.  That’s the nature of the nand gate
• Nand two x’s and you get an x — makes sense!

– Note: z treated as an x on input.  Their rows and columns are the same
– If you forget to connect an input … it will be seen as an z.
– At the start of simulation, everything is an x.

Nand 0 1 x z
0 1 1 1 1
1 1 0 x x
x 1 x x x
z 1 x x x

A 4-valued truth table for a 
Nand gate with two inputs

In
pu

t A

Input B A
B
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How to Represent Hierarchy in your Design

module B1(a, b, c);
………………..

endmodule
module B2(a, b, c, d);

………………..
endmodule
module B3(x, y, z);

………………..
endmodule

B1 B2

B3

• First write the modules for each block of the hierarchy
– Then wire them up (next page)
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Port Mapping (Connecting things up) 

module top(a,b,c,d);
…….

B1 b1(w, q, a, c);
........

endmodule

module B1(q, w, e, f);
input q, w;
input [3:0] e;
output [1:0] f;
……………….

endmodule
B1

w q

wq
a

c

e

f

Module B1 declared

Module B1 instantiated, 
instance is called myinst
in this case
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Example (Dataflow, with hierarchy)

module half_adder(S, C, A, B);
output S, C;
input A, B;

wire S, C, A, B;

assign S = A ^ B;
assign C = A & B;

endmodule

Half
Adder
Half

Adder

A

B

S

C

A

B

S

C
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Creating a Full Adder using Half Adder instances

module full_adder(sum, cout, in1, in2, cin);
output sum, cout;
input in1, in2, cin;

wire sum, cout, in1, in2, cin;
wire I1, I2, I3;

half_adder ha1(I1, I2, in1, in2);
half_adder ha2(sum, I3, I1, cin);

assign cout = I2 || I3;

endmodule

Instance
name

Module
name

Half
Adder 

ha2

Half
Adder 

ha2

A

B

S

C
Half

Adder 1
ha1

Half
Adder 1

ha1

A

B

S

C

in1

in2

cin

cout

sumI1

I2 I3
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Hierarchical Names

ha2.A

Remember to use instance names,
not module names

Half
Adder 

ha2

Half
Adder 

ha2

A

B

S

C
Half

Adder 1
ha1

Half
Adder 1

ha1

A

B

S

C

in1

in2

cin

cout

sumI1

I2 I3
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Verification

• Use testbench to verify your design
– Special Verilog file for simulating and testing your design
– Instantiates the module to be tested
– Contains code to apply stimulus to the module under test, and monitor 

the correctness of the response

Response
&

Verification

Stimulus
&

Control Signal
Test-Bench

Module under Test
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Sample Testbench
module top_test;
wire [1:0] t_out; // Top’s signals
reg [3:0] t_in;
reg clk;

top inst(t_out, t_in, clk); // Top’s instance

initial begin // Generate clock
clk = 0;
forever #10 clk = ~clk;

end

initial begin // Generate remaining inputs
$monitor($time, " %b -> %b", t_in, t_out);
#5 t_in = 4'b0101;
#20 t_in = 4'b1110;
#20 t_in[0] = 1;
#300 $finish;

end

endmodule
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//Parallel to Serial converter

module ParToSer(LD, X, out, CLK); 
input [3:0] X;

input LD, CLK;
output out; 
reg out;

reg [3:0] Q;
assign out = Q[0];

always @ (posedge CLK)
if (LD) Q=X;
else Q = Q>>1;

endmodule // mux2

module FF (CLK,Q,D);
input D, CLK;

output Q; reg Q;
always @ (posedge CLK) Q=D;

endmodule // FF

Sequential Logic

• Notes:
– “always @ (posedge CLK)” forces Q 

register to be rewritten every 
simulation cycle.

– “>>” operator does right shift (shifts 
in a zero on the left).

– Shifts on non-reg variables can be 
done with concatenation:
wire [3:0] A, B;

assign B = {1’b0, A[3:1]}
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Sequential Logic – another example
module mealy (A, CLK, Z);

input A, CLK;
output Z;
reg Z;

always @(posedge CLK)   
Pstate = Nstate;            // synchronous part
always @(Pstate or A) begin: COMBINPART

case (Pstate)
ST0:
if(A)
begin

Z=1;
Nstate = ST3;

end
else

Z=0;

ST1:
if(A)

begin
Z=0;
Nstate = ST2;

end
else

Z=0;
<ETC><ETC>

endcase
end

endmodule

• Notes:
– If we have a state machine updating 

on a rising clock edge, then we 
create the always block (triggered 
on the posedge of clock).

– Also we write the state machine 
behavior as a case statement. 

• For example if we are in state ST0, 
and A is 1, then we move to state 
ST3 in the next clock. 

– This kind of code for a state 
machine is very similar to the state 
transition diagram based behavior. 
Hence easy to write.
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Synthesizability Tips

• If you want to synthesize your Verilog code, here are some tips
– Do not use delays in your code
– Watch for blocking and non-blocking assignments (next slide)
– Watch out for complete assignments (2 slides after next)
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Blocking and Non-blocking
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“Complete” Assignments

• If an always block executes, and a variable is not assigned
– Variable keeps its old value (this needs state!!)
– Hence latch is inserted (inferred memory)
– This is usually not what you want: dangerous for the novice!

• So to aviod this, any variable assigned in an always block should 
be assigned for any (and every!) execution of the block
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module and_gate (out, in1, in2);
input in1, in2;
output out;
reg out;

always @(in1) begin
out = in1 & in2;

end

endmodule

Incomplete Triggers

• Leaving out an input trigger usually results in a sequential circuit
• Example:  The output of this “and” gate depends on the input 

history (a latch will be inferred on in2).
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Some Verilog Syntax Notes for Your Reference..

• You may find the following slides handy as a partial Verilog 
reference. 
– It is not meant to be a complete reference – see the resources on the 

class website for more detailed references.
– It is meant to help you with the syntax for common Verilog 

constructs.
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User Identifiers

• Formed from {[A-Z], [a-z], [0-9], _, $}, but .. 
• .. can’t begin with $ or [0-9]

– myidentifier

– m_y_identifier

– 3my_identifier

– $my_identifier

– _myidentifier$

• Case sensitivity
– myid ≠ Myid
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Comments

• // The rest of the line is a comment

• /* Multiple line
comment */

• /* Nesting /* comments */ do NOT work  */
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Numbers in Verilog (i)

<size>’<radix> <value>

– 8’h ax = 1010xxxx
– 12’o 3zx7 = 011zzzxxx111

No of 
bits

No of 
bits

Binary           → b or B
Octal             → o or O
Decimal        → d or D
Hexadecimal → h or H

Binary           → b or B
Octal             → o or O
Decimal        → d or D
Hexadecimal → h or H

Consecutive chars 
0-f, x, z

Consecutive chars 
0-f, x, z
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Numbers in Verilog (ii)

• You can insert “_” for readability
– 12’b 000_111_010_100 
– 12’b 000111010100
– 12’o 07_24

• Bit extension
– MS bit = 0, x or z ⇒ extend this

• 4’b x1 = 4’b xx_x1
– MS bit = 1 ⇒ zero extension

• 4’b 1x = 4’b 00_1x

Represent the same number
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Numbers in Verilog (iii)

• If size is ommitted it 
– is inferred from the value or
– takes the simulation specific number of bits or
– takes the machine specific number of bits

• If  radix is ommitted too .. decimal is assumed
– 15 = <size>’d 15
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Nets (i)

• Can be thought as hardware wires driven by logic
• Equal z when unconnected
• Various types of nets

– wire

– wand (wired-AND)
– wor (wired-OR)
– tri (tri-state)

• In following examples: Y is evaluated, automatically, 
every time A or B changes
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Nets (ii)

A
B Y

wire Y;  // declaration

assign Y = A & B;

B

A
Y

wand Y;  // declaration

assign Y = A;
assign Y = B;

wor Y;  // declaration

assign Y = A;
assign Y = B;

A Y
dr

tri Y;  // declaration

assign Y = (dr) ? A : z;



54Texas A&M University

Registers
• Variables that store values
• Do not represent real hardware but ..
• .. real hardware can be implemented with registers
• Only one type: reg

reg A, C; // declaration
// assignments are always done inside a procedure
A = 1;

C = A; // C gets the logical value 1
A = 0; // C is still 1
C = 0; // C is now 0

• Register values are updated explicitly!!
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Vectors
• Represent buses

wire [3:0] busA;

reg [1:4] busB; 
reg [1:0] busC;

• Left number is MS bit
• Slice management

busC[1] = busA[2];

busC[0] = busA[1];

• Vector assignment (by position!!)
busB[1] = busA[3];

busB[2] = busA[2];

busB[3] = busA[1];
busB[4] = busA[0];

busB = busA; ⇔

busC = busA[2:1]; ⇔
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Integer & Real Data Types

• Declaration
integer i, k;
real r;

• Use as registers (inside procedures)
i = 1; // assignments occur inside procedure
r = 2.9;
k = r; // k is rounded to 3

• Integers are not initialized!!
• Reals are initialized to 0.0
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Time Data Type

• Special data type for simulation time measuring

• Declaration
time my_time;

• Use inside procedure
my_time = $time; // get current sim time

• Simulation runs at simulation time, not real time
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Arrays (i)
• Syntax

integer count[1:5]; // 5 integers
reg var[-15:16]; // 32 1-bit regs
reg [7:0] mem[0:1023]; // 1024 8-bit regs

• Accessing array elements
– Entire element: mem[10] = 8’b 10101010;
– Element subfield (needs temp storage):

reg [7:0] temp;
..
temp = mem[10];
var[6] = temp[2];

• Concatenating bits/vectors into a vector
– e.g., sign extend
– B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
– B[7:0] = {3{A[3]}, A[3:0]};

• Style:  Use  a[7:0] = b[7:0] + c;
Not: a = b + c; // need to look at declaration
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Arrays (ii)

• Limitation: Cannot access array subfield or entire array at once
var[2:9] = ???; // WRONG!!

var = ???; // WRONG!!

• No multi-dimentional arrays
reg var[1:10] [1:100]; // WRONG!!

• Arrays don’t work for the Real data type
real r[1:10]; // WRONG !!
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Strings

• Implemented with regs:
reg [8*13:1] string_val; // can hold up to 13 chars

..

string_val = “Hello Verilog”;

string_val = “hello”; // MS Bytes are filled with 0

string_val = “I am overflowed”; // “I ” is truncated

• Escaped chars:
– \n newline
– \t tab
– %% %

– \\ \

– \“ “
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Logical Operators

• && → logical AND
• || → logical OR
• !  → logical NOT
• Operands evaluated to ONE bit value: 0, 1 or x
• Result is ONE bit value: 0, 1 or x

A = 6; A && B → 1 && 0 → 0

B = 0; A || !B → 1 || 1 → 1
C = x; C || B → x || 0 → x

but C&&B=0but C&&B=0
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Bitwise Operators (i)
• & → bitwise AND
• | → bitwise OR
• ~ → bitwise NOT
• ^ → bitwise XOR
• ~^ or ^~ → bitwise XNOR

• Operation on bit by bit basis for bitwise operators. 
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Bitwise Operators (ii)

c = ~a; c = a & b;

a = 4’b1010;

b = 4’b1100;

a = 4’b1010;

b = 2’b11;

c = a ^ b;
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Reduction Operators

• & → AND
• | → OR
• ^ → XOR
• ~& → NAND
• ~| → NOR
• ~^ or ^~ → XNOR

• One multi-bit operand → One single-bit result
a = 4’b1001; 
..
c = |a; // c = 1|0|0|1 = 1

• If A = ‘b0110, and B = ‘b0100 then |B=1, &B=0, ~^A=1

• If C=4’b01x0, then ^C=x.
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Shift Operators

• >> → shift right
• << → shift left

• Result is same size as first operand, always zero filled

a = 4’b1010;
...

d = a >> 2; // d = 0010

c = a << 1; // c = 0100
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Concatenation Operator

• {op1, op2, ..} → concatenates op1, op2, .. to single number
• Operands must be sized !!

reg a;

reg [2:0] b, c;
..

a = 1’b 1;
b = 3’b 010;
c = 3’b 101;
catx = {a, b, c}; // catx = 1_010_101
caty = {b, 2’b11, a}; // caty = 010_11_1
catz = {b, 1}; // WRONG !!

• Replication ..
catr = {4{a}, b, 2{c}}; // catr = 1111_010_101101
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Relational Operators

• > → greater than
• < → less than
• >= → greater or equal than
• <= → less or equal than

• Result is one bit value: 0, 1 or x
1 > 0 → 1
’b1x1 <= 0 → x
10 < z → x
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Equality Operators

• == → logical equality
• != → logical inequality
• === → case equality
• !== → case inequality

– 4’b 1z0x == 4’b 1z0x  → x

– 4’b 1z0x != 4’b 1z0x  → x
– 4’b 1z0x === 4’b 1z0x → 1
– 4’b 1z0x !== 4’b 1z0x → 0

Return 0, 1 or x

Return 0 or 1
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Conditional Operator

• cond_expr ? true_expr : false_expr

• Like a 2-to-1 mux ..

A

B
Y

sel

Y = (sel)? A : B;
0

1



70Texas A&M University

Arithmetic Operators (i)

• +, -, *, /, %

• If any operand is x the result is x

• Negative registers:

– regs can be assigned negative but are treated as unsigned
reg [15:0] regA;

..

regA = -4’d12; // stored as 216-12 = 65524

regA/3 evaluates to 21861
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Arithmetic Operators (ii)

• Negative integers:

– can be assigned negative values 

– different treatment depending on base specification or not
reg [15:0] regA;

integer intA;

..

intA = -12/3; // evaluates to -4 (no base spec)

intA = -’d12/3;  // evaluates to 1431655761 (base spec)
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Verilog Operators
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Operator Precedence

Use parentheses to 
enforce your 

priority
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Verilog Variables

• wire
– Variable used simply to connect components together

• reg
– Variable that saves a value as part of a behavioral description
– Usually corresponds to a wire in the circuit
– Is NOT necessarily a register in the circuit

• usage:
– Don’t confuse reg assignments with the combinational 

continuous assign statement! 
– Reg should only be used with always blocks (sequential logic, 

to be presented …)
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Verilog Module

• Corresponds to a circuit component
– “Parameter list” is the list of external connections, aka “ports”
– Ports are declared “input”, “output” or “inout”

• inout ports used on tri-state buses
– Port declarations imply that the variables are wires

module full_addr (A, B, Cin, S, Cout);
input A, B, Cin;
output S, Cout;

assign {Cout, S} = A + B + Cin;
endmodule

module name

inputs/outputs

ports
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assign A = X | (Y & ~Z);

assign B[3:0] = 4'b01XX;

assign C[15:0] = 4'h00ff;

assign #3 {Cout, S[3:0]} = A[3:0] + B[3:0] + Cin;

use of arithmetic operator
multiple assignment (concatenation)

delay of performing computation, only used by simulator, not synthesis

use of Boolean operators
(~ for bit-wise, ! for logical negation)

bits can take on four values
(0, 1, X, Z)

variables can be n-bits wide
(MSB:LSB)

Verilog Continuous Assignment

• Assignment is continuously evaluated
• assign corresponds to a connection or a simple component 

with the described function
• Target is NEVER a reg variable
• Dataflow style
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Verilog if

• Same as C if statement
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel == 2’b00) Y = A;
else if (sel == 2’b01) Y = B;
else if (sel == 2’b10) Y = C;
else if (sel == 2’b11) Y = D;

endmodule
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Verilog if

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel[0] == 0)
if (sel[1] == 0) Y = A;
else             Y = B;

else
if (sel[1] == 0) Y = C;
else             Y = D;

endmodule
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Verilog case

• Sequential execution of cases
– Only first case that matches is executed (no break)
– Default case can be used 

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
case (sel)

2’b00: Y = A;
2’b01: Y = B;
2’b10: Y = C;
2’b11: Y = D;

endcase
endmodule

Conditions tested in
top to bottom order
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Verilog case

• Without the default case, this example would create a latch for Y
• Assigning X to a variable means synthesis is free to assign any value

// Simple binary encoder (input is 1-hot)
module encode (A, Y);
input  [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg    [2:0] Y; // target of assignment

always @(A)
case (A)
8’b00000001: Y = 0;
8’b00000010: Y = 1;
8’b00000100: Y = 2;
8’b00001000: Y = 3;
8’b00010000: Y = 4;
8’b00100000: Y = 5;
8’b01000000: Y = 6;
8’b10000000: Y = 7;
default:     Y = 3’bX; // Don’t care when input is not 1-hot

endcase
endmodule
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Verilog case (cont)

• Cases are executed sequentially
– The following implements a priority encoder

// Priority encoder
module encode (A, Y);
input  [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg    [2:0] Y; // target of assignment

always @(A)
case (1’b1)
A[0]:    Y = 0;
A[1]:    Y = 1;
A[2]:    Y = 2;
A[3]:    Y = 3;
A[4]:    Y = 4;
A[5]:    Y = 5;
A[6]:    Y = 6;
A[7]:    Y = 7;
default: Y = 3’bX; // Don’t care when input is all 0’s

endcase
endmodule
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Parallel case

• A priority encoder is more expensive than a simple encoder
– If we know the input is 1-hot, we can tell the synthesis tools
– “parallel-case” pragma says the order of cases does not matter

// simple encoder
module encode (A, Y);
input  [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg    [2:0] Y; // target of assignment

always @(A)
case (1’b1) // synthesis parallel-case
A[0]:    Y = 0;
A[1]:    Y = 1;
A[2]:    Y = 2;
A[3]:    Y = 3;
A[4]:    Y = 4;
A[5]:    Y = 5;
A[6]:    Y = 6;
A[7]:    Y = 7;
default: Y = 3’bX; // Don’t care when input is all 0’s

endcase
endmodule
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Verilog casex

• Like case, but cases can include ‘X’
– X bits not used when evaluating the cases
– In other words, you don’t care about those bits!
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casex Example
// Priority encoder
module encode (A, valid, Y);
input  [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
output valid; // Asserted when an input is not all 0’s
reg    [2:0] Y; // target of assignment
reg    valid;

always @(A) begin
valid = 1;
casex (A)

8’bXXXXXXX1: Y = 0;
8’bXXXXXX10: Y = 1;
8’bXXXXX100: Y = 2;
8’bXXXX1000: Y = 3;
8’bXXX10000: Y = 4;
8’bXX100000: Y = 5;
8’bX1000000: Y = 6;
8’b10000000: Y = 7;
default:  begin

valid = 0;
Y = 3’bX; // Don’t care when input is all 0’s

end
endcase

end
endmodule
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Verilog for

• for is similar to C
• for statement is executed at compile time (like macro expansion)

– Useful for parameterized designs.
// simple encoder
module encode (A, Y);
input  [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg    [2:0] Y; // target of assignment

integer i; // Temporary variables for program only
reg [7:0] test;

always @(A) begin
test = 8b’00000001;
Y = 3’bX;
for (i = 0; i < 8; i = i + 1) begin

if (A == test) Y = N;
test = test << 1;

end
end

endmodule
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Verilog while/repeat/forever

• while (expression) statement
– Execute statement while expression is true

• repeat (expression) statement
– Execute statement a fixed number of times

• forever statement
– Execute statement forever



87Texas A&M University

full-case and parallel-case

• // synthesis parallel_case
– Tells compiler that ordering of cases is not important
– That is, cases do not overlap

• e. g., state machine - can’t be in multiple states
– Gives cheaper implementation

• // synthesis full_case
– Tells compiler that cases left out can be treated as don’t cares
– Avoids incomplete specification and resulting latches


