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Fig. 1. (a) Near linear time evaluation for a cable-stayed B�����. (b) Near linear time evaluation for a deployable U�������. (c) S�������, showing fully
two-way coupled integration between articulated and deformable bodies. (d) K���� walker, with rapid evaluation of internal friction within joints.

It is well known that the dynamics of articulated rigid bodies can be solved
in O (n) time using a recursive method, where n is the number of joints.
However, when elasticity is added between the bodies (e.g., damped springs),
with linearly implicit integration, the sti�ness matrix in the equations of
motion breaks the tree topology of the system, making the recursive O (n)
method inapplicable. In such cases, the only alternative has been to form
and solve the system matrix, which takes O (n3) time. We propose a new
approach that is capable of solving the linearly implicit equations of motion
in near linear time. Our method, which we call R��M��, is built using a com-
bined reduced/maximal coordinate formulation. This hybrid model enables
direct �exibility to apply arbitrary combinations of constraints and contact
modeling in both reduced and maximal coordinates, as well as mixtures of
implicit and explicit forces in either coordinate representation. We highlight
R��M��’s �exibility with seamless integration of deformable objects with
two-way coupling, at a standard additional cost. We further highlight its
�exibility by constructing an e�cient internal (joint) and external (environ-
ment) frictional contact solver that can leverage bilateral joint constraints
for rapid evaluation of frictional articulated dynamics.
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1 INTRODUCTION
Articulated rigid body dynamics has many applications in various
disciplines, including biomechanics, robotics, aerospace, and com-
puter graphics. It has been extensively studied starting in the 1960s
(e.g., [Roberson 1966]), but it was not until the 1980s that an O(n)
algorithm, where n is the number of joints or bodies, became widely
known [Featherstone 1983]. This algorithm and its variants are
based on a recursive formulation, where various quantities are com-
puted recursively based on the tree structure of the mechanism.
Around the same time, an alternativeO(n3)method based on matrix
factorization was also developed [Walker and Orin 1982], which,
according to De Jalon and Bayo [2012], can outperform the O(n)
recursive method when n is small (< 10). Although some important
mechanisms, such as serial manipulators, have only a few joints, for
many applications in computer graphics, n can be quite large—even
a single hand has n � 15. Therefore, there are still many cases where
O(n) methods are still preferred over O(n3) methods.

The story changes when implicit elasticity is added between
arbitrary bodies rather than only between immediate neighbors. Ex-
amples of such scenarios include: simply attaching damped springs
between pairs of bodies; architectural design with cables [Whiting
et al. 2012; Deuss et al. 2014]; musculoskeletal simulations with
line-based forces [Delp et al. 2007; Wang et al. 2012]; and deployable
folding mechanisms [Demaine and O’Rourke 2008; Zhou et al. 2014].
Using the linearly implicit integrator commonly used in graphics
[Bara� and Witkin 1998], the O(n) recursive method no longer
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works because the sti�ness matrix breaks the tree topology of the
system matrix. To date, the only alternative has been to use the
O(n3) factorization method. We address this issue by introducing a
new approach that allows us to solve the linearly implicit equations
of motion in linear to subquadratic time. If the topology-breaking
springs are not present, our method gracefully reverts back to the
standard O(n) recursive approach.

In the discussion so far, we have tacitly assumed that the dynamics
are represented using “reduced” coordinates, where a minimal set of
degrees of freedom (DOFs), such as joint angles for revolute joints
and relative translations for prismatic joints, are used to represent
the state of the system. An alternate approach that uses “maximal”
coordinates has also been studied.1 For example, an O(n) method
for maximal coordinates was discovered by Bara� [1996]. However,
constraints need to be applied to model joints, and these constraints
must be stabilized to avoid drift [Baumgarte 1972; Cline and Pai
2003]. On the other hand, reduced coordinates do not require any
stabilization, since reduced coordinates only allow con�gurations
that satisfy the joint constraints. Loops are handled with constraints
in either approach, but in practice, stabilizing a few loop constraints
is much easier than stabilizing the whole structure. Furthermore,
reduced coordinates are in general faster, because the number of
DOFs is much smaller (e.g., 1/6 the size), and no constraints are
required. Also, Bara� [1996] notes that there is anecdotal evidence
that larger time steps are possible using reduced coordinates.
One of the advantages of maximal coordinates is that it is more

intuitive—it is easier to add various implicit/explicit forces and to
combine with other deformable objects. To address this point, we
show that our formulation of dynamics, which we call R��M��, is
very �exible and extensible. Any combination of reduced/maximal
forces can be added implicitly or explicitly, and any combination
of reduced/maximal constraints can be handled. Furthermore, it
becomes trivial to get full two-way coupling between a deformable
object (such as an FEM) and the articulated rigid bodies.
As a further demonstration of the �exibility of our formulation,

we show that we can also incorporate frictional contact within the
joints in an e�cient manner, by taking advantage of the reduced
coordinate representation of the joints. Our approach works well
when augmented with both bilateral (e.g., loop closure) and unilat-
eral (e.g., external contact) constraints.
To summarize, our contributions are:
• §3: A near linear approach for articulated dynamics, even in
the presence of the maximal sti�ness matrix, based on our
novel matrix-free Projected Block Jacobi Preconditioner.

• §4: A formulation that exposes both maximal and reduced
degrees of freedom, allowing any combination of implicit and
explicit forces and constraints in either coordinates. It also
handles full, implicit two-way coupling between articulated
and deformable bodies.

• §5: Frictional dynamics for jointed mechanisms that takes
advantage of the bilateral nature of the joint constraints. Our
approach works seamlessly with other constraints, including
loop-closing constraints and external collision constraints.

1Maximal coords are also called absolute coords or Cartesian coords; reduced coords
are also called generalized coords or minimal coords.

2 RELATED WORK
Articulated rigid body dynamics has been an active research area
for many decades, especially in the �eld of robotics, where high-
performance algorithms were required for low-power systems. A
great deal of e�ort has been spent on both O(n) and O(n3) meth-
ods, for example, to re�ne the performance for tree-con�guration
or closed-loop systems [Bae and Haug 1987a,b]. Although asymp-
totically worse, O(n3) methods have attracted signi�cant attention
because they are more intuitive and are more easily parallelizable
[Walker and Orin 1982; Avello et al. 1993; Negrut et al. 1997]. How-
ever, these methods do not work in the presence of the maximal
sti�ness matrix from linearly implicit integration, one of the most
common integration methods in graphics [Bara� and Witkin 1998].

The use of reduced/maximal coordinates with two way coupling
of articulated and deformable bodies has been of particular interest
in computer graphics. Shinar et al. [2008] used maximal coordinate
dynamics with pre-stabilization, coupled with a �nite element mesh.
Their method achieves full two-way coupling, but their intricate
time-stepping method makes it di�cult to extend or to incorporate
into existing simulators. Kim and Pollard [2011] used reduced coordi-
nate dynamics with explicit coupling between rigid and deformable
bodies. Their method is extremely fast to evaluate; however their ap-
proach is limited to explicit integration schemes, since the reduced
coordinates are integrated with theO(n) recursive method. Jain and
Liu [2011] used reduced coordinates with fully implicit coupling
between rigid and deformable bodies. However, with their formu-
lation, each deformable body can only be in�uenced by a single
rigid body. Liu et al. [2013] used an o�-the-shelf solver for maximal
coordinate articulated bodies, which was time-stepped alongside a
deformable body. Their coupling, however, was limited to explicit
interactions—they only a�ected each other after taking a time step.
To summarize, our method is unique in that it is capable of simul-
taneously using reduced coordinates, with fully implicit two-way
coupling, and with the deformable mesh spanning multiple rigid
bodies. We should clarify, however, that we limited our discussion to
two-way coupling between articulated and deformable bodies—the
works above provide many other important contributions.

There have also been a number of related works on the simulation
of various phenomena using articulated rigid bodies, such as: trees
[Quigley et al. 2018], hair [Hadap 2006], and characters [Hernandez
et al. 2011]. Linear time methods for �exiblemultibody systems have
also been studied for decades, as described in the detailed survey
by Wasfy and Noor [2003]. Of particular importance to graphics,
Bertails [2009] showed that the recursive linear time approach can
be used to simulate the dynamics of elastic rods. These e�cient
methods can only be used in the special case when all of the im-
plicit forces are between topologically neighboring bodies (e.g., joint
springs), since then the topology of the reduced sti�ness matrix will
be the same as that of the reduced mass matrix. However, in the
general case, the implicit forces are between arbitrary bodies, and
so the recursive linear time approaches cannot be used.
To model joint friction for articulated bodies formulated in re-

duced coordinates, a common approach is to treat the frictional
force solely as a function of joint velocities, rather than using the
geometry of the joint [Drumwright and Shell 2010; Sciavicco and
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Table 1. Table of notation. Eq. (S2.5) refers to suppl. doc. §2, Eq. (5).

qr , €qr , ‹qr Reduced coords, velocity, and acceleration
qm , €qm , ‹qm Maximal coords, velocity, and acceleration
Jmr , €Jmr Jacobian from €qr to €qm , and its time derivative
Mr , fr Reduced mass matrix and force vector
Mm , fm Maximal mass matrix and force vector
M̃r , f̃r The LHS matrix and RHS vector of Eq. (2)
Kr , Dr Reduced sti�ness and damping matrices
Km , Dm Maximal sti�ness and damping matrices
€q(k ), €q(k+1) Velocity at step k or k + 1 (reduced or maximal)
a
bAd Adjoint transform from b to a (Eq. (S2.5))
S Joint Jacobian (Eq. (S3.14))
Gr , Gm Reduced & maximal bilateral constraint matrices
Cr , Cm Reduced & maximal unilateral constraint matrices
Md , fd , €qd Deformable mass, force, velocity
€qprev Last velocity (same as €q(k )); used in §5
N, T Contact normal and tangent matrices
� , � Contact and friction Lagrange multipliers
f� , f� Contact and friction forces (maximal)

Siciliano 2012]. With our approach, we use the geometry of the joint
in our friction algorithm, and we show that changing the geome-
try parameters a�ects the resulting motion. Finally, some recent
research has shown the e�ectiveness of using a non-discretized
friction cone [Acary and Brogliato 2008; Li et al. 2018]. However,
we note that the joints in most mechanisms have only 1 DOF, and
so the friction “cone” can be trivially modeled by a box constraint.

3 PROJECTED BLOCK JACOBI PRECONDITIONER
Recursive O(n) methods for the forward and inverse dynamics of
articulated mechanisms, with support for both reduced and maximal
coordinates have existed for decades [Popov et al. 1978; Featherstone
1983; Bara� 1996; Negrut et al. 1997; Serban et al. 1997]. Unfortu-
nately, when there are maximal springs applying implicit forces
on the rigid bodies (e.g., Figs. 1a & 1b), we can no longer use these
recursive O(n) methods, because the sti�ness matrix resulting from
these springs breaks the tree topology of the system matrix. In this
section, we de�ne our R��M�� approach (Eq. (2)), and we intro-
duce a new preconditioner that gives linear to subquadratic time
performance, depending on the scene, even in the presence of the
maximal sti�ness matrix (Eq. (3)).

We assume that the reader is familiar with maximal and reduced
coordinates. For those who need a refresher, we include short tuto-
rials in the supplemental document §2 & §3, respectively. We also
include a table of notation in Table 1.
We start with the reduced equations of motion (derived in §3 of

the supplemental document, Eq. (S3.11)):�
J>mrMm Jmr

�
‹qr = J>mr

�
fm �Mm €Jmr €qr

�
, (1)

where Mm is the diagonal maximal mass matrix, qr is the reduced
con�guration (e.g., joint angles), fm is the maximal force, and Jmr
is the Jacobian for transforming from reduced velocity to maximal
velocity: €qm = Jmr €qr . The Jacobian and its time derivative, Jmr , €Jmr ,
are of size #m ⇥ #r , where #m is the number of maximal DOFs, and
#r is the number of reduced DOFs. Eq. (1) is an instance of the

well-known “velocity transformations” for articulated dynamics
[De Jalon and Bayo 2012], with our SE(3) based Jacobian, Jmr . This
equation of motion can be used in conjunction with di�erent choices
of time integrators.

We now describe our R��M�� formulation, which is a particular
discretization of Eq. (1) that exposes all the reduced and maximal
quantities.We follow the common practice in graphics and discretize
Eq. (1) at the velocity level. Then combining the linearly implicit
terms for both reduced and maximal coordinates [Bara� and Witkin
1998], we arrive at our R��M�� formulation:⇣

J>mr

⇣
Mm + hDm � h

2Km
⌘
Jmr + hDr � h

2Kr
⌘
€q(k+1)r =

�
J>mrMm Jmr

�
€q(k )r + h

⇣
fr + J>mr

⇣
fm �Mm €Jmr €q(k )r

⌘⌘
,

(2)

where Dm and Km are the maximal damping and sti�ness matrices,
Dr and Kr are the reduced damping and sti�ness matrices, fr is
the reduced force vector, fm is the maximal force vector, including
the Coriolis force, and €q(k)r and €q(k+1)r are the reduced velocities at
time steps k and k + 1. The last term, �J>mr Mm €Jmr €qr , is the extra
quadratic velocity vector due to the change of coordinates [Shabana
2013]. This long equation gives us the �exibility to choose the types
of forces we want to use, be they maximal, reduced, explicit, or
implicit. These terms may come from a variety of sources, including
geometric sti�ness [Tournier et al. 2015]. For example, we can easily
combine body damping (Dm ), maximal springs acting on the bodies
(Km and fm ), joint damping (Dr ), and joint sti�ness (Kr and fr ). We
will highlight more of R��M��’s �exibility in §4 and §5. For brevity,
when appropriate, we will use the shorthand notation M̃r €qr = f̃r
instead of Eq. (2).

An important fact about Eq. (2) is that, because the maximal sti�-
ness matrix breaks the tree-structure of the system, it cannot be
solved by theO(n) recursive dynamics algorithm. (For reference, we
include the recursive dynamics algorithm as a supplemental docu-
ment.) In the rest of this section, we introduce our preconditioner
that gives linear to subquadratic performance in the presence of the
maximal sti�ness matrix.
Before we delve into the details of our preconditioner, we �rst

clarify when it works best. Our preconditioner is e�ective when
the rigid DOFs make up a large portion of the system DOFs, and
when these rigid DOFs are tied together by maximal forces, such as
damped springs between various bodies. These cover some impor-
tant simulation scenarios, including architectural design with cables
[Whiting et al. 2012; Deuss et al. 2014] and biomechanical simu-
lations with line-based forces [Delp et al. 2007; Wang et al. 2012].
When there are no maximal springs, our preconditioner still gives
the same performance as the O(n) recursive approach—it gracefully
reverts back to the standard O(n) approach. When a deformable
object with many DOFs is being simulated simulateously, we instead
use a standard direct solver.

Our preconditioner, P, can be expressed as follows:

P = J>mr (Mm + blkdiag(hDm � h
2Km )) Jmr + hDr � h

2Kr , (3)

where ‘blkdiag’ is a �lter that keeps only the 6 ⇥ 6 diagonal blocks
of Dm and Km . We call this the Projected Block Jacobi Precondi-
tioner because we take the block diagonals of the maximal terms
and project them into the reduced space. Using P, we solve the
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Algorithm 1 Computes� = (Mr + J>mr blkdiag(hDm �h2Km ) Jmr +
hDr �h2Kr )�1x in linear time for preconditioning a linearly implicit
solver. Script j refers to the current joint, i to the associated body, c
to the joint’s child joint, and p to the joint’s parent joint.
1: // Run this loop once as a preprocessing step
2: while backward traversal do . c = child joint of j
3: Amj =

i
jAd

>blkdiag(hDm
i � h

2 Kmi ) ijAd . Maximal term
4: Arj = hD

r
j � h

2Krj . Reduced term
5: M̂j = (Mj + Amj ) +Õc

c
j Ad

> �c cj Ad

6: �j = (S>j M̂jSj + Arj )�1

7: �j = M̂j � M̂jSj�jS>j M̂j
8: end while
9:
10: // Run these two loops for each RHS vector x
11: while backward traversal do . c = child joint of j
12: B̂j =

Õ
c
c
j Ad

>
�c

13: �j = B̂j + M̂j (Sj�j (x j � S
>
j B̂j ))

14: end while
15: while forward traversal do . p = parent joint of j
16: �j = �j (x j � S

>
j M̂j

j
pAd €Vp � S

>
j B̂j )

17: €Vj = j
pAd €Vp + Sj�j

18: end while

preconditioned linear system P�1M̃r €qr = P�1 f̃r in a matrix-free
fashion. To use P in the preconditioned conjugate gradient (PCG)
method to solve Eq. (2) in near linear time, we have the following
requirements:

(1) Form the RHS vector of Eq. (2) in O(n) time.
(2) Multiply a vector by the LHS matrix of Eq. (2) in O(n) time.
(3) Apply the preconditioner, P, in O(n) time.
(4) Converge in a sublinear number of iterations.
For (1) and (2), we must be able to multiply a vector by J, J>,

and €J, as required by the RHS of Eq. (2), in O(n) time. Although
�lling these matrices takes O(n2) time, computing the product can
be done in O(n) time, by taking advantage of the recursive nature
of the topology (see Supplemental §3). To multiply by J and €J, we
traverse forward starting from the root, whereas to multiply by J>,
we traverse backward starting from the leaf. The recursive dynamics
method takes this approach, while computing the reduced veloci-
ties and forces. Adding the spring contributions to the RHS force
and LHS sti�ness matrix can be done trivially in O(m) time using
standard techniques, wherem is the number of springs.
To enable (3), we must be able to solve by P in linear time. We

draw inspiration from the fact that the recursive forward dynam-
ics algorithm solves the reduced systemMr ‹qr = fr in linear time,
allowing it be utilized to construct, or to multiply by, the inverse
inertia matrix e�ciently, by setting all forces and velocities to zero
[Kim 2012; Drumwright 2012]. In the same way, our preconditioner
can be used to solve the block diagonal approximation of the LHS
matrix of Eq. (2) in linear time. We add two important modi�cations
to the standard recursive forward dynamics algorithm, correspond-
ing to the maximal and reduced implicit terms, as shown lines 3-6 in
Alg. 1. These two types of implicit terms must be handled di�erently,

since they operate in di�erent spaces. In each joint j, we store the
reduced sti�ness and damping matrices (scalars for revolute joints),
and in the corresponding body i , we store the 6 ⇥ 6 block diagonal
components of the maximal sti�ness and damping matrices. The re-
duced terms are added prior to taking the inverse, in line 6 of Alg. 1.
The maximal terms are �rst transformed to be in j’s coordinate
space and then are added to the j’s inertia matrix in line 5. These
terms are then processed recursively together with the inertia.
For (4), we o�er empirical evidence based on the scaling of the

B����� (Fig. 1a) and theU������� (Fig. 1b) scenes in §6, which show
sublinear number of iterations per time step. In the B����� scene,
when the towers are in�nitely sti�, PCG converges in 1 iteration,
because all of the cables are attached to a stationary body, and so
the sti�ness matrix becomes block diagonal.

3.1 Loop Closure
Our preconditioner is applicable also when there are constraints, of
which loop-closure is the most common. For example, in the B�����
scene shown in Fig. 1a, we apply bilateral loop-closing constraints,
G€qr = 0, to ground both ends of the bridge deck. We solve the
following dual problem:

GM̃�1
r G>

� = GM̃�1
r f̃r , M̃r €qr = f̃r � G>

�. (4)

Let l be the number of rows in the constraint matrix G. We run
PCG l times (in parallel) to form the dense LHS matrix GM̃�1

r G>,
by backsolving with the columns of G>, and run PCG once to form
the RHS vector. We then solve this linear system for the Lagrange
multipliers in O(l3) time, which is then fed into a �nal PCG to
compute the new velocities. The overall run time is O(n� l + l3),
where � depends on the scene and is again typically near linear.

4 REDMAX FLEXIBILITY
Having established the e�ciency of our method, we now look fur-
ther at its �exibility. In addition to the combination of implicit and
explicit forces acting on reduced and maximal coordinates, we can
easily add bilateral and unilateral constraints on both reduced and
maximal coordinates. Let Gr , Gm , Cr , and Cm respectively be the
reduced bilateral, maximal bilateral, reduced unilateral, and maxi-
mal unilateral constraint matrices. These constraints can be used
for, e.g., closing loops, attaching FEM nodes to bodies, joint limits,
and external contact. (Later in §5, we show how we handle frictional
contact constraints.) Applying Gauss’s Principle of Least Constraint
[Lanczos 2012], these constraints can be incorporated by forming a
quadratic program:

minimize
€qr

1
2
€q>r M̃r €qr � €q>r f̃r

subject to
✓

Cr
Cm Jmr

◆
€qr � 0,

✓
Gr

Gm Jmr

◆
€qr = 0.

(5)

If working at the acceleration level, additional terms involving €Jmr
are required in the constraints.
If only bilateral constraints are present, we can directly form

and solve the corresponding KKT linear system [Boyd and Vanden-
berghe 2004]. For example, when we attach a �nite element mesh to
the skeleton, we use bilateral constraints that bind certain vertices

ACM Trans. Graph., Vol. 38, No. 4, Article 104. Publication date: July 2019.



R��M��: E�icient & Flexible Approach for Articulated Dynamics • 104:5

to be �xed with respect to the skeleton:

©≠
´

M̃r 0 J>mrG>
m

0 Md G>
d

Gm Jmr Gd 0

™Æ
¨
©≠
´
€qr
€qd
�

™Æ
¨
=
©≠
´
f̃r
fd
0

™Æ
¨
, (6)

where the equation of motion of the deformable body isMd €qd = fd ,
and the constraint for attaching the deformable mesh to the skeleton
is Gm Jmr €qr + Gd €qd = 0. We show an example of this (which also
includes hybrid dynamics, described below), in the S������� scene
(Fig. 1c).

When these constraints are applied at the velocity (or accelera-
tion) level, there is an unavoidable constraint drift. We deal with
these with the standard Baumgarte [1972] stabilization technique.
We emphasize that in practice, stabilizing a few constraint is much
easier than stabilizing the whole jointed structure, which is required
with maximal coordinate approaches.

Hybrid Dynamics. In forward dynamics, we compute the motion
given the forces, and in inverse dynamics, we compute the forces
given the motion. With the R��M�� formulation, it is easy to com-
bine these two into hybrid dynamics (a term coined by Featherstone),
where some DOFs have their accelerations speci�ed, and some DOFs
have forces speci�ed. Although the recursive formulation can handle
reduced hybrid dynamics [Kim and Pollard 2011], it cannot combine
both reduced and maximal hybrid dynamics.

Hybrid dynamics can be performed at the acceleration level or at
the velocity level, but in this paper, we concentrate on the velocity-
level formulation. Let superscript ⇤ indicate the subset of joints
whose motions are prescribed. Then we can apply a bilateral con-
straint on the prescribed reduced velocities: ⇤Gr €qr = ⇤€qr , where⇤Gr contains the identity matrix in the appropriate blocks so that the
prescribed joints will be a�ected. Similarly, we have ⇤Gm €qm = ⇤€qm
for prescribing maximal velocities, where ⇤Gm can contain the iden-
tity matrix when we want to fully specify the motion of the body,
or a point Jacobian (Eq. (S2.4)) when we want to specify the motion
of a point on the body. The resulting KKT system is then

©≠
´

M̃r ⇤G>
r J>mr

⇤G>
m

⇤Gr 0 0
⇤Gm Jmr 0 0

™Æ
¨
©≠
´
€qr
�r
�m

™Æ
¨
=
©≠
´
f̃r
⇤€qr⇤€qm

™Æ
¨
. (7)

The required joint torques or maximal wrenches can be computed
with the resulting Lagrange multipliers: ⇤fr = ⇤G>

r �r /h and ⇤fm =
J>mr

⇤G>
m �m/h. With this formulation, we can easily control both

maximal and reduced velocities, as shown in our S������� and
H��� examples (Figs. 1c and 2a-2b).

Hyper Reduced Coordinates. We can further reduce the degrees
of freedom by chaining more Jacobians. This can be useful, for
example, when we want some kinematic coupling between joints.
As a concrete example, in a healthy human �nger, the two distal
joints exhibit coupled interphalangeal joint motions—the PIP (�rst
joint away from the knuckle) �exes twice as much as the DIP (the
second joint away from the knuckle). (See Figs. 2a-2b.) This is due
to the complex arrangement of tendons and ligaments [Leijnse
et al. 2010], and can be simulated explicitly at an additional cost
[Sueda et al. 2008; Sachdeva et al. 2015]. Alternatively, if we are
only interested in the gross kinematics of the �nger, we can model

this joint-angle relationship directly. To do so, we apply another
Jacobian, so that these joint angles are expressed using a single
variable. This can be expressed using the following relationship:✓ €�PIP

€�DIP

◆
=

✓
2
1

◆
€�

€qr = Jr� €q�,
(8)

where €q� represents the new (hyper) reduced coordinates. If we
de�ne

Jm� = Jmr Jr�, €Jm� = €Jmr Jr� + Jmr €Jr�, (9)
then the hyper reduced equation of motion is

J>m�Mm Jm� ‹q� = J>m�
�
fm �Mm€Jm� €q�

�
. (10)

Any combination of bilateral/unilateral and reduced/maximal con-
straints can be added as before. We show how we can use hyper
reduced coordinates in conjunction with reduced and maximal hy-
brid dynamics with the H��� example (Figs. 2a-2b).

5 FRICTIONAL JOINTS
In this section, we further highlight the �exibility of the R��M��
formulation with an e�cient algorithm for resolving frictional con-
tact within joints. This has many applications including: computing
the energy required for robotics; and modeling arthritic joints for
biomechanics or animation. In this section, we show how R��M��
can be combined with the Staggered Projections (SP) algorithm to
take into account the bilateral nature of the joint constraints.

5.1 Review of Staggered Projections
The original Staggered Projections algorithm was developed for
solids undergoing unilateral contact constraints with friction [Kauf-
man et al. 2008]. SP is shown in Alg. 2, slightly modi�ed to match
our notation. Since SP was designed for maximal rigid bodies, we re-
move them and r (maximal & reduced) subscripts for clarity. There
are two quadratic programs (QP) that are solved iteratively: contact
and friction. Let €qunc = €qprev+hM�1f be the unconstrained velocity,
where €qprev is the velocity from the last time step. The contact QP
can then be written as:

minimize
�

1
2
�
>NM�1N>

� � �
>N(€qunc + hM�1f� )

subject to � � 0,
(11)

where � is the contact impulse, N is the contact normal matrix,
M is the maximal mass matrix, f is the maximal force, and f� is
the frictional force, which is initially zero. After solving for � , we
compute the contact force as f� = �N>

�/h. The frictional QP is:

minimize
�

1
2
�
>TM�1T>� � �

>T(€qunc + hM�1f� )

subject to � µ�  �  µ�,
(12)

where � is the frictional impulse, T is the contact tangent matrix,
and µ � 0 is the coe�cient of friction. The box constraints can
only accommodate a four-sided friction cone—if needed, we can
rewrite this constraint to give us a polyhedral cone [Stewart 2000]
or a continuous cone [Acary and Brogliato 2008; Li et al. 2018],
but we note that for 1 DOF joints, the cone constraint degenerates
into a box constraint. After solving for � , we compute the frictional
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Algorithm 2 Staggered Projections
1: FillM . mass matrix
2: f� = 0
3: while simulating do
4: Fill f, N, T . force vector, normal and tangent matrices
5: f0� = 0
6: €qunc = €qprev + hM�1f
7: while true do
8: // CONTACT
9: Solve contact QP (11) for �
10: f� = �N>

�/h
11: // CONVERGENCE CHECK
12: if kf� � f0� kM�1  � or max iterations then
13: break
14: end if
15: f0� = f�
16: // FRICTION
17: Solve friction QP (12) for �
18: f� = �T>�/h
19: end while
20: €q = €qprev + hM�1(f + f� + f� )
21: end while

force as f� = �T>�/h. These two QPs are solved iteratively until
convergence. The convergence rate can be improved by caching
the frictional force, f� , and warm-starting with this cached value at
every time step [Kaufman et al. 2008].

5.2 Bilateral Staggered Projections
We extend SP by taking advantage of the bilateral constraints present
in articulated rigid body dynamics. The resulting algorithm, which
we call Bilateral Staggered Projections (BISP), is much more e�cient
than SP and can also be combined with SP for handling external
frictional contacts, such as between a body and the environment.
BISP has several advantages over SP. First, we

do not need collision detection. With BISP, for each
joint type (e.g., revolute, spherical, prismatic), we
use a small number of implicit contacts at pre-
determined positions around the joint. For example,
for a revolute joint, we assume that the joint geometry is a cylinder,
and we populate the two ends of the cylinder with a sparse set of
contact points (see inset �gure). By changing the parameters of this
cylinder, we get di�erent frictional e�ects. Second, the size of the
friction QP decreases signi�cantly, because the friction cone can
be represented exactly using box constraints for 1 DOF (revolute
and prismatic) joints, which are often the most used joints. Third,
the contact QP can be eliminated, since in reduced coordinates, the
contact constraints are satis�ed automatically. Finally, we obtain
faster convergence, since the contacts are more temporally coherent
in a bilaterally constrained system.
In the following subsections, we describe how we extend SP to

obtain BISP. As stated above, BISP eliminates the need for the contact
QP by taking advantage of reduced coordinates, However, we still
need the contact Lagrange multipliers, � , when we solve for the

Algorithm 3 Bilateral Staggered Projections
1: FillM . mass matrix
2: f� = 0
3: while simulating do
4: Fill f, N, T . force vector, normal and tangent matrices
5: f0� = 0
6: while true do
7: // CONTACT
8: Evaluate (15) for f� . §5.2.1
9: while backward traversal do
10: Distribute f� to joint . §5.2.2
11: end while
12: while parallel traversal do
13: Locally solve (16) for � . §5.2.3
14: end while
15: // CONVERGENCE CHECK
16: if kf� � f0� kM�1  � or max iterations then
17: break
18: end if
19: f0� = f�
20: // FRICTION
21: Solve friction QP (12) for �
22: f� = �T>�/h
23: end while
24: €qr = €qprevr + hM�1

r J>mr (f̃m + f� + f� )
25: end while

frictional impulses, because � is used as the limits on the friction
forces. We compute � in three steps:
• §5.2.1: Compute the joint reaction forces.
• §5.2.2: Distribute this global force into the joints.
• §5.2.3: Compute � locally within each joint.

5.2.1 Compute joint reaction force. We �rst compute the joint reac-
tion (i.e., constraint) force that would produce the same constrained
motion as the one generated using reduced coordinates. We do this
by comparing the velocity generated by the reduced solve against
the velocity generated by an unconstrained maximal solve. As an
illustration, suppose we are running the standard SP algorithm with
maximal coordinates. Let €qunc = €qprev+hM�1f, and the correspond-
ing constrained velocity from Eq. (11) be €qcon. We can rearrange the
constrained equations of motion to solve for the constraint forces:

M€q + N>
� = M€qprev + h(f + f� )

M�1N>
� = €qprev + hM�1(f + f� )|                     {z                     }

€qunc

� €q|{z}
€qcon

(13)

where €qprev is the velocity from the last time step. We can rear-
range further to obtain the expression for the constraint force,
f� = �N>

�/h:
f� =

1
h
M

�
€qcon � €qunc

�
. (14)

What this equation implies is that we can compute the constraint
force, f� , by subtracting the unconstrained velocity from the con-
strained velocity.
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Now we show how BISP uses a similar approach to eliminate the
contact QP. As in SP, the current friction force must be taken into
account when computing the constrained and unconstrained veloc-
ities. In the following equations, since we must now compute both
reduced and maximal coordinates, we add back the subscriptsm
and r . (The contact and friction forces, f� and f� , are maximal quan-
tities.) As before, we subtract the unconstrained velocity from the
constrained velocity, but now the constrained velocity is computed
in reduced coordinates instead of using Eq. (11):

f� =
1
h
Mm

�
Jmr €qconr � €quncm

�
(15a)

€quncm = Jmr €q
prev
r + hM�1

m

⇣
fm + f�

⌘
(15b)

€qconr = €qprevr + hM�1
r J>mr

⇣
f̃m + f�

⌘
. (15c)

To lighten the notation, we use f̃m in Eq. (15c) to include the qua-
dratic velocity vector from the RHS of Eq. (2).

5.2.2 Distribute contact force to joints. The computed constraint
force, f� , is a global maximal force vector that accounts for all joint
reaction forces. Therefore, if we extract a portion of f� correspond-
ing to a single body, we obtain the sum of all the joint reaction
forces acting on that body. To compute the Lagrange multipliers for
a particular joint, we �rst need to isolate the joint reaction force
from this sum. Fortunately, this can be done in a linear fashion by
traversing the joints backward from leaf to root. For a leaf body,
there is only one joint force acting on it, and so its portion of f� is
exactly the required joint reaction force. Since this joint reaction
force exerts an equal and opposite force on the parent of the leaf,
we subtract this force from the parent’s portion of f� and continue
the backward traversal.

5.2.3 Compute contact Lagrange multipliers. Once we have the joint
reaction forces distributed to each joint, we can compute the contact
Lagrange multipliers that generate that joint reaction force. This
can be done in parallel, since these are local operations performed
for each joint independently of each other. For each joint, we search
for a least-squares solution to (NiM�1

i N>
i )�i = hNiM�1

i f� i , where
the subscript i indicates the blocks corresponding to the ith body.
We do not require �i to be positive, since these “contact” constraints
are bilateral—they cannot come apart. To deal with contact inde-
terminacy [Shin et al. 2016], we add a regularization term, which
is critical because otherwise the joint can become arbitrarily tight.
For instance, setting �i = 1000 for all contacts will generate the
same e�ective constraint on the joint as setting �i = 0.1. Adding
this regularization term, the local linear system becomes:

�i = h
⇣
NiM�1

i N>
i + �I

⌘�1 ⇣
NiM�1

i f� i
⌘
. (16)

In our experiments, we set � = 1e-6.
After the contact impulses for all the joints, � , are computed, the

convergence check and the friction solve are the same as in SP. The
step-by-step algorithm is shown in Alg. 3.

5.3 Adding External Constraints
BISP can also take into account external constraints, such as loop-
closing (bilateral) constraints or frictional contact (unilateral) con-
straints with the environment. Alg. 3 is modi�ed as follows to take
into account these additional constraints:

• Line 10: To compute the contact force, both the unconstrained
and constrained velocities must take into account the additional
external constraints. The unconstrained velocity is obtained by solv-
ing a maximal system with only the external constraints, ignoring
the implicit constraints exerted by the joints. The corresponding
constrained velocity is obtained by solving a reduced system with
external bilateral constraints, G, and unilateral constraints, C. The
di�erence between these velocities will give us the joint reaction
forces. Thus, instead of Eq. (15), we evaluate the following:

f� =
1
h
Mm

�
Jmr €qconr � €quncm

�
(17a)

min.
€qm

1
2
€q>mMm €qm � €q>m

⇣
Mm Jmr €q

prev
r + h

⇣
fm + f�

⌘⌘

s. t. Gm €qm = 0, Cm €qm � 0
(17b)

min.
€qr

1
2
€q>r Mr €qr � €q>r

⇣
Mr €qprevr + h J>mr

⇣
f̃m + f�

⌘⌘

s. t. Gm Jmr €qr = 0, Cm Jmr €qr � 0,
(17c)

where €quncm and €qconr are the solutions of the two QPs ((17b) &
(17c)). The loop-closing constraint reaction forces are computed as
f� = �J>mrG>

m�/h, where � is the vector of Lagrange multipliers
corresponding to the loop-closing constraints, Gm Jmr €qr = 0, from
the minimization for €qconr . The maximal QP in Eq. (17b) may seem
expensive to solve (all other QPs are in reduced coordinates), but
usually, the number of external constraints is much smaller than the
number of joint constraints. Therefore, we can solve this maximal
QP in its dual form instead, which is much smaller. For example, for
the K���� mechanism with 6 legs (Fig. 1d), the dual QP is of size at
most 30 with only box constraints.

• Line 15: We need to compute the contact forces due to the loop-
closing joint constraints, by again solving a small linear system (16).
These small linear systems are solved for each joint and for each
loop-closing joint constraint.

• Line 26: To compute the �nal velocity, we solve a quadratic
program that takes into account the external constraints:

min.
€qr

1
2
€q>r Mr €qr � €q>r

⇣
Mr €qprevr + h J>mr

⇣
f̃m + f� + f�

⌘⌘

s. t. Gm Jmr €qr = 0, Cm Jmr €qr � 0.
(18)

With these three changes, any combination of external bilateral
and unilateral constraints can be incorporated into BISP.

6 RESULTS
We implemented our system in C++ and ran the simulations on a
consumer desktop with an Intel Core i7-7700 CPU @ 3.6 Ghz and
16 GB of RAM. We use Eigen for dense linear algebra, Pardiso for
sparse linear solves, and Mosek for quadratic programs. For the
direct solver, the system indices are ordered backward from leaf to
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minimize �ll-ins [Negrut et al. 1997]. For PCG, the stopping toler-
ance is set to relative residual of 1e-6. Please see the supplemental
video for the animations.

• S������� (Fig. 1c): We model a star�sh with a skeleton consist-
ing of 20 joints and a coarse FEM mesh consisting of 221 vertices.
For display and collision, we embed a �ne mesh with 7909 vertices
inside the coarse simulation mesh. We use co-rotated elasticity, but
any material model can be used [Sifakis and Barbic 2012]. We use
R��M�� hybrid dynamics to animate the star�sh—we procedurally
prescribe some of the joints as well as some speci�c points on the
skeleton. The rest of the skeleton and the FEM mesh are passively
simulated with fully implicit two-way coupling.
• H��� (Fig. 2): The two distal joints of a healthy human �nger

exhibits coupled interphalangeal joint motions [Leijnse et al. 2010].
Speci�cally, the most distal joint (DIP) usually �exes by half the
joint angle of the second most distal joint (PIP). We model a human
hand where we use hyper reduced coordinates on the DIP/PIP of
the four �ngers. We then animate the hand with R��M�� hybrid
dynamics. The �ngertip positions are prescribed using maximal
inverse dynamics, and at the same time, the elbow angle is prescribed
using reduced inverse dynamics.
• H������ (Fig. 3): The hag�sh is unique in that it forms a knot

with its body to provide leverage to its head as it feeds. Using the
parameters taken from the literature [Evans et al. 2018], we model
a realistic hag�sh that can be used as a testbed for studying how a
hag�sh controls its body to form a knot, which is currently an open
scienti�c problem. We model the animal by placing Z-revolute and
XY-universal joints in an alternating fashion, for a total of 100 joints.
We set the length, mass, radii, and joint limits with data taken from
real measurements. We perform self-collision detection by passing
a spline curve through the length of the animal and �nding the
colliding points with Newton’s method. The collisions are turned
into inequality constraints, resulting in a quadratic program (Eq. (5)).
We do not model friction, since hag�sh are slimy.

Fig. 2. H��� simulation with coupled interphalangeal joint motions.

(a) (b) (c) (d)

Fig. 3. (a-b) A kno�ing H������, with its head in a jar. (c-d) Our simulation.

• B����� (Figs. 1a & 4a): To show the scalability of our precondi-
tioner, we model a cable-stayed bridge with a fan design. The towers
and the deck are composed of a sequence of bodies connected by
revolute joints, with cables attaching the deck to the towers. We
vary the number of deck and tower pieces, as listed in Table 2. We
solve this system with PCG using our preconditioner and with an
o�-the-shelf direct solver. When the towers are modeled as rigid,
PCG converges in a single iteration. In this case, our block diagonal
preconditioner becomes exactly the inverse of the system matrix,
since the tower bodies are removed from the system, and so only
the block diagonal portions of the local sti�ness matrices enter the
systemmatrix. When we make the tower joints �exible and apply an
exaggerated weight (see accompanying video), our preconditioner
still shows good scaling, though the direct method is faster initially.
Table 2 & Fig. 4a show the timing result of the simulation. The slope

Table 2. Performance table for B����� and U�������. DOF : Degrees of
freedom. Direct & PCG: Wall-clock times in seconds to simulate five units
of scene time. Iters: Average number of PCG iterations per step. For B�����,
there are 2 sub scenes: [Rigid] is with rigid towers; [Flexy] is with flexible
towers and an exaggerated weight.

DOF Direct PCG Iters

80 2.8 2.0 4.0
160 11.8 3.4 4.0

B����� [Rigid] 320 70.5 6.5 4.0
640 420.3 12.7 4.0
1280 2884.7 27.8 4.0
60 1.0 2.7 104.7
120 2.4 5.6 136.6

B����� [Flexy] 240 8.6 11.4 153.5
480 44.9 28.3 196.3
960 248.7 70.6 241.9
241 2.1 1.8 37.0
385 4.8 2.6 36.0

U������� 529 8.4 3.4 36.7
769 19.1 5.1 38.5
1105 50.1 8.4 39.5
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(a) B�����
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(b) U�������

Fig. 4. log2 � log2 plot of Time vs. DOFs for B����� and U�������. Solid
lines are for a direct solver, and dashed lines are for our preconditioned solver.
The computed slopes indicate that with our preconditioner, the runtime
performance is near linear.
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(a) C���� (R) (b) C���� (2R)
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(c) K���� torque

Fig. 5. (a) C���� composed of revolute joints. (b) With a larger radius, the
chain stops earlier. (c) K����: graph of torque vs. time, with various joint
friction coe�icients.

of the �tted lines of the log2 � log2 plot of time vs. DOFs shows
the empirical order of each approach. When the tower sti�ness is
in�nite, PCG takes O(n1.01) time, and when the towers are �exible,
PCG takes O(n1.23) time. As a comparison, a direct solver takes
O(n2.64) and O(n2.25) time, respectively.

• U������� (Figs. 1b & 4b): As another scaling test, we model
a deployable umbrella. The root body is the tube, with 8 ribs at-
tached to its tip. The 8 ribs are pushed open by the 8 stretchers.
The stretchers are attached to the runner, which has a prismatic
joint with respect to the tube. Both the ribs and the stretchers are
modeled using a sequence of universal joints, and are connected to
each other by bilateral constraints. Springs are placed between the 8
ribs to model the canopy. We vary the number of bodies in the ribs
and the stretchers. Table 2 & Fig. 4b show the number of DOFs, the
average iteration count for PCG, and the wall-clock time for PCG
and the direct solver to simulate a 1 second scene. The empirical
orders of the two methods are O(n1.01) and O(n2.07) for PCG and
direct, respectively. Our unoptimized PCG is initially slower than
the direct solver, but when n is large, the PCG becomes faster.
• C���� (Figs. 5a & 5b): This scene shows the frictional e�ect due

to changing the geometry of the joint. We initialize the scene so that
the chain starts horizontally and falls under gravity, with the axis
of rotation oriented 45� from the direction of gravity. Since more
weight must be supported by bodies closer to the root, the contact
force, and thus the force of friction, is stronger at the root compared
to the tip. This makes the chain stop rotating starting from the root
rather than at the tip. When we increase the joint radius, even with
the same coe�cient of friction, the force of friction increases since
the joint is able to apply more torque. When Staggered Projections
is used, the simulation takes an order of magnitude longer to com-
plete because: (1) with maximal coordinates, position stabilization is
required, and this can have an adverse e�ect on the iteration count;
and (2) SP requires two global QPs, whereas BISP requires only one.
• K���� (Figs. 1d & 5c): Our friction solver can handle loop-

closure and contact constraints. We build a walking machine with a
Klann linkage for each of the 6 limbs. Each limb has 5 revolute joints
and 2 loop-closure constraints. Since each loop-closure constraint
removes 2 DOFs, each limb has 5 � 2 · 2 = 1 e�ective DOF. In total,

there are 26 internal joint DOFs with 24 bilateral constraints and
(up to) 6 unilateral constraints. The 2 remaining DOFs are driven
with inverse dynamics to have a constant rotational speed. We use
µ = 0.8 for �oor friction.We run several simulations, increasing µ for
loop closure and joint constraints from 0.0 to 0.8. Fig. 5c shows the
amount of torque required to drive the mechanism as we increase
this frictional coe�cient. As we expect, more torque is required
when there is more friction within the joints. Interestingly, when
the µ = 0, the motor does some negative work—the limbs try to
push the motor forward, but the motor pushes back.

7 CONCLUSION
We introduced an e�cient and �exible approach for computing
the dynamics of articulated rigid bodies. Unlike prior approaches
that require O(n3) time, our approach maintains near linear per-
formance, even in the presence of maximal sti�ness matrix used
by a linearly implicit integrator. In some simulation scenarios, our
preconditioned solver converges in a single iteration. Our approach
also provides �exibility, allowing us to mix and match implicit and
explicit forces in both reduced and maximal coordinates, as well as
bilateral and unilateral constraints in either coordinates. We showed
this �exibility with several results including those that use hybrid
dynamics in both coordinates and fully two-way coupled dynamics
of articulated and deformable bodies. Finally, we showed how our
approach can be e�ciently integrated into a friction solver that can
incorporate friction inside the joints with loop closure as well as
external contact constraints. We include with this work reference
implementations of R��M�� written in C++ and object-oriented
MATLAB as supplemental material.2

7.1 Limitations & Future Work
Although the theoretical runtime of factorization methods areO(n3)
[De Jalon and Bayo 2012], in practice, they exhibit better asymptotic
behavior depending on the sparsity pattern of the system matrix.
When the scene has many branches, the system often becomes very
sparse, and these methods become subquadratic, with very small
overhead compared to our PCG method. Automatically detecting
when to switch between the two methods would be of practical
interest. This is especially true since we have only shown empir-
ically that PCG takes a sublinear number of iterations using our
preconditioner, without a formal proof.
We have not taken into account parallelization or GPU imple-

mentations. Although some parts of our approach could be easily
parallelizable (e.g., each branch in the tree topology can be pro-
cessed in parallel), we have not investigated how best to optimize
our approach. Existing O(n) and O(n3) methods have shown good
parallelizability (e.g., [Avello et al. 1993; Negrut et al. 1997]), and so
we believe it is worthwhile to explore similar techniques that work
even with the inclusion of the sti�ness matrix.

Our e�cient preconditioner is applicable only when the number
of deformable DOFs is relatively small compared to the rigid DOFs.
We hope to explore the special case of quasistatic deformable ob-
jects, where the deformable DOFs are eliminated from the system.
In these cases, we may be able to utilize our e�cient method for

2https://github.com/sueda/redmax
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the coupled simulation of rigid and deformable objects. It would
also be interesting to apply the strategy proposed by Redon et al.
[2005] on automatically �guring out which joints should be activi-
ated/deactivated at runtime.

Our Bilateral Staggered Projections algorithm is an extension of
the Staggered Projections algorithm [Kaufman et al. 2008], which
iteratively solves a pair of coupled quadratic programs to resolve the
frictional force. It would be interesting to also extend the popular
approximate frictional contact model by Anitescu and Hart [2004],
which uses only a single QP.

Finally, extending R��M�� to other simulation techniques such
as Projective and Position-Based Dynamics [Bouaziz et al. 2014;
Müller et al. 2007] would be useful for real-time applications.
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