ReEDMAX: Efficient & Flexible Approach for Articulated Dynamics

YING WANG, Texas A&M University
NICHOLAS J. WEIDNER, Texas A&M University
MARGARET A. BAXTER, Texas A&M University
YURA HWANG, Texas A&M University

DANNY M. KAUFMAN, Adobe Research
SHINJIRO SUEDA, Texas A&M University

(a) (b)

TS & .

() (d)

Fig. 1. (a) Near linear time evaluation for a cable-stayed BRIDGE. (b) Near linear time evaluation for a deployable UMBRELLA. (c) STARFISH, showing fully
two-way coupled integration between articulated and deformable bodies. (d) KLANN walker, with rapid evaluation of internal friction within joints.

It is well known that the dynamics of articulated rigid bodies can be solved
in O(n) time using a recursive method, where n is the number of joints.
However, when elasticity is added between the bodies (e.g., damped springs),
with linearly implicit integration, the stiffness matrix in the equations of
motion breaks the tree topology of the system, making the recursive O(n)
method inapplicable. In such cases, the only alternative has been to form
and solve the system matrix, which takes O(n®) time. We propose a new
approach that is capable of solving the linearly implicit equations of motion
in near linear time. Our method, which we call REDMAX, is built using a com-
bined reduced/maximal coordinate formulation. This hybrid model enables
direct flexibility to apply arbitrary combinations of constraints and contact
modeling in both reduced and maximal coordinates, as well as mixtures of
implicit and explicit forces in either coordinate representation. We highlight
REDMAX’s flexibility with seamless integration of deformable objects with
two-way coupling, at a standard additional cost. We further highlight its
flexibility by constructing an efficient internal (joint) and external (environ-
ment) frictional contact solver that can leverage bilateral joint constraints
for rapid evaluation of frictional articulated dynamics.

CCS Concepts: « Computing methodologies — Physical simulation.

Additional Key Words and Phrases: Physical simulation, Rigid body dynam-
ics, Constraints, Contact, Friction

Authors’ addresses: Ying Wang, Texas A&M University; Nicholas J. Weidner, Texas
A&M University; Margaret A. Baxter, Texas A&M University; Yura Hwang, Texas
A&M University; Danny M. Kaufman, Adobe Research; Shinjiro Sueda, Texas A&M
University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0730-0301/2019/7-ART104 $15.00

https://doi.org/10.1145/3306346.3322952

ACM Reference Format:

Ying Wang, Nicholas J. Weidner, Margaret A. Baxter, Yura Hwang, Danny M.
Kaufman, and Shinjiro Sueda. 2019. RebMax: Efficient & Flexible Approach
for Articulated Dynamics. ACM Trans. Graph. 38, 4, Article 104 (July 2019),
10 pages. https://doi.org/10.1145/3306346.3322952

1 INTRODUCTION

Articulated rigid body dynamics has many applications in various
disciplines, including biomechanics, robotics, aerospace, and com-
puter graphics. It has been extensively studied starting in the 1960s
(e.g., [Roberson 1966]), but it was not until the 1980s that an O(n)
algorithm, where n is the number of joints or bodies, became widely
known [Featherstone 1983]. This algorithm and its variants are
based on a recursive formulation, where various quantities are com-
puted recursively based on the tree structure of the mechanism.
Around the same time, an alternative O(n3) method based on matrix
factorization was also developed [Walker and Orin 1982], which,
according to De Jalon and Bayo [2012], can outperform the O(n)
recursive method when n is small (< 10). Although some important
mechanisms, such as serial manipulators, have only a few joints, for
many applications in computer graphics, n can be quite large—even
a single hand has n > 15. Therefore, there are still many cases where
O(n) methods are still preferred over O(n®) methods.

The story changes when implicit elasticity is added between
arbitrary bodies rather than only between immediate neighbors. Ex-
amples of such scenarios include: simply attaching damped springs
between pairs of bodies; architectural design with cables [Whiting
et al. 2012; Deuss et al. 2014]; musculoskeletal simulations with
line-based forces [Delp et al. 2007; Wang et al. 2012]; and deployable
folding mechanisms [Demaine and O’Rourke 2008; Zhou et al. 2014].
Using the linearly implicit integrator commonly used in graphics
[Baraff and Witkin 1998], the O(n) recursive method no longer

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

104:2 « Wang, Weidner, Baxter, Hwang, Kaufman, and Sueda

works because the stiffness matrix breaks the tree topology of the
system matrix. To date, the only alternative has been to use the
O(n®) factorization method. We address this issue by introducing a
new approach that allows us to solve the linearly implicit equations
of motion in linear to subquadratic time. If the topology-breaking
springs are not present, our method gracefully reverts back to the
standard O(n) recursive approach.

In the discussion so far, we have tacitly assumed that the dynamics
are represented using “reduced” coordinates, where a minimal set of
degrees of freedom (DOFs), such as joint angles for revolute joints
and relative translations for prismatic joints, are used to represent
the state of the system. An alternate approach that uses “maximal”
coordinates has also been studied.! For example, an O(n) method
for maximal coordinates was discovered by Baraff [1996]. However,
constraints need to be applied to model joints, and these constraints
must be stabilized to avoid drift [Baumgarte 1972; Cline and Pai
2003]. On the other hand, reduced coordinates do not require any
stabilization, since reduced coordinates only allow configurations
that satisfy the joint constraints. Loops are handled with constraints
in either approach, but in practice, stabilizing a few loop constraints
is much easier than stabilizing the whole structure. Furthermore,
reduced coordinates are in general faster, because the number of
DOFs is much smaller (e.g., 1/6 the size), and no constraints are
required. Also, Baraff [1996] notes that there is anecdotal evidence
that larger time steps are possible using reduced coordinates.

One of the advantages of maximal coordinates is that it is more
intuitive—it is easier to add various implicit/explicit forces and to
combine with other deformable objects. To address this point, we
show that our formulation of dynamics, which we call REDMAX, is
very flexible and extensible. Any combination of reduced/maximal
forces can be added implicitly or explicitly, and any combination
of reduced/maximal constraints can be handled. Furthermore, it
becomes trivial to get full two-way coupling between a deformable
object (such as an FEM) and the articulated rigid bodies.

As a further demonstration of the flexibility of our formulation,
we show that we can also incorporate frictional contact within the
joints in an efficient manner, by taking advantage of the reduced
coordinate representation of the joints. Our approach works well
when augmented with both bilateral (e.g., loop closure) and unilat-
eral (e.g., external contact) constraints.

To summarize, our contributions are:

e §3: A near linear approach for articulated dynamics, even in
the presence of the maximal stiffness matrix, based on our
novel matrix-free Projected Block Jacobi Preconditioner.

e §4: A formulation that exposes both maximal and reduced
degrees of freedom, allowing any combination of implicit and
explicit forces and constraints in either coordinates. It also
handles full, implicit two-way coupling between articulated
and deformable bodies.

e §5: Frictional dynamics for jointed mechanisms that takes
advantage of the bilateral nature of the joint constraints. Our
approach works seamlessly with other constraints, including
loop-closing constraints and external collision constraints.

! Maximal coords are also called absolute coords or Cartesian coords; reduced coords
are also called generalized coords or minimal coords.

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

2 RELATED WORK

Articulated rigid body dynamics has been an active research area
for many decades, especially in the field of robotics, where high-
performance algorithms were required for low-power systems. A
great deal of effort has been spent on both O(n) and O(n®) meth-
ods, for example, to refine the performance for tree-configuration
or closed-loop systems [Bae and Haug 1987a,b]. Although asymp-
totically worse, O(n®) methods have attracted significant attention
because they are more intuitive and are more easily parallelizable
[Walker and Orin 1982; Avello et al. 1993; Negrut et al. 1997]. How-
ever, these methods do not work in the presence of the maximal
stiffness matrix from linearly implicit integration, one of the most
common integration methods in graphics [Baraff and Witkin 1998].

The use of reduced/maximal coordinates with two way coupling
of articulated and deformable bodies has been of particular interest
in computer graphics. Shinar et al. [2008] used maximal coordinate
dynamics with pre-stabilization, coupled with a finite element mesh.
Their method achieves full two-way coupling, but their intricate
time-stepping method makes it difficult to extend or to incorporate
into existing simulators. Kim and Pollard [2011] used reduced coordi-
nate dynamics with explicit coupling between rigid and deformable
bodies. Their method is extremely fast to evaluate; however their ap-
proach is limited to explicit integration schemes, since the reduced
coordinates are integrated with the O(n) recursive method. Jain and
Liu [2011] used reduced coordinates with fully implicit coupling
between rigid and deformable bodies. However, with their formu-
lation, each deformable body can only be influenced by a single
rigid body. Liu et al. [2013] used an off-the-shelf solver for maximal
coordinate articulated bodies, which was time-stepped alongside a
deformable body. Their coupling, however, was limited to explicit
interactions—they only affected each other after taking a time step.
To summarize, our method is unique in that it is capable of simul-
taneously using reduced coordinates, with fully implicit two-way
coupling, and with the deformable mesh spanning multiple rigid
bodies. We should clarify, however, that we limited our discussion to
two-way coupling between articulated and deformable bodies—the
works above provide many other important contributions.

There have also been a number of related works on the simulation
of various phenomena using articulated rigid bodies, such as: trees
[Quigley et al. 2018], hair [Hadap 2006], and characters [Hernandez
et al. 2011]. Linear time methods for flexible multibody systems have
also been studied for decades, as described in the detailed survey
by Wasfy and Noor [2003]. Of particular importance to graphics,
Bertails [2009] showed that the recursive linear time approach can
be used to simulate the dynamics of elastic rods. These efficient
methods can only be used in the special case when all of the im-
plicit forces are between topologically neighboring bodies (e.g., joint
springs), since then the topology of the reduced stiffness matrix will
be the same as that of the reduced mass matrix. However, in the
general case, the implicit forces are between arbitrary bodies, and
so the recursive linear time approaches cannot be used.

To model joint friction for articulated bodies formulated in re-
duced coordinates, a common approach is to treat the frictional
force solely as a function of joint velocities, rather than using the
geometry of the joint [Drumwright and Shell 2010; Sciavicco and

Table 1. Table of notation. Eq. (52.5) refers to suppl. doc. §2, Eq. (5).

q, 49, G, Reduced coords, velocity, and acceleration

Q> Q> G Maximal coords, velocity, and acceleration
Tmr Jmr Jacobian from q, to q,,,, and its time derivative
M, Reduced mass matrix and force vector

Mm, fm Maximal mass matrix and force vector

M., fr The LHS matrix and RHS vector of Eq. (2)

Kr, Dr Reduced stiffness and damping matrices

Kim, Dm Maximal stiffness and damping matrices

q(k), q(k“) Velocity at step k or k + 1 (reduced or maximal)
ZAd Adjoint transform from b to a (Eq. (S2.5))

S Joint Jacobian (Eq. (S3.14))

G, G Reduced & maximal bilateral constraint matrices
Cro Cip Reduced & maximal unilateral constraint matrices
Mg, fq, 44 Deformable mass, force, velocity

qrPrev Last velocity (same as q%)); used in §5

N, T Contact normal and tangent matrices

a, f Contact and friction Lagrange multipliers

fa, fp Contact and friction forces (maximal)

Siciliano 2012]. With our approach, we use the geometry of the joint
in our friction algorithm, and we show that changing the geome-
try parameters affects the resulting motion. Finally, some recent
research has shown the effectiveness of using a non-discretized
friction cone [Acary and Brogliato 2008; Li et al. 2018]. However,
we note that the joints in most mechanisms have only 1 DOF, and
so the friction “cone” can be trivially modeled by a box constraint.

3 PROJECTED BLOCK JACOBI PRECONDITIONER

Recursive O(n) methods for the forward and inverse dynamics of
articulated mechanisms, with support for both reduced and maximal
coordinates have existed for decades [Popov et al. 1978; Featherstone
1983; Baraff 1996; Negrut et al. 1997; Serban et al. 1997]. Unfortu-
nately, when there are maximal springs applying implicit forces
on the rigid bodies (e.g., Figs. 1a & 1b), we can no longer use these
recursive O(n) methods, because the stiffness matrix resulting from
these springs breaks the tree topology of the system matrix. In this
section, we define our REDMaX approach (Eq. (2)), and we intro-
duce a new preconditioner that gives linear to subquadratic time
performance, depending on the scene, even in the presence of the
maximal stiffness matrix (Eq. (3)).

We assume that the reader is familiar with maximal and reduced
coordinates. For those who need a refresher, we include short tuto-
rials in the supplemental document §2 & §3, respectively. We also
include a table of notation in Table 1.

We start with the reduced equations of motion (derived in §3 of
the supplemental document, Eq. (53.11)):

UmrMm Jmr) @ =Ty (fm = M Jmr G) (1
where M, is the diagonal maximal mass matrix, q,. is the reduced
configuration (e.g., joint angles), f,; is the maximal force, and J,,,,
is the Jacobian for transforming from reduced velocity to maximal
velocity: q,,, = J,nrq,- The Jacobian and its time derivative, J 5, Jr»
are of size #m X #r, where #m is the number of maximal DOFs, and
#r is the number of reduced DOFs. Eq. (1) is an instance of the

RebMax: Efficient & Flexible Approach for Articulated Dynamics « 104:3

well-known “velocity transformations” for articulated dynamics
[De Jalon and Bayo 2012], with our SE(3) based Jacobian, J,,,. This
equation of motion can be used in conjunction with different choices
of time integrators.

We now describe our REDMax formulation, which is a particular
discretization of Eq. (1) that exposes all the reduced and maximal
quantities. We follow the common practice in graphics and discretize
Eq. (1) at the velocity level. Then combining the linearly implicit
terms for both reduced and maximal coordinates [Baraff and Witkin
1998], we arrive at our REDMAX formulation:

(J;r (Mm + th - thm)]mr + hDr - h2 Kr) q(rk+1) = (2)
TmrMm I mr) q(rk) +h (fr +Jr (fm -~ MmJmr q(rk)))’

where Dy, and K, are the maximal damping and stiffness matrices,
D, and K, are the reduced damping and stiffness matrices, f; is
the reduced force vector, f;, is the maximal force vector, including
the Coriolis force, and q(,k) and c'[(rkﬂ) are the reduced velocities at
time steps k and k + 1. The last term, =], My, Tmr q,, is the extra
quadratic velocity vector due to the change of coordinates [Shabana
2013]. This long equation gives us the flexibility to choose the types
of forces we want to use, be they maximal, reduced, explicit, or
implicit. These terms may come from a variety of sources, including
geometric stiffness [Tournier et al. 2015]. For example, we can easily
combine body damping (D,), maximal springs acting on the bodies
(K, and f), joint damping (D), and joint stiffness (K, and f,). We
will highlight more of REDMAX’s flexibility in §4 and §5. For brevity,
when appropriate, we will use the shorthand notation M,q ;= f,
instead of Eq. (2).

An important fact about Eq. (2) is that, because the maximal stiff-
ness matrix breaks the tree-structure of the system, it cannot be
solved by the O(n) recursive dynamics algorithm. (For reference, we
include the recursive dynamics algorithm as a supplemental docu-
ment.) In the rest of this section, we introduce our preconditioner
that gives linear to subquadratic performance in the presence of the
maximal stiffness matrix.

Before we delve into the details of our preconditioner, we first
clarify when it works best. Our preconditioner is effective when
the rigid DOFs make up a large portion of the system DOFs, and
when these rigid DOFs are tied together by maximal forces, such as
damped springs between various bodies. These cover some impor-
tant simulation scenarios, including architectural design with cables
[Whiting et al. 2012; Deuss et al. 2014] and biomechanical simu-
lations with line-based forces [Delp et al. 2007; Wang et al. 2012].
When there are no maximal springs, our preconditioner still gives
the same performance as the O(n) recursive approach—it gracefully
reverts back to the standard O(n) approach. When a deformable
object with many DOFs is being simulated simulateously, we instead
use a standard direct solver.

Our preconditioner, P, can be expressed as follows:

P =]}, (Mm + blkdiag(hDy, — h*Kin)) Jpur + BDy — h?Ky, (3)
where ‘blkdiag’ is a filter that keeps only the 6 X 6 diagonal blocks
of Dy, and Kp;. We call this the Projected Block Jacobi Precondi-

tioner because we take the block diagonals of the maximal terms
and project them into the reduced space. Using P, we solve the

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

104:4 .« Wang, Weidner, Baxter, Hwang, Kaufman, and Sueda

Algorithm 1 Computes y = (M, +J,,blkdiag(hD , — h2K) J oy +
hD, —h?K;) " x in linear time for preconditioning a linearly implicit
solver. Script j refers to the current joint, i to the associated body, ¢
to the joint’s child joint, and p to the joint’s parent joint.

1: // Run this loop once as a preprocessing step

2 while backward traversal do ~ »c=child joint of j
3 A;" = }AdTblkdiag(hD;” —h? K;”)J’.Ad > Maximal term
& A} =hD] - h*K}

s M = (Mj +AT) + X SAdT IIc §Ad
6 ¥ =(STM;S;+ AN

7: Hj =Mj—Mj5j\PjS}l—Mj

8: end while

> Reduced term

10: // Run these two loops for each RHS vector x

11: while backward traversal do > ¢ = child joint of j
12: Bj =2, ;AdT Be

13 =B+ M ¥ - ST B))

14: end while

15: while forward traversal do

16: yj = Yi(xj — S;Mj;,Ad Vp - S]T.Bj)
17: Vj = ;)Ad\./p+5jyj

18: end while

> p = parent joint of j

preconditioned linear system P—IM,q, =P, ina matrix-free
fashion. To use P in the preconditioned conjugate gradient (PCG)
method to solve Eq. (2) in near linear time, we have the following
requirements:

(1) Form the RHS vector of Eq. (2) in O(n) time.

(2) Multiply a vector by the LHS matrix of Eq. (2) in O(n) time.

(3) Apply the preconditioner, P, in O(n) time.

(4) Converge in a sublinear number of iterations.

For (1) and (2), we must be able to multiply a vector by J, J,
and J, as required by the RHS of Eq. (2), in O(n) time. Although
filling these matrices takes O(n®) time, computing the product can
be done in O(n) time, by taking advantage of the recursive nature
of the topology (see Supplemental §3). To multiply by J and J, we
traverse forward starting from the root, whereas to multiply by J7,
we traverse backward starting from the leaf. The recursive dynamics
method takes this approach, while computing the reduced veloci-
ties and forces. Adding the spring contributions to the RHS force
and LHS stiffness matrix can be done trivially in O(m) time using
standard techniques, where m is the number of springs.

To enable (3), we must be able to solve by P in linear time. We
draw inspiration from the fact that the recursive forward dynam-
ics algorithm solves the reduced system M,§, = f, in linear time,
allowing it be utilized to construct, or to multiply by, the inverse
inertia matrix efficiently, by setting all forces and velocities to zero
[Kim 2012; Drumwright 2012]. In the same way, our preconditioner
can be used to solve the block diagonal approximation of the LHS
matrix of Eq. (2) in linear time. We add two important modifications
to the standard recursive forward dynamics algorithm, correspond-
ing to the maximal and reduced implicit terms, as shown lines 3-6 in
Alg. 1. These two types of implicit terms must be handled differently,

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

since they operate in different spaces. In each joint j, we store the
reduced stiffness and damping matrices (scalars for revolute joints),
and in the corresponding body i, we store the 6 X 6 block diagonal
components of the maximal stiffness and damping matrices. The re-
duced terms are added prior to taking the inverse, in line 6 of Alg. 1.
The maximal terms are first transformed to be in j’s coordinate
space and then are added to the j’s inertia matrix in line 5. These
terms are then processed recursively together with the inertia.

For (4), we offer empirical evidence based on the scaling of the
Bripge (Fig. 1a) and the UMBRELLA (Fig. 1b) scenes in §6, which show
sublinear number of iterations per time step. In the BRIDGE scene,
when the towers are infinitely stiff, PCG converges in 1 iteration,
because all of the cables are attached to a stationary body, and so
the stiffness matrix becomes block diagonal.

3.1 Loop Closure

Our preconditioner is applicable also when there are constraints, of
which loop-closure is the most common. For example, in the BRIDGE
scene shown in Fig. 1a, we apply bilateral loop-closing constraints,
Gq, = 0, to ground both ends of the bridge deck. We solve the
following dual problem:

GM,'GTA=GM, .. M,q, =F —GTA. 4

Let I be the number of rows in the constraint matrix G. We run
PCG I times (in parallel) to form the dense LHS matrix GI\N/\;IGT,
by backsolving with the columns of GT, and run PCG once to form
the RHS vector. We then solve this linear system for the Lagrange
multipliers in O(I3) time, which is then fed into a final PCG to
compute the new velocities. The overall run time is O(n®I + %),
where o depends on the scene and is again typically near linear.

4 REDMAX FLEXIBILITY

Having established the efficiency of our method, we now look fur-
ther at its flexibility. In addition to the combination of implicit and
explicit forces acting on reduced and maximal coordinates, we can
easily add bilateral and unilateral constraints on both reduced and
maximal coordinates. Let G,, G;;, C,, and C,;, respectively be the
reduced bilateral, maximal bilateral, reduced unilateral, and maxi-
mal unilateral constraint matrices. These constraints can be used
for, e.g., closing loops, attaching FEM nodes to bodies, joint limits,
and external contact. (Later in §5, we show how we handle frictional
contact constraints.) Applying Gauss’s Principle of Least Constraint
[Lanczos 2012], these constraints can be incorporated by forming a
quadratic program:

1 — - .
minimize Eq,TM,qr - q,fr
" 5
subject to Cr 1, > 0 Gr q, =0 ?
) ConJr) =7 NG 7 =7

If working at the acceleration level, additional terms involving J,,,
are required in the constraints.

If only bilateral constraints are present, we can directly form
and solve the corresponding KKT linear system [Boyd and Vanden-
berghe 2004]. For example, when we attach a finite element mesh to
the skeleton, we use bilateral constraints that bind certain vertices

to be fixed with respect to the skeleton:
Mr 0 —In—lrc';rn qr f??’
o Mg GI |lag|=[fa]- ()
GmJmr Ga 0 A 0

where the equation of motion of the deformable body is Mzq, = fg,
and the constraint for attaching the deformable mesh to the skeleton
is GmJmrq, + Ggqg = 0. We show an example of this (which also
includes hybrid dynamics, described below), in the STARFISH scene
(Fig. 1¢).

When these constraints are applied at the velocity (or accelera-
tion) level, there is an unavoidable constraint drift. We deal with
these with the standard Baumgarte [1972] stabilization technique.
We emphasize that in practice, stabilizing a few constraint is much
easier than stabilizing the whole jointed structure, which is required
with maximal coordinate approaches.

Hybrid Dynamics. In forward dynamics, we compute the motion
given the forces, and in inverse dynamics, we compute the forces
given the motion. With the REDMAx formulation, it is easy to com-
bine these two into hybrid dynamics (a term coined by Featherstone),
where some DOFs have their accelerations specified, and some DOFs
have forces specified. Although the recursive formulation can handle
reduced hybrid dynamics [Kim and Pollard 2011], it cannot combine
both reduced and maximal hybrid dynamics.

Hybrid dynamics can be performed at the acceleration level or at
the velocity level, but in this paper, we concentrate on the velocity-
level formulation. Let superscript * indicate the subset of joints
whose motions are prescribed. Then we can apply a bilateral con-
straint on the prescribed reduced velocities: G, q, = q,., where
G, contains the identity matrix in the appropriate blocks so that the
prescribed joints will be affected. Similarly, we have *G,, q,,, = *q,,
for prescribing maximal velocities, where "G, can contain the iden-
tity matrix when we want to fully specify the motion of the body,
or a point Jacobian (Eq. (S2.4)) when we want to specify the motion
of a point on the body. The resulting KKT system is then

M" *G;r ;r*G-Ir;z qr ';V
G, 0 0 A=, |- (7)
G Imr 0 0 Am A

The required joint torques or maximal wrenches can be computed
with the resulting Lagrange multipliers: *f, = *G A, /h and *p, =

1 %G} Am/h. With this formulation, we can easily control both
maximal and reduced velocities, as shown in our STARFISH and
HaND examples (Figs. 1c and 2a-2b).

Hyper Reduced Coordinates. We can further reduce the degrees
of freedom by chaining more Jacobians. This can be useful, for
example, when we want some kinematic coupling between joints.
As a concrete example, in a healthy human finger, the two distal
joints exhibit coupled interphalangeal joint motions—the PIP (first
joint away from the knuckle) flexes twice as much as the DIP (the
second joint away from the knuckle). (See Figs. 2a-2b.) This is due
to the complex arrangement of tendons and ligaments [Leijnse
et al. 2010], and can be simulated explicitly at an additional cost
[Sueda et al. 2008; Sachdeva et al. 2015]. Alternatively, if we are
only interested in the gross kinematics of the finger, we can model

RebMax: Efficient & Flexible Approach for Articulated Dynamics « 104:5

this joint-angle relationship directly. To do so, we apply another
Jacobian, so that these joint angles are expressed using a single
variable. This can be expressed using the following relationship:

i) = (1°

bpre) \1 ®)
4, =Jrr Ge>

where g, represents the new (hyper) reduced coordinates. If we

define

Jmz =Jmr Jres ij :jmrJrR"'erera)
then the hyper reduced equation of motion is
TmMom Jonr G = T (fm = MinJmndis) - (10)

Any combination of bilateral/unilateral and reduced/maximal con-
straints can be added as before. We show how we can use hyper
reduced coordinates in conjunction with reduced and maximal hy-
brid dynamics with the HAND example (Figs. 2a-2b).

5 FRICTIONAL JOINTS

In this section, we further highlight the flexibility of the REDMAx
formulation with an efficient algorithm for resolving frictional con-
tact within joints. This has many applications including: computing
the energy required for robotics; and modeling arthritic joints for
biomechanics or animation. In this section, we show how REDMAx
can be combined with the Staggered Projections (SP) algorithm to
take into account the bilateral nature of the joint constraints.

5.1 Review of Staggered Projections

The original Staggered Projections algorithm was developed for
solids undergoing unilateral contact constraints with friction [Kauf-
man et al. 2008]. SP is shown in Alg. 2, slightly modified to match
our notation. Since SP was designed for maximal rigid bodies, we re-
move the m and r (maximal & reduced) subscripts for clarity. There
are two quadratic programs (QP) that are solved iteratively: contact
and friction. Let q*"¢ = gP™ + hM~!f be the unconstrained velocity,
where PV is the velocity from the last time step. The contact QP
can then be written as:
minimize laT NM™INTa — o TN(G"™ + hM_Ifﬁ)
a 2 (11)

subjectto a >0,

where « is the contact impulse, N is the contact normal matrix,
M is the maximal mass matrix, f is the maximal force, and fﬂ is
the frictional force, which is initially zero. After solving for a, we
compute the contact force as f, = —=NT a/h. The frictional QP is:

1
minimize =T TM™ITT B — BTT(G* + hAM™1fy)
B 2 (12)

subjectto —pa < f < pua,

where f is the frictional impulse, T is the contact tangent matrix,
and p > 0 is the coefficient of friction. The box constraints can
only accommodate a four-sided friction cone—if needed, we can
rewrite this constraint to give us a polyhedral cone [Stewart 2000]
or a continuous cone [Acary and Brogliato 2008; Li et al. 2018],
but we note that for 1 DOF joints, the cone constraint degenerates
into a box constraint. After solving for , we compute the frictional

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

104:6 « Wang, Weidner, Baxter, Hwang, Kaufman, and Sueda

Algorithm 2 Staggered Projections

Algorithm 3 Bilateral Staggered Projections

1: Fill M > mass matrix
2: fﬁ =0

3: while simulating do

4 Fillf, N, T > force vector, normal and tangent matrices
5 f9=0

6: qunc — qprev + hM_lf

7 while true do

8 // CONTACT

9 Solve contact QP (11) for «

10: f, =-NTa/h

11: // CONVERGENCE CHECK

12: if ||fy — 0 ”M’l < € or max iterations then

13: break

14: end if

15: 9 =1,

16: // FRICTION

17: Solve friction QP (12) for

18: fg=-T"p/h

19: end while

20: q = qP* + hM7U(f + £, + fﬁ)
21: end while

force as fg = ~TT B/h. These two QPs are solved iteratively until
convergence. The convergence rate can be improved by caching
the frictional force, fﬁ, and warm-starting with this cached value at
every time step [Kaufman et al. 2008].

5.2 Bilateral Staggered Projections

We extend SP by taking advantage of the bilateral constraints present
in articulated rigid body dynamics. The resulting algorithm, which
we call Bilateral Staggered Projections (BISP), is much more efficient
than SP and can also be combined with SP for handling external
frictional contacts, such as between a body and the environment.

BISP has several advantages over SP. First, we
do not need collision detection. With BISP, for each
joint type (e.g., revolute, spherical, prismatic), we /
use a small number of implicit contacts at pre- £ \
determined positions around the joint. For example, N
for a revolute joint, we assume that the joint geometry is a cylinder,
and we populate the two ends of the cylinder with a sparse set of
contact points (see inset figure). By changing the parameters of this
cylinder, we get different frictional effects. Second, the size of the
friction QP decreases significantly, because the friction cone can
be represented exactly using box constraints for 1 DOF (revolute
and prismatic) joints, which are often the most used joints. Third,
the contact QP can be eliminated, since in reduced coordinates, the
contact constraints are satisfied automatically. Finally, we obtain
faster convergence, since the contacts are more temporally coherent
in a bilaterally constrained system.

In the following subsections, we describe how we extend SP to
obtain BISP. As stated above, BISP eliminates the need for the contact
QP by taking advantage of reduced coordinates, However, we still
need the contact Lagrange multipliers, a, when we solve for the

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

1: Fill M > mass matrix
2: fﬂ =0
3: while simulating do
4 Fillf, N, T > force vector, normal and tangent matrices
5 f9=0
6: while true do
7 // CONTACT
8 Evaluate (15) for f, > §5.2.1
9 while backward traversal do
10: Distribute f, to joint > §5.2.2
11: end while
12: while parallel traversal do
13: Locally solve (16) for a >§5.2.3
14: end while
15: // CONVERGENCE CHECK
16: if ||fy — £9 ||M-1 < € or max iterations then
17: break
18: end if
19: fg = fa
20: // FRICTION
21: Solve friction QP (12) for
22: fg=-TTB/h
23: end while

2 4 =40 + M (o + oy +)
25: end while

frictional impulses, because « is used as the limits on the friction
forces. We compute « in three steps:

e §5.2.1: Compute the joint reaction forces.

e §5.2.2: Distribute this global force into the joints.

e §5.2.3: Compute « locally within each joint.

5.2.1 Compute joint reaction force. We first compute the joint reac-
tion (i.e., constraint) force that would produce the same constrained
motion as the one generated using reduced coordinates. We do this
by comparing the velocity generated by the reduced solve against
the velocity generated by an unconstrained maximal solve. As an
illustration, suppose we are running the standard SP algorithm with
maximal coordinates. Let §""¢ = qP™" + hM~!f, and the correspond-
ing constrained velocity from Eq. (11) be q°°". We can rearrange the
constrained equations of motion to solve for the constraint forces:

Mg +NTa = MgP™ + h(f + f3)
MTINTa = ¢P" + mM7 (F+fp) - g (13)
N——

scon

qunc q

where gP™V is the velocity from the last time step. We can rear-

range further to obtain the expression for the constraint force,
fo = —NTa/h:
1
fa — ZM (qCOl’l _ qunc) . (14)
What this equation implies is that we can compute the constraint
force, fy, by subtracting the unconstrained velocity from the con-

strained velocity.

Now we show how BISP uses a similar approach to eliminate the
contact QP. As in SP, the current friction force must be taken into
account when computing the constrained and unconstrained veloc-
ities. In the following equations, since we must now compute both
reduced and maximal coordinates, we add back the subscripts m
and r. (The contact and friction forces, f, and fﬁ, are maximal quan-
tities.) As before, we subtract the unconstrained velocity from the
constrained velocity, but now the constrained velocity is computed
in reduced coordinates instead of using Eq. (11):

1 . .
fo = ﬁMm Umrqgon - q?r?c) (15a)
G = T a2+ BMG) (£ +) (15b)
qeon = PV 4+ hMZYT (?m + fﬁ) . (15¢)

To lighten the notation, we use fm in Eq. (15¢) to include the qua-
dratic velocity vector from the RHS of Eq. (2).

5.2.2 Distribute contact force to joints. The computed constraint
force, fy, is a global maximal force vector that accounts for all joint
reaction forces. Therefore, if we extract a portion of f, correspond-
ing to a single body, we obtain the sum of all the joint reaction
forces acting on that body. To compute the Lagrange multipliers for
a particular joint, we first need to isolate the joint reaction force
from this sum. Fortunately, this can be done in a linear fashion by
traversing the joints backward from leaf to root. For a leaf body,
there is only one joint force acting on it, and so its portion of f, is
exactly the required joint reaction force. Since this joint reaction
force exerts an equal and opposite force on the parent of the leaf,
we subtract this force from the parent’s portion of f, and continue
the backward traversal.

5.2.3 Compute contact Lagrange multipliers. Once we have the joint
reaction forces distributed to each joint, we can compute the contact
Lagrange multipliers that generate that joint reaction force. This
can be done in parallel, since these are local operations performed
for each joint independently of each other. For each joint, we search
for a least-squares solution to (NiMi_l N;r) aj = hNiMl._lfai, where
the subscript i indicates the blocks corresponding to the i th body.
We do not require a; to be positive, since these “contact” constraints
are bilateral—they cannot come apart. To deal with contact inde-
terminacy [Shin et al. 2016], we add a regularization term, which
is critical because otherwise the joint can become arbitrarily tight.
For instance, setting a; = 1000 for all contacts will generate the
same effective constraint on the joint as setting @; = 0.1. Adding
this regularization term, the local linear system becomes:

ai = h (NiM7INT + eI)_l (NiM7 i) (16)

In our experiments, we set € = le-6.

After the contact impulses for all the joints, a, are computed, the
convergence check and the friction solve are the same as in SP. The
step-by-step algorithm is shown in Alg. 3.

RebMax: Efficient & Flexible Approach for Articulated Dynamics « 104:7

5.3 Adding External Constraints

BISP can also take into account external constraints, such as loop-
closing (bilateral) constraints or frictional contact (unilateral) con-
straints with the environment. Alg. 3 is modified as follows to take
into account these additional constraints:

o Line 10: To compute the contact force, both the unconstrained
and constrained velocities must take into account the additional
external constraints. The unconstrained velocity is obtained by solv-
ing a maximal system with only the external constraints, ignoring
the implicit constraints exerted by the joints. The corresponding
constrained velocity is obtained by solving a reduced system with
external bilateral constraints, G, and unilateral constraints, C. The
difference between these velocities will give us the joint reaction
forces. Thus, instead of Eq. (15), we evaluate the following:

1 . .
fo = EMm (mrdy = qlrlr?c) (17a)

S U .
min. 45, Mmd = g (Mondmr &+ (Fn +))

4 (17b)
st Gmpm=0, Cmdy, =0

ol . y
min. -4 Mrq, 4§ (qui’rev +]y (fm + fﬂ))

q, 2 (17¢)

st Gulmrd, =0, Cplmrd, =0,

where g€ and qf°" are the solutions of the two QPs ((17b) &
(17¢)). The loop-closing constraint reaction forces are computed as
fy, = =J1.,G} A/h, where A is the vector of Lagrange multipliers
corresponding to the loop-closing constraints, Gp,J -4, = 0, from
the minimization for q$°". The maximal QP in Eq. (17b) may seem
expensive to solve (all other QPs are in reduced coordinates), but
usually, the number of external constraints is much smaller than the
number of joint constraints. Therefore, we can solve this maximal
QP in its dual form instead, which is much smaller. For example, for
the KLANN mechanism with 6 legs (Fig. 1d), the dual QP is of size at
most 30 with only box constraints.

e Line 15: We need to compute the contact forces due to the loop-
closing joint constraints, by again solving a small linear system (16).
These small linear systems are solved for each joint and for each
loop-closing joint constraint.

e Line 26: To compute the final velocity, we solve a quadratic
program that takes into account the external constraints:

. 1, . . z
nam. Eq:qur -qy (qu}r)rev +h)), (fm + fo + fﬁ))

s.t. Gmlmrq, =0,

(18)
ConJmrtly > 0.

With these three changes, any combination of external bilateral
and unilateral constraints can be incorporated into BISP.

6 RESULTS

We implemented our system in C++ and ran the simulations on a
consumer desktop with an Intel Core i7-7700 CPU @ 3.6 Ghz and
16 GB of RAM. We use Eigen for dense linear algebra, Pardiso for
sparse linear solves, and Mosek for quadratic programs. For the
direct solver, the system indices are ordered backward from leaf to

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

104:8 « Wang, Weidner, Baxter, Hwang, Kaufman, and Sueda

minimize fill-ins [Negrut et al. 1997]. For PCG, the stopping toler-
ance is set to relative residual of 1e-6. Please see the supplemental
video for the animations.

o STARFISH (Fig. 1c): We model a starfish with a skeleton consist-
ing of 20 joints and a coarse FEM mesh consisting of 221 vertices.
For display and collision, we embed a fine mesh with 7909 vertices
inside the coarse simulation mesh. We use co-rotated elasticity, but
any material model can be used [Sifakis and Barbic 2012]. We use
REDMAX hybrid dynamics to animate the starfish—we procedurally
prescribe some of the joints as well as some specific points on the
skeleton. The rest of the skeleton and the FEM mesh are passively
simulated with fully implicit two-way coupling.

o HaND (Fig. 2): The two distal joints of a healthy human finger
exhibits coupled interphalangeal joint motions [Leijnse et al. 2010].
Specifically, the most distal joint (DIP) usually flexes by half the
joint angle of the second most distal joint (PIP). We model a human
hand where we use hyper reduced coordinates on the DIP/PIP of
the four fingers. We then animate the hand with REDMax hybrid
dynamics. The fingertip positions are prescribed using maximal
inverse dynamics, and at the same time, the elbow angle is prescribed
using reduced inverse dynamics.

o HagrisH (Fig. 3): The hagfish is unique in that it forms a knot
with its body to provide leverage to its head as it feeds. Using the
parameters taken from the literature [Evans et al. 2018], we model
a realistic hagfish that can be used as a testbed for studying how a
hagfish controls its body to form a knot, which is currently an open
scientific problem. We model the animal by placing Z-revolute and
XY-universal joints in an alternating fashion, for a total of 100 joints.
We set the length, mass, radii, and joint limits with data taken from
real measurements. We perform self-collision detection by passing
a spline curve through the length of the animal and finding the
colliding points with Newton’s method. The collisions are turned

into inequality constraints, resulting in a quadratic program (Eq. (5)).

We do not model friction, since hagfish are slimy.

Fig. 2. HAND simulation with coupled interphalangeal joint motions.

(b) (c) (d)

Fig. 3. (a-b) A knotting HAGFIsH, with its head in a jar. (c-d) Our simulation.

(@

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

® BrIDGE (Figs. 1a & 4a): To show the scalability of our precondi-
tioner, we model a cable-stayed bridge with a fan design. The towers
and the deck are composed of a sequence of bodies connected by
revolute joints, with cables attaching the deck to the towers. We
vary the number of deck and tower pieces, as listed in Table 2. We
solve this system with PCG using our preconditioner and with an
off-the-shelf direct solver. When the towers are modeled as rigid,
PCG converges in a single iteration. In this case, our block diagonal
preconditioner becomes exactly the inverse of the system matrix,
since the tower bodies are removed from the system, and so only
the block diagonal portions of the local stiffness matrices enter the
system matrix. When we make the tower joints flexible and apply an
exaggerated weight (see accompanying video), our preconditioner
still shows good scaling, though the direct method is faster initially.
Table 2 & Fig. 4a show the timing result of the simulation. The slope

Table 2. Performance table for BRIDGE and UMBRELLA. DOF: Degrees of
freedom. Direct & PCG: Wall-clock times in seconds to simulate five units
of scene time. Iters: Average number of PCG iterations per step. For BRIDGE,
there are 2 sub scenes: [Rigid] is with rigid towers; [Flexy] is with flexible
towers and an exaggerated weight.

DOF Direct PCG Iters

80 28 20 40

160 118 34 40

BripGE [Rigid] 320 705 65 4.0
640 4203 127 4.0

1280 28847 27.8 4.0

60 1.0 2.7 104.7
120 2.4 5.6 136.6
BriDGE [Flexy] 240 8.6 114 1535

480 449 283 1963
960 248.7 70.6 241.9

241 2.1 1.8 37.0
385 4.8 2.6 36.0
UMBRELLA 529 8.4 34 36.7

769 19.1 51 385
1105 50.1 84 395

+
+ RigidDIR (2.64) + DIRECT (2.07
10 | + FlexyDIR (2.25) 51 OPCG (1.02)
= O RigidPCG (1.01) &
— g O FlexyPCG (1.23 ~ 4
(0] [0}
E £
= 6 =3 + ey
S _ & o
3 4 e 3 2 o
ek e o
2 1l
7 8 9 10 8 8.5 9 95 10
Log2 DOF Log2 DOF
(a) BRIDGE (b) UMBRELLA

Fig. 4. log, —log, plot of Time vs. DOFs for BRIDGE and UMBRELLA. Solid
lines are for a direct solver, and dashed lines are for our preconditioned solver.
The computed slopes indicate that with our preconditioner, the runtime
performance is near linear.

x10
15 —mu=0.0
—mu=0.4
mu=0.8
10

Torque

Time

(a) CHAIN (R) (b) CHAIN (2R) (c) KLANN torque
Fig. 5. (a) CHAIN composed of revolute joints. (b) With a larger radius, the
chain stops earlier. (c) KLANN: graph of torque vs. time, with various joint

friction coefficients.

of the fitted lines of the log, —log, plot of time vs. DOFs shows
the empirical order of each approach. When the tower stiffness is
infinite, PCG takes O(n!-°1) time, and when the towers are flexible,
PCG takes O(n!-%3) time. As a comparison, a direct solver takes
O(n?-%%) and O(n?-?%) time, respectively.

e UMBRELLA (Figs. 1b & 4b): As another scaling test, we model
a deployable umbrella. The root body is the tube, with 8 ribs at-
tached to its tip. The 8 ribs are pushed open by the 8 stretchers.
The stretchers are attached to the runner, which has a prismatic
joint with respect to the tube. Both the ribs and the stretchers are
modeled using a sequence of universal joints, and are connected to
each other by bilateral constraints. Springs are placed between the 8
ribs to model the canopy. We vary the number of bodies in the ribs
and the stretchers. Table 2 & Fig. 4b show the number of DOFs, the
average iteration count for PCG, and the wall-clock time for PCG
and the direct solver to simulate a 1 second scene. The empirical
orders of the two methods are O(n!-°1) and O(n?-7) for PCG and
direct, respectively. Our unoptimized PCG is initially slower than
the direct solver, but when n is large, the PCG becomes faster.

o CHAIN (Figs. 5a & 5b): This scene shows the frictional effect due
to changing the geometry of the joint. We initialize the scene so that
the chain starts horizontally and falls under gravity, with the axis
of rotation oriented 45° from the direction of gravity. Since more
weight must be supported by bodies closer to the root, the contact
force, and thus the force of friction, is stronger at the root compared
to the tip. This makes the chain stop rotating starting from the root
rather than at the tip. When we increase the joint radius, even with
the same coefficient of friction, the force of friction increases since
the joint is able to apply more torque. When Staggered Projections
is used, the simulation takes an order of magnitude longer to com-
plete because: (1) with maximal coordinates, position stabilization is
required, and this can have an adverse effect on the iteration count;
and (2) SP requires two global QPs, whereas BISP requires only one.

o KianN (Figs. 1d & 5c¢): Our friction solver can handle loop-
closure and contact constraints. We build a walking machine with a
Klann linkage for each of the 6 limbs. Each limb has 5 revolute joints
and 2 loop-closure constraints. Since each loop-closure constraint
removes 2 DOFs, each limb has 5 — 2 - 2 = 1 effective DOF. In total,

RebMax: Efficient & Flexible Approach for Articulated Dynamics « 104:9

there are 26 internal joint DOFs with 24 bilateral constraints and
(up to) 6 unilateral constraints. The 2 remaining DOFs are driven
with inverse dynamics to have a constant rotational speed. We use
u = 0.8 for floor friction. We run several simulations, increasing p for
loop closure and joint constraints from 0.0 to 0.8. Fig. 5¢c shows the
amount of torque required to drive the mechanism as we increase
this frictional coefficient. As we expect, more torque is required
when there is more friction within the joints. Interestingly, when
the y = 0, the motor does some negative work—the limbs try to
push the motor forward, but the motor pushes back.

7 CONCLUSION

We introduced an efficient and flexible approach for computing
the dynamics of articulated rigid bodies. Unlike prior approaches
that require O(n?) time, our approach maintains near linear per-
formance, even in the presence of maximal stiffness matrix used
by a linearly implicit integrator. In some simulation scenarios, our
preconditioned solver converges in a single iteration. Our approach
also provides flexibility, allowing us to mix and match implicit and
explicit forces in both reduced and maximal coordinates, as well as
bilateral and unilateral constraints in either coordinates. We showed
this flexibility with several results including those that use hybrid
dynamics in both coordinates and fully two-way coupled dynamics
of articulated and deformable bodies. Finally, we showed how our
approach can be efficiently integrated into a friction solver that can
incorporate friction inside the joints with loop closure as well as
external contact constraints. We include with this work reference
implementations of REDMax written in C++ and object-oriented
MATLAB as supplemental material.?

7.1 Limitations & Future Work

Although the theoretical runtime of factorization methods are O(n?)
[De Jalon and Bayo 2012], in practice, they exhibit better asymptotic
behavior depending on the sparsity pattern of the system matrix.
When the scene has many branches, the system often becomes very
sparse, and these methods become subquadratic, with very small
overhead compared to our PCG method. Automatically detecting
when to switch between the two methods would be of practical
interest. This is especially true since we have only shown empir-
ically that PCG takes a sublinear number of iterations using our
preconditioner, without a formal proof.

We have not taken into account parallelization or GPU imple-
mentations. Although some parts of our approach could be easily
parallelizable (e.g., each branch in the tree topology can be pro-
cessed in parallel), we have not investigated how best to optimize
our approach. Existing O() and O(n?) methods have shown good
parallelizability (e.g., [Avello et al. 1993; Negrut et al. 1997]), and so
we believe it is worthwhile to explore similar techniques that work
even with the inclusion of the stiffness matrix.

Our efficient preconditioner is applicable only when the number
of deformable DOFs is relatively small compared to the rigid DOFs.
We hope to explore the special case of quasistatic deformable ob-
jects, where the deformable DOFs are eliminated from the system.
In these cases, we may be able to utilize our efficient method for

Zhttps://github.com/sueda/redmax

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

104:10 + Wang, Weidner, Baxter, Hwang, Kaufman, and Sueda

the coupled simulation of rigid and deformable objects. It would
also be interesting to apply the strategy proposed by Redon et al.
[2005] on automatically figuring out which joints should be activi-
ated/deactivated at runtime.

Our Bilateral Staggered Projections algorithm is an extension of
the Staggered Projections algorithm [Kaufman et al. 2008], which
iteratively solves a pair of coupled quadratic programs to resolve the
frictional force. It would be interesting to also extend the popular
approximate frictional contact model by Anitescu and Hart [2004],
which uses only a single QP.

Finally, extending REDMAX to other simulation techniques such
as Projective and Position-Based Dynamics [Bouaziz et al. 2014;
Miiller et al. 2007] would be useful for real-time applications.

ACKNOWLEDGMENTS

We thank Feras Khemakhem for rendering the results and the anony-
mous reviewers for their comments. This work was sponsored in
part by the National Science Foundation (CAREER-1846368).

REFERENCES

V. Acary and B. Brogliato. 2008. Numerical Methods for Nonsmooth Dynamical Systems:
Applications in Mechanics and Electronics. Springer Science & Business Media.

M. Anitescu and G. D. Hart. 2004. A Fixed-point Iteration Approach for Multibody
Dynamics with Contact and Small Friction. MATH. PROG. 101, 1 (2004), 3-32.

A. Avello, J. M. Jiménez, E. Bayo, and J. G. de Jalon. 1993. A Simple and Highly Paralleliz-
able Method for Real-time Dynamic Simulation Based on Velocity Transformations.
Comput. Methods in Appl. Mech. Eng. 107, 3 (1993), 313-339.

D.-S. Bae and E. J. Haug. 1987a. A Recursive Formulation for Constrained Mechanical
System Dynamics: Part I. Open Loop Systems. J STRUCT MECH 15, 3 (1987), 359-
382.

D.-S. Bae and E. J. Haug. 1987b. A Recursive Formulation for Constrained Mechanical
System Dynamics: Part II. Closed Loop Systems. J STRUCT MECH 15, 4 (1987),
481-506.

D. Baraff. 1996. Linear-time Dynamics Using Lagrange Multipliers. In Annual Conference
Series (Proc. SSGGRAPH). 137-146.

D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Annual Conference
Series (Proc. SSGGRAPH). 43-54.

J. Baumgarte. 1972. Stabilization of Constraints and Integrals of Motion in Dynamical
Systems. Comput. Methods in Appl. Mech. Eng. 1 (Jun 1972), 1-16.

F. Bertails. 2009. Linear Time Super-Helices. Computer Graphics Forum (Proc. Euro-
graphics) 28, 2 (May 2009), 417-426.

S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing
Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154
(July 2014).

S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press.

M. B. Cline and D. K. Pai. 2003. Post-stabilization for Rigid Body Simulation with
Contact and Constraints. In IEEE Int. Conf. Robot. Autom., Vol. 3. 3744-3751.

J. G. De Jalon and E. Bayo. 2012. Kinematic and Dynamic Simulation of Multibody
Systems: The Real-Time Challenge. Springer Science & Business Media.

S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman,
and D. G. Thelen. 2007. OpenSim: Open-source Software to Create and Analyze
Dynamic Simulations of Movement. IEEE T BIO-MED ENG 54, 11 (2007), 1940-1950.

E. D. Demaine and J. O’Rourke. 2008. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra (reprint ed.). Cambridge University Press.

M. Deuss, D. Panozzo, E. Whiting, Y. Liu, P. Block, O. Sorkine-Hornung, and M. Pauly.
2014. Assembling Self-supporting Structures. ACM Trans. Graph. 33, 6, Article 214
(Nov. 2014).

E. Drumwright. 2012. Fast Dynamic Simulation of Highly Articulated Robots with
Contact Via (n?) Time Dense Generalized Inertia Matrix Inversion. In Int. Conf.
on Sim., Model., & Prog. for Auton. Robots. Springer, 65-76.

E. Drumwright and D. A. Shell. 2010. Modeling Contact Friction and Joint Friction
in Dynamic Robotic Simulation Using the Principle of Maximum Dissipation. In
Algorithmic Foundations of Robotics IX. Springer, 249-266.

E.Evans, Y. Hwang, S. Sueda, and T. A. Uyeno. 2018. Estimating Whole Body Flexibility
in Pacific Hagfish. In The Society for Integrative & Comparative Biology.

R. Featherstone. 1983. The Calculation of Robot Dynamics Using Articulated-body
Inertias. INT J ROBOT RES 2, 1 (1983), 13-30.

S. Hadap. 2006. Oriented Strands: Dynamics of Stiff Multi-body System. In Proc. ACM
SIGGRAPH / Eurographics Symp. Comput. Anim. (SCA *06). 91-100.

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.

F. Hernandez, C. Garre, R. Casillas, and M. A. Otaduy. 2011. Linear-Time Dynamics of
Characters with Stiff Joints. In V Ibero-American Symposium on Computer Graphics
(SIACG 2011). The Eurographics Association and Blackwell Publishing Ltd.

S.Jain and C. K. Liu. 2011. Controlling Physics-based Characters Using Soft Contacts.
ACM Trans. Graph. 30, 6, Article 163 (Dec. 2011).

D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai. 2008. Staggered Projections for
Frictional Contact in Multibody Systems. ACM Trans. Graph. 27, 5, Article 164 (Dec
2008).

J. Kim. 2012. Lie Group Formulation of Articulated Rigid Body Dynamics. Technical
Report. Carnegie Mellon University.

J. Kim and N. S. Pollard. 2011. Fast Simulation of Skeleton-driven Deformable Body
Characters. ACM Trans. Graph. 30, 5, Article 121 (Oct. 2011).

C. Lanczos. 2012. The Variational Principles of Mechanics (4 ed.). Dover Publications.

J. Leijnse, P. Quesada, and C. Spoor. 2010. Kinematic Evaluation of the Finger’s Inter-
phalangeal Joints Coupling Mechanism—variability, Flexion-extension Differences,
Triggers, Locking Swanneck Deformities, Anthropometric Correlations. Journal of
Biomechanics 43, 12 (2010), 2381-2393.

J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. E. Brown, and
L. Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simula-
tion. ACM Trans. Graph. 37, 4, Article 52 (July 2018).

L. Liu, K. Yin, B. Wang, and B. Guo. 2013. Simulation and Control of Skeleton-driven
Soft Body Characters. ACM Trans. Graph. 32, 6, Article 215 (Nov. 2013).

M. Miiller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position Based Dynamics.
J VIS COMMUN IMAGE R 18, 2 (2007), 109-118.

D. Negrut, R. Serban, and F. A. Potra. 1997. A Topology-based Approach to Exploiting
Sparsity in Multibody Dynamics: Joint Formulation. J STRUCT MECH 25, 2 (1997),
221-241.

E. P. Popov, A. F. Vereshchagin, and S. L. Zenkevich. 1978. Robot Manipulators: Dy-
namics and Algorithms.

E. Quigley, Y. Yu, J. Huang, W. Lin, and R. Fedkiw. 2018. Real-Time Interactive Tree
Animation. IEEE TVCG 24, 5 (May 2018), 1717-1727.

S. Redon, N. Galoppo, and M. C. Lin. 2005. Adaptive Dynamics of Articulated Bodies.
ACM Trans. Graph. 24, 3 (July 2005), 936-945.

R. E. Roberson. 1966. A Dynamical Formalism for an Arbitrary Number of Intercon-
nected Rigid Bodies with Reference to the Problem of Satellite Attitude Control.
Proc. 3rd Congr. of Int. Fed. Automatic Control 1 (1966), 46D1-46D8.

P. Sachdeva, S. Sueda, S. Bradley, M. Fain, and D. K. Pai. 2015. Biomechanical Simulation
and Control of Hands and Tendinous Systems. ACM Trans. Graph. 34, 4, Article 42
(July 2015).

L. Sciavicco and B. Siciliano. 2012. Modelling and Control of Robot Manipulators. Springer
Science & Business Media.

R. Serban, D. Negrut, E. J. Haug, and F. A. Potra. 1997. A Topology-based Approach for
Exploiting Sparsity in Multibody Dynamics in Cartesian Formulation. J STRUCT
MECH 25, 3 (1997), 379-396.

A. A. Shabana. 2013. Dynamics of Multibody Systems. Cambridge University press.

H. V. Shin, C. F. Porst, E. Vouga, J. Ochsendorf, and F. Durand. 2016. Reconciling Elastic
and Equilibrium Methods for Static Analysis. ACM Trans. Graph. 35, 2, Article 13
(Feb. 2016).

T. Shinar, C. Schroeder, and R. Fedkiw. 2008. Two-way Coupling of Rigid and Deformable
Bodies. In Proc. ACM SIGGRAPH / Eurographics Symp. Comput. Anim. 95-103.

E. Sifakis and J. Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner’s
Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012
Courses.

D. E. Stewart. 2000. Rigid-Body Dynamics with Friction and Impact. SIAM Rev. 42, 1
(March 2000), 3-39.

S. Sueda, A. Kaufman, and D. K. Pai. 2008. Musculotendon Simulation for Hand
Animation. ACM Trans. Graph. 27, 3, Article 83 (Aug. 2008).

M. Tournier, M. Nesme, B. Gilles, and F. Faure. 2015. Stable Constrained Dynamics.
ACM Trans. Graph. 34, 4, Article 132 (July 2015).

M. W. Walker and D. E. Orin. 1982. Efficient Dynamic Computer Simulation of Robotic
Mechanisms. J DYN SYST-T ASME 104, 3 (1982), 205-211.

J. M. Wang, S. R. Hamner, S. L. Delp, and V. Koltun. 2012. Optimizing Locomotion
Controllers Using Biologically-based Actuators and Objectives. ACM Trans. Graph.
31, 4, Article 25 (July 2012).

T. M. Wasfy and A. K. Noor. 2003. Computational Strategies for Flexible Multibody
Systems. APPL MECH REV 56, 6 (2003), 553-613.

E. Whiting, H. Shin, R. Wang, J. Ochsendorf, and F. Durand. 2012. Structural Opti-
mization of 3D Masonry Buildings. ACM Trans. Graph. 31, 6, Article 159 (Nov.
2012).

Y. Zhou, S. Sueda, W. Matusik, and A. Shamir. 2014. Boxelization: Folding 3D Objects
into Boxes. ACM Trans. Graph. 33, 4, Article 71 (July 2014).

