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Fig. 1. Muscle inertia (a) changes the inverse dynamics result of running motion by up to 40%, and (b) stabilizes the simulation. Our framework (c) handles
Hill-type muscles, complex joints, and higher-order integration, and (d) works flawlessly with the adjoint method for computing the simulation derivatives.

We propose a simple and practical approach for incorporating the effects

of muscle inertia, which has been ignored by previous musculoskeletal

simulators in both graphics and biomechanics. We approximate the inertia of

the muscle by assuming that muscle mass is distributed along the centerline

of the muscle. We express the motion of the musculotendons in terms of

the motion of the skeletal joints using a chain of Jacobians, so that at the

top level, only the reduced degrees of freedom of the skeleton are used to

completely drive both bones and musculotendons. Our approach can handle

all commonly used musculotendon path types, including those with multiple

path points and wrapping surfaces. For muscle paths involving wrapping

surfaces, we use neural networks to model the Jacobians, trained using

existing wrapping surface libraries, which allows us to effectively handle the

discontinuities that occur when musculotendon paths collide with wrapping

surfaces. We demonstrate support for higher-order time integrators, complex

joints, inverse dynamics, Hill-type muscle models, and differentiability. In

the limit, as the muscle mass is reduced to zero, our approach gracefully

degrades to existing simulators without support for muscle inertia. Finally,

it is possible to mix and match inertial and non-inertial musculotendons,

depending on the application.
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1 INTRODUCTION
Computer animation researchers have been using and extending

muscle-driven skeletal simulations for many applications—for exam-

ple, for improved inverse kinematics [Komura et al. 2001], head/neck

animation, [Lee and Terzopoulos 2006], hand animation [Sueda et al.

2008], real-time visualization of muscle activations [Murai et al.

2010], energy-minimizing gait animations [Wang et al. 2012], cre-

ation of imaginary bipedal characters, [Geijtenbeek et al. 2013],

upper body animations [Lee et al. 2009; Si et al. 2015], and control

of characters under various anatomical conditions [Lee et al. 2014;

Lee et al. 2019]. However, almost all musculoskeletal simulators

used in graphics and biomechanics ignore the effect of the inertia

of the muscles as they slide with respect to the bones. Instead, the

mass of the muscles are “lumped” to the bones at rest pose, and so

the effect of the muscle inertia cannot be reflected in the dynamics

of the system, even though around 40% of total body mass is from

skeletal muscles [Marieb and Hoehn 2010].

Missing inertia can change some important aspects of the simula-

tion. The effect of the missing inertia is most pronounced when the

muscle mass is large and far from the joints it acts on. For example,

some of the muscles of the lower limb exhibit significant inertial

effects. In the seminal paper, Pai [2010] notes that the triceps surae

muscle of the human ankle can account for an additional 7.6% of

the effective inertia of the joint. In §4.5 (Fig. 1a), we also show that
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Fig. 2. Concrete running example for Types I, II, and III muscles. In all cases,
there are three bones and one muscle. The origin is on body 𝐴, and the
insertion is on body𝐶 . Type II muscle has a path point on body 𝐵, and Type
III muscle has a wrapping surface 𝑆 defined with respect to body 𝐵.

the combined effect of the muscle mass alters the inverse dynamics

result of running motion by as much as 40%. As another example,

consider the extrinsic muscles of the hand, which are located in the

forearm (Fig. 1b & §4.4). The joints of the finger have very small

inertia by themselves, but when the muscle masses are taken into

account, the joint inertia increases significantly. With a traditional

musculoskeletal simulator, these muscle masses are absorbed into

the nearest segment (i.e., forearm) and do not affect the inertia of the

finger joints, whereas with our approach, these masses are coupled

to all of the joints spanned by the musculotendon. This increase

in inertia is important not only for simulation accuracy but also

stability. If we apply an impulse to the finger tip (e.g., flicking with

the other hand), the distal joint quickly becomes unstable due to its

small inertia, but if the effect of muscle inertia are taken into account,

it remains stable under an impulse several times larger. Joint damp-

ing can be added to overcome some of these issues, but this would

require manual tweaking of parameters, and the added damping

would help stabilize both the simulation with and without muscle

inertia. Furthermore, the muscle inertia provides coupling of the

joints, naturally preventing the joints from moving independently.

In the past few years, biomechanics researchers have proposed

techniques to deal with muscle inertia [Han et al. 2015; Guo et al.

2020], but these approaches can only be used for relatively simple

muscle paths. We therefore propose a framework for incorporating

the effects of muscle inertia for more complex muscle path types, in-

cluding those with wrapping surfaces. Tomaximize inter-operability

with existing musculoskeletal simulators (e.g., [Damsgaard et al.

2006; Delp et al. 2007]), we use the reduced coordinates of the ar-

ticulated rigid body system representing the skeletal joints as the

degrees of freedom. However, unlike existing musculoskeletal simu-

lators, we take into account the inertia of the muscles as they slide

with respect to the bones, by inserting mass points along the paths

of the musculotendons. As the skeleton moves, these mass points

move, since each musculotendon is assumed to be frictionless—the

path moves such that its length is minimized.

Our main technical contribution is the derivation of this mapping

(i.e., Jacobian, plus its time derivative) from the skeletal motion to

the muscle mass motion. To aid us in the derivation, we categorize

musculotendon paths into three types (Fig. 2):

I: Straight-line paths, whose Jacobians are derived in a straight-

forward manner (§3.1).

II: Polyline paths through a sequence of points, whose Jaco-

bians are derived by extending the Eulerian-on-Lagrangian

framework [Sueda et al. 2011; Sachdeva et al. 2015] (§3.2).

III: All others, but most importantly, curved paths wrapping over

smooth surfaces, whose Jacobians are based on neural net-

works trained with our custom sampling strategy to handle

parasitic discontinuities (§3.3).

To summarize, our contributions are:

• An Eulerian-on-Lagrangian approach for the inertia of poly-

line musculotendons composed of a sequence of path points.

• A neural network approach for the inertia of curved muscu-

lotendons wrapping over smooth surfaces.

• A framework compatible with various existing techniques,

including higher-order integrators, inverse dynamics, Hill-

type muscle models, and differentiability.

• A framework capable of handling musculotendons with iner-

tia but can, in the limit, reproduce the results from existing

simulators without inertia.

• A frameworkwith support formixing andmatching of inertial

and non-inertial muscles, so that the user can choose to add

inertia only to muscles with substantial inertial effects.

2 RELATED WORK
Because of the importance of human character animation to graph-

ics, many different types of approaches have been studied, starting

with the seminal work on facial animation [Waters 1987; Terzopou-

los and Waters 1990; Waters and Terzopoulos 1990]. Often in graph-

ics, the causal relationship between the muscles and the bones is

switched—the skeleton is first moved, and then the muscles/flesh

are correspondingly simulated to add bulging effects to the char-

acter’s skin [Scheepers et al. 1997; Wilhelms and Gelder 1997; Kim

and Pollard 2011]. As important as these works are to graphics

(e.g., commercial products [Autodesk 2011; Ziva Dynamics 2018]),

this paper focuses exclusively on muscle-driven systems.

Line-based musculoskeletal methods were developed by adding

line-of-action muscles to rigid body dynamics from robotics [Dams-

gaard et al. 2006; Delp et al. 2007]. Almost always, these muscles

are assumed to be mass-less, taking the shortest path between the

origin and insertion, possibly being routed around path points and

wrapping surfaces. Perhaps the first work in computer graphics

to use proper biomechanics-based muscle models is the work by

Komura et al. [1997; 2000; 2001], in which they show new types

of animations, such as biomechanically based fatigue, which were

not possible with previous joint torque based approaches. Lee and

Terzopoulos [2006] use line-based musculotendons to model the

muscles of the neck, and in their followup works, they use these

muscles to drive the volumetric mesh for upper-body motion [Lee

et al. 2009] and swimming [Si et al. 2015]. Wang et al. [2012] simu-

late a variety of gaits, showing that optimizing for metabolic energy

expenditure increases the realism of resulting animations. Geijten-

beek et al. [2013] use Hill-type muscle models for a range of bipedal

characters, including humans, animals, and imaginary creatures.

Unlike previous work, they also optimize for the placement and

routing of these muscle lines so that the total error based on speed,

orientation, and effort is minimized. Lee et al. [2014] propose a
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scalable biped controller that is able to solve for the activations of

more than one hundred muscles. Their controller is formulated as

a quadratic program that can handle frictional contact based on

Coulomb’s model. Their results include motions that include muscle

pain, muscle tightness, or joint dislocation. In their followup work,

Lee et al. [2019] use deep reinforcement learning to control more

than three hundred Hill-type muscles for full-body motions. They

show that they can reproduce a wide range of motions, including

muscle weakness, use of prosthesis, and pathological gaits.

Although not directly related, we briefly cover volume-based

muscle models because of their importance to graphics. Among

those that do use biomechanically based muscle mechanics models,

two subtypes of volume-based methods have been studied. The

first subtype—those with embedded force generators—were initially

used in animation. Chen and Zeltzer [1992] introduced the first

biomechanics based muscle mechanics model to computer anima-

tion. They used the finite element method (FEM) with twenty-node

isoparametric brick elements, with the longitudinal edges of these

elements acting as muscle force generators. Later, Zhu et al. [1998]

used eight-node brick elements with force generators between a

set of linear FEM nodes. Lemos et al. [2001] developed a general

FEM framework that could support any nonlinear material as the

background isotropic material. Ng-Thow-Hing [2001] used a similar

approach to embed force generators inside a B-spline solid. Around

the turn of the century, the second subtype—those with anisotropic

muscle material models—became more popular in graphics. The

seminal work by Teran et al. [2003] used a material model with a

strain energy that includes an anisotropic muscle potential term.

Similar muscle mechanics model is used in their followup work on

larger scale simulation of skeletal muscles [Teran et al. 2005] as well

as facial muscles [Sifakis et al. 2005]. Fan et al. [2014] used a blackbox

deformation energy as an approximation for contractile mechan-

ics in their volumetric muscles undergoing contact. Recently, Lee

et al. [2018] simulated volumetric muscles with Projective Dynam-

ics, driven by per-element energy functions derived from a Hill-type

muscle model. Min et al. [2019] used quadratic strain energy to

model contractile volumetric muscles of soft-bodied animals. Al-

though in principle it is possible to use these volumetric simulators

to compute the inertial effects of the muscle, they are impractical or
impossible for types of applications we are interested in, considering
the high number of parameters and the computational complexity

required by these models.

3 METHODS
We use the reduced coordinates, q𝑟 , of the articulated rigid body

system representing the skeletal joints as the degrees of freedom

(DOFs) of the system. To take into account the inertia of the muscles

as they slide with respect to the bones, we insert mass points along

the path of the musculotendon. These mass points are fixed at a

certain percentage length 𝛼 along the path (i.e., fixed at certain

texture coordinates, see Fig. 3b); however, as the skeleton moves,

these mass points move in world space, since each musculotendon is

assumed to be frictionless—the path moves such that its length is

minimized.

In this section, we derive the Jacobian J𝛼𝑟 that maps the change

in the reduced coordinates of the articulated rigid body system to

the change in the 3D world coordinates of these muscle mass points:

¤x𝛼 = J𝛼𝑟 ¤q𝑟 , (1)

where ¤q𝑟 is the stacked vector of reduced (joint) velocities, and ¤x𝛼
is the stacked vector of muscle mass point velocities in world space.

The size of ¤q𝑟 depends on the joint types. For example, if all of the

joints are revolute, then ¤q𝑟 ∈ R𝑛 , and if all of the joints are spherical,
then ¤q𝑟 ∈ R3𝑛

, where 𝑛 is the number of joints. The multiplication

by the Jacobian J𝛼𝑟 , which depends nonlinearly on q𝑟 , produces the
3D world velocities of muscle mass points ¤x𝛼 ∈ R3𝑚

, where𝑚 is

the number of mass points.

We assume that we already have access to the Jacobian J𝑚𝑟 (and its

time derivative
¤J𝑚𝑟 ) that maps between the reduced (joint) velocities

and the maximal (body) velocities of the articulated rigid body

system [Kim and Pollard 2011; Wang et al. 2019]:

¤q𝑚 = J𝑚𝑟 ¤q𝑟 , (2)

where ¤q𝑚 is the stacked vector of maximal velocities. Unlike reduced

velocities, the size of the maximal velocity vector does not depend

on the joint type: ¤q𝑚 ∈ R6𝑛
. In our work, we stack the rotational

velocity, 𝜔 , and the translational velocity, 𝜈 , together to form the

maximal velocity, so that for each body, we have:

¤q𝑚 = 𝜙 =

(
𝜔

𝜈

)
, (3)

with both 𝜔 and 𝜈 expressed in body-local coordinates [Murray

et al. 2017].
1
In the rest of this section, we sometimes use 𝜙 as an

alternative symbol for the maximal velocity (twist) of a single body.
The main technical contribution of our work is the derivation of

Jacobian J𝛼𝑚 (and its time derivative
¤J𝛼𝑚) that maps the maximal

velocities to the muscle mass point velocities (details in §3.1, §3.2,

and §3.3). Once this Jacobian is derived, to compute the world ve-

locities of the muscle mass points from the reduced velocities of the

joints, we chain it together with J𝑚𝑟 to form the final Jacobian we

are after:

J𝛼𝑟 = J𝛼𝑚J𝑚𝑟 . (4)

Armed with this Jacobian, we can compute the 3D world accelera-

tions of the muscle mass points as:

¥x𝛼 = ¤J𝛼𝑟 ¤q𝑟 + J𝛼𝑟 ¥q𝑟
¤J𝛼𝑟 = ¤J𝛼𝑚J𝑚𝑟 + J𝛼𝑚 ¤J𝑚𝑟 .

(5)

Plugging this into the equations of motion of the mass points

M𝛼 ¥x𝛼 = f𝛼 and applying the principle of virtual work, we obtain:

J⊤𝛼𝑟M𝛼 J𝛼𝑟 ¥q𝑟 = J⊤𝛼𝑟
(
f𝛼 −M𝛼

¤J𝛼𝑟 ¤q𝑟
)
. (6)

Here,M𝛼 ∈ R3𝑚×3𝑚
is the constant diagonal inertia matrix of the

𝑚 muscle mass points, and f𝛼 ∈ R3𝑚
is the force of gravity acting

on these mass points. The muscle activation forces do not directly

apply forces to these mass points. Instead, in order to keep our

framework compatible with existing biomechanical simulators, we

assume that the activation forces are applied to the skeleton, which

in turn kinematically moves the mass points through the Jacobian

J𝛼𝑟 . The last term in Eq. 6, which uses
¤J𝛼𝑚 , is the quadratic velocity

1
Other conventions can be used; the derivations will need to be accordingly modified.
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vector (QVV) that results from the partial derivatives of the kinetic

energy [Shabana 2013].

The reduced coordinates of the system also drive the bones, and

so combining muscles and bones, we obtain the final equations of

motion of the whole musculoskeletal system in reduced coordinates:

M̃𝑟 ¥q𝑟 = ˜f𝑟 (7a)

M̃𝑟 = J⊤𝛼𝑟M𝛼 J𝛼𝑟 + J⊤𝑚𝑟M𝑚J𝑚𝑟 (7b)

˜f𝑟 = J⊤𝛼𝑟
(
f𝛼 −M𝛼

¤J𝛼𝑟 ¤q𝑟
)
+ J⊤𝑚𝑟

(
f𝑚 −M𝑚

¤J𝑚𝑟 ¤q𝑟
)
+ f𝑟 , (7c)

whereM𝑚 ∈ R6𝑛×6𝑛
is the constant diagonal inertia of the𝑛 bones,

2

f𝑚 ∈ R6𝑛
is the sum of maximal forces acting on these bones, such

as gravity, Coriolis, and muscle activation forces, and f𝑟 is the sum of

reduced forces, such as joint torques. We can use any time integrator

to step the system forward in time. In our implementation, we use

forward Euler, BDF1, and SDIRK2 [Hairer et al. 2006].

Throughout this section, we will use the concrete running exam-

ple shown in Fig. 2. We will assume that each joint is a revolute

joint, and so the reduced velocity is ¤q𝑟 = ( ¤𝜃𝐴 ¤𝜃𝐵 ¤𝜃𝐶 )⊤ ∈ R3
. The

maximal velocity is ¤q𝑚 = (𝜙𝐴 𝜙𝐵 𝜙𝐶 )⊤ ∈ R18
, and J𝑚𝑟 ∈ R18×3

.

The origin of the musculotendon is assumed to be on body 𝐴, and

the insertion on body 𝐶 . We will also assume that there is a single

muscle with two mass points, so that ¤x𝛼 ∈ R6
, and J𝛼𝑚 ∈ R6×18

.

The final Jacobian is J𝛼𝑟 ∈ R6×3
. For the Type II muscle, the path

point is attached to body 𝐵. For the Type III muscle, the wrapping

surface 𝑆 is defined with respect to body 𝐵.

3.1 Type I: Straight Line Muscles
We start with the simple case of a straight line muscle between two

bodies. This subsection is not a contribution, but the derivations and

notations introduced here will help us with the rest of the paper.

To be explicit, for vectors, we will use a leading superscript to

indicate which coordinate space the vector is defined in, and for

matrices, we will use a leading sub/superscript to indicate from

which to which space the matrix transforms a vector. Let
𝐴xori be

the 3D position of the origin in the local space of 𝐴, and 𝐶xins be
the 3D position of the insertion in the local space of 𝐶 . Then the

world velocities of the origin and insertion can be computed as:

𝑊 ¤xori = 𝑊
𝐴
R Γ(𝐴xori) 𝜙𝐴, 𝑊 ¤xins = 𝑊

𝐶
R Γ(𝐶xins) 𝜙𝐶 , (8)

where
𝑊
𝑋
R ∈ 𝑆𝑂 (3) is the rotation matrix of body 𝑋 (e.g., 𝐴 or

𝐶), and Γ(x) =
(
[x]⊤ I

)
∈ R3×6

is the material Jacobian matrix

for computing the point velocity [Murray et al. 2017], with [·] the
cross-product matrix. This gives us the following expression for the

Jacobian between maximal velocities and world velocities of the

origin/insertion for our concrete running example in Fig. 2:

J𝑥𝑚 =

(
𝑊
𝐴
R Γ(𝐴xori) 0 0

0 0 𝑊
𝐶
R Γ(𝐶xins)

)
∈ R6×18 . (9)

For a muscle mass point 𝛼 , the world velocity is simply the

weighted average of the world velocities of the origin and the inser-

tion:
𝑊 ¤x𝛼 = (1 − 𝛼)𝑊 ¤xori + 𝛼𝑊 ¤xins. Thus, the Jacobian J𝛼𝑥 is:

J𝛼𝑥 =

(
(1 − 𝛼1) I 𝛼1 I
(1 − 𝛼2) I 𝛼2 I

)
∈ R6×6, (10)

2
The maximal inertia is constant because of our choice of body-local coordinates.

where 𝛼1 and 𝛼2 are the percentage lengths of the two mass points.

The product of these two Jacobians gives the final Jacobian for Type

I muscles: J𝛼𝑚 = J𝛼𝑥 J𝑥𝑚 ∈ R6×18
.

The 𝛼 value is fixed over time, as well as the origin and insertion

positions with respect to their respective bodies. The time derivative

of the Jacobian is then
¤J𝛼𝑚 = J𝛼𝑥 ¤J𝑥𝑚 , where

¤J𝑥𝑚 =

(
𝑊
𝐴
R [𝜔𝐴]Γ(𝐴xori) 0 0

0 0 𝑊
𝐶
R [𝜔𝐶 ]Γ(𝐶xins)

)
, (11)

since ¤R = R[𝜔] for maximal velocities in body coordinates [Murray

et al. 2017].

3.2 Type II: Path Point Muscles
Some musculotendons are constructed as a polyline going through

a sequence of path points. To deal with these types of muscles,

we extend the Eulerian-on-Lagrangian (EOL) strands framework

[Sueda et al. 2011; Sachdeva et al. 2015]. Let 𝑖 = 0, 1, 2, · · · , 𝑛 + 1

be the indices of the path points (so that 𝑖 = 0 corresponds to the

origin, 𝑖 = 𝑛+1 corresponds to the insertion, and there are 𝑛 internal

path points). With the EOL framework, we keep track of not only

the world space position and velocity (Lagrangian quantities x𝑖 and
¤x𝑖 ∈ R3

) of the path points, but also the reference space position

and velocity (Eulerian quantities 𝑠𝑖 and ¤𝑠𝑖 ∈ R) at these path points.

This allows us to model the sliding motion of the underlying strand

even when the world positions of the path points are fixed (e.g., if
¤x𝑖 = 0 but ¤𝑠𝑖 ≠ 0, the musculotendon material still moves in world

space). Following the work by Sachdeva et al. [2015], we assume

that all of the line segments of the polyline share the same strain

value, which allows us to derive a Jacobian that maps from ¤x𝑖 to ¤𝑠𝑖
(see Eq. 3 [Sachdeva et al. 2015]):

J𝑠𝑥 = −L−1ΔSΔX̄, (12)

where ΔS is a matrix constructed from the Eulerian coordinates 𝑠𝑖 ,

ΔX̄ is a matrix constructed from the Lagrangian coordinates x𝑖 , and
L is constructed from the segment lengths between the path points.

Since Sachdeva et al. [2015] used inextensible EOL strands, they

did not need to derive the time derivative of this Jacobian. However,

in this work, the EOL strands are used for extensiblemusculotendons;

therefore, we must also derive
¤J𝑠𝑥 . Using the inverse derivative

identity for L, we obtain:

¤J𝑠𝑥 = −L−1

(
¤L J𝑠𝑥 + Δ¤SΔX̄ + ΔSΔ ¤̄X

)
. (13)

Further details are in the supplementary document.

So far, the Jacobians J𝑠𝑥 and
¤J𝑠𝑥 that we derived cannot be plugged

into our system because they only maps between ¤x𝑖 and ¤𝑠𝑖 , rather
than from ¤q𝑚 to ¤x𝛼 . In other words, these Jacobians only provide

the mapping between the Lagrangian and Eulerian velocities of the

path points of a musculotendon, rather than the mapping between

the maximal velocities of the skeleton and the muscle mass point

velocities. To tie the Jacobians J𝑠𝑥 and
¤J𝑠𝑥 to the rest of the sys-

tem, we introduce a new notation z that represents the combined

Lagrangian/Eulerian coordinates:

z𝑖 =
(
x𝑖
𝑠𝑖

)
∈ R4 . (14)
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Fig. 3. (a) An EOL segment: the motion of the mass point x𝛼 depends on the
motion of both Eulerian and Lagrangian motions of the path points z𝑖 and
z𝑖+1. (b) A musculotendon with one path point between origin and insertion:
𝛼 represents the percentage length along thewholemusculotendon, whereas
𝛽 represents the percentage length along each line segment.

In the concrete example in Fig. 2, which contains a single internal

path point, z = (xori 𝑠ori x1 𝑠1 xins 𝑠ins)⊤ ∈ R12
. The musculoten-

don material cannot flow past the origin or insertion, so ¤𝑠ori and
¤𝑠ins are always zero. Using this notation, the Jacobian that we are

after can be written as:

J𝛼𝑚 = J𝛼𝑧J𝑧𝑚 ∈ R6×18

¤J𝛼𝑚 = ¤J𝛼𝑧J𝑧𝑚 + J𝛼𝑧 ¤J𝑧𝑚 .
(15)

The left Jacobian J𝛼𝑧 ∈ R6×12
represents the mapping from the

Lagrangian/Eulerian velocities of the path points to the muscle mass

point (Fig. 3a). This was already derived by Sueda et al. [2011] (Eq. 4),

but we reproduce the expression here, for our concrete example

with one path point and two mass points. The first mass point is

between the origin and the path point, and the second mass point

is between the path point and the insertion. Therefore, we get:

J𝛼𝑧 =(
(1 − 𝛽1)I −(1 − 𝛽1)F1 𝛽1I −𝛽1F1 0 0

0 0 (1 − 𝛽2)I −(1 − 𝛽2)F2 𝛽2I −𝛽2F2

)
.

(16)

Here, we used 𝛽 to represent the percentage location of x𝛼 within a

particular line segment, as shown in Fig. 3b. F ∈ R3
is the deforma-

tion gradient of the line segment: F1 = (x1 − xori)/(𝑠1 − 𝑠ori) and
F2 = (xins − x1)/(𝑠ins − 𝑠1). The time derivatives of these quantities,

which were not derived before by Sueda et al. [2011], are neverthe-

less needed for our extensible musculotendons. We list the detailed

derivations of these derivatives in the supplementary document.

The right Jacobian J𝑧𝑚 ∈ R12×18
in Eq. 15 represents the mapping

from themaximal velocities of the bodies to the Lagrangian/Eulerian

velocities of the path points. This can be accomplished by construct-

ing a Jacobian that passes through the Lagrangian components while

hitting the Eulerian components by J𝑠𝑥 :

J𝑧𝑚 =

(
I
J𝑠𝑥

)
J𝑥𝑚, ¤J𝑧𝑚 =

(
0
¤J𝑠𝑥

)
J𝑥𝑚 +

(
I
J𝑠𝑥

)
¤J𝑥𝑚 . (17)

J𝑥𝑚 in our concrete example with an internal path point x𝑖 attached
to body 𝐵 is:

J𝑥𝑚 =
©­«
𝑊
𝐴
R Γ(𝐴xori) 𝑊

𝐵
R Γ(𝐵x𝑖 ) 0

0 𝑊
𝐵
R Γ(𝐵x𝑖 ) 𝑊

𝐶
R Γ(𝐶xins)

ª®¬ ∈ R6×18 . (18)

Its time derivative,
¤J𝑥𝑚 , can be derived similarly as in Eq. 11.

3.3 Type III: Wrapping Surface Muscles
Somemusculotendons are constructed as 3D paths that wrap around

smooth surfaces. To derive the Jacobians for these types of paths, we

use neural networks. The reason for using neural networks may not

be immediately obvious, since existing muscle routing algorithms

are highly efficient [Garner and Pandy 2000; Delp et al. 2007; Scholz

et al. 2016; Lloyd et al. 2020]. With some fairly minor modifications,

we could use the output of these libraries to compute the Jacobians

with finite differencing, which would not be prohibitively expensive

due to the efficiency of these libraries. However, they cannot be

used directly in our framework for inertial muscles because they all

suffer from a massive problem: Jacobian discontinuity.
As an illustration of this problem, suppose that we have a double

pendulum with a musculotendon shown in Fig. 4a. As the pendulum

swings due to the force of gravity acting on both the bones and

the musculotendon, the path of the musculotendon attaches and

detaches from the wrapping surface. If we use a Jacobian computed

using existing wrapping surface libraries and finite differencing,

we observe discontinuities in the energy plot, as shown in Fig. 4b.

These energy jumps occur because the velocities of the muscle mass

points undergo sudden changes, even when the velocities of the

joints vary smoothly. Fig. 4d shows the x-component of five of the

mass points (each with its own color), as a function of the distal joint

angle, zoomed in near a discontinuity. The values computed with

an existing wrapping surface library are shown with solid lines, and

ours with dotted lines. Fig. 4e shows the corresponding derivatives.

The jump in the value of the Jacobian creates sudden changes in the

velocities of the mass points, which in turn creates energy jumps

in the simulation. On the other hand, our neural network approach

generates the smooth Jacobian plots in Fig. 4e, while keeping the

position plots in Fig. 4d virtually indistinguishable from the output

of the library code. This results in a smooth energy trajectory shown

in Fig. 4c.

One way to deal with the discontinuity is to detect these sudden

state changes and apply a manual fix, e.g., by computing the pre- and

post-collision Jacobians and running a nonlinear optimization to

compute the velocities that minimize the change in energy. However,

such approaches are tricky to incorporate into implicit integrators,

such as SDIRK2 [Hairer et al. 2006], as well as into differentiable

simulation techniques, such as the adjoint method [McNamara et al.

2004; Geilinger et al. 2020; Xu et al. 2021], which our method sup-

ports naturally without any changes to the framework.

We instead choose to smooth the discontinuity. Smoothing would

be easy with a uni-articular muscle spanning a hinge joint. As an

offline process, we could pre-sample many points within the range

of motion of the joint, and then apply a smoothing filter over the

samples. During runtime, we could then use the filtered values

to construct the Jacobian. However, high-dimensional smoothing

would be required with a bi- or multi-articular muscle, as well as

with a uni-articular muscle with a spherical joint. Therefore, we use

neural networks for this high-dimensional smoothing problem. This

approach is simple to implement and can be used with any existing

muscle routing libraries.

3.3.1 Training the Network. We train the network with origin and

insertion positions as the input, rather than the joint angle. This is
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Fig. 4. (a) A double pendulum with a musculotendon, hitting a wrapping surface. (b) Energy plot (kinetic in blue, potential in red, total in yellow) of the
simulation using an existing wrapping surface library. (c) Energy plot using our approach. (d) Plot of the x-component of five selected muscle mass points as a
function of the distal joint angle, zoomed around a discontinuity. The solid lines are generated using an existing wrapping surface library. The dotted lines are
generated using our approach. (e) The corresponding plots of the Jacobian. Unlike previous work (solid), our approach (dotted) generates smooth Jacobians.

an important choice, since it allows the same trained network to

be used regardless of the type of the joints, how many joints the

musculotendon spans, as well as with respect to which bodies the

surface is defined. Using the cylinder wrapping surface as a concrete

example, the input and output of our network are:

©­­­«
𝑆xori
𝑆xins
𝛼

𝑟

ª®®®¬ →
(
𝑆x𝛼

)
, (19)

where 𝑟 is the radius of the cylinder. The origin, insertion, and

the output position are all defined with respect to the coordinate

space of the wrapping surface 𝑆 . During training, we use the ℓ2
-

norm of the difference between the output of the network and the

output of the wrapping library. We include samples with muscles

in both attached and detached states, so that at runtime, we do

not need to detect whether the muscle is in contact or not. Once

trained, the network and the original wrapping library can be used

interchangeably, except for one important difference: discontinuity.

To ensure that the network does not contain any discontinuities,

we use the hyperbolic tangent activation function. Furthermore,

we throw away the samples near the discontinuity before training.

To detect whether a sample is close to a discontinuity, we use the

following simple heuristics for all wrapping surfaces.

• Compute 𝐿, the length of the whole path.

• Compute 𝑙 , the length of the “wrapped” portion of the path.

• If 𝑙/𝐿 < thresh, throw away the sample.

• Otherwise, keep the sample.

Both 𝑙 and 𝐿 are readily available from the wrapping surface library.

In our current implementation, we use a threshold of 1%.

The trajectory of x𝛼 computed with the library is only𝐶0
, but the

trajectory computed by the network is 𝐶∞
. Despite this difference,

the two trajectories are virtually indistinguishable. For example, if

we closely inspect what happens to x𝛼 as it approaches and touches

the wrapping surface, we find that it slightly penetrates the surface

and then floats back to the surface. We also note that the wrapping

surface path is already an approximation of the actual path taken

by a real muscle, and so this slight discrepancy is within reason.

3.3.2 Incorporating the Network. We now describe how we use

the trained network in our simulation framework. As described

earlier, to maximize generality, we train the network with origin

and insertion in the coordinate space of the wrapping surface as the

input:
𝑆xori and 𝑆xins. To compute the world velocity of the muscle

mass point,
𝑊 ¤x𝛼 , we first need to transform the network input into

𝑆 space, use the network, and then transform the output back to

world space.

Like with Type I and Type II muscles, our goal is to derive J𝛼𝑚
and

¤J𝛼𝑚 . To derive J𝛼𝑚 , we must express the world velocity of x𝛼
using maximal velocities of the bodies. The world velocity of one

mass point can be written as the sum of three terms:

𝑊 ¤x𝛼 = 𝑊v
base

+ 𝑊vori + 𝑊vins . (20)

The first term represents the base motion of the mass point as if it

were fixed with respect to 𝑆 . Since 𝑆 itself could be moving, even

if the mass point is stationary in 𝑆 , its world velocity could be

nonzero. The second term represents the contribution from the

relative motion of the origin within the 𝑆 space. Similarly, the third

term represents the contribution from the relative motion of the

insertion within the 𝑆 space. Our goal is to rewrite each of the three

terms so that
𝑊 ¤x𝛼 = J

base
¤q𝑚 + Jori ¤q𝑚 + Jins ¤q𝑚 . Then the Jacobian

we are after is J𝛼𝑚 = J
base

+ Jori + Jins.
For concreteness, we will (continue to) assume that the origin

is fixed to 𝐴, insertion is fixed to 𝐶 , and the surface 𝑆 is fixed to 𝐵

(see Fig. 2). The first term in Eq. 20 is the motion of the mass point

assuming that it is fixed in 𝑆 . If we convert this to body 𝐵’s space,

we get:

𝑊v
base

=𝑊
𝑆
R Γ(𝑆x𝛼 ) 𝜙𝑆

=𝑊
𝐵
R Γ(𝐵𝑆E

𝑆x𝛼 ) 𝜙𝐵,
(21)

where
𝐵
𝑆
E is the transformation matrix of 𝑆 with respect to 𝐵, which

is fixed over time. The Jacobian for this term, assuming there are

two mass points (Fig. 2), is then

J
base

=
©­«
0 𝑊

𝐵
R Γ(𝐵

𝑆
E 𝑆x𝛼1

) 0

0 𝑊
𝐵
R Γ(𝐵

𝑆
E 𝑆x𝛼2

) 0

ª®¬ ∈ R6×18, (22)

where
𝑆x𝛼1

and
𝑆x𝛼2

are the values returned from the network.

To compute Jori, we first need the relative velocity of the origin

from the point of view of the surface. To do so, we must take into

account the relative motions of the coordinate spaces, shown in

Fig. 5. Since the origin is attached to 𝐴, we can compute its world

velocity
𝑊 ¤xori using Eq. 8. What we are after is the relative velocity
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Fig. 5. Coordinate spaces for a wrapping surface muscle. 𝐴 contains the
origin,𝐶 contains the insertion, and 𝐵 contains the wrapping surface 𝑆 . The
𝑆 coordinate space (not drawn in this figure) moves rigidly with 𝐵.

of the origin if we temporarily imagine frame 𝐵 to be stationary and

transfer its motion to frame 𝐴. In other words, we subtract from

𝑊 ¤xori the hypothetical velocity of the origin attached to body 𝐵:

𝑊vrel
ori

=𝑊
𝐴
R Γ(𝐴xori) 𝜙𝐴 −𝑊

𝐵
R Γ(𝐵𝐴E

𝐴xori) 𝜙𝐵, (23)

where
𝐵
𝐴
E =𝑊

𝐵
E−1𝑊

𝐴
E, formed from the current configurations of

bodies 𝐴 and 𝐵. We then rotate this into surface space, hit it with

the network Jacobian, and then rotate back to world:

𝑊vori =𝑊
𝑆
R 𝑆 JNN𝛼o

𝑆
𝑊R𝑊vrel

ori
. (24)

The network Jacobian,
𝑆 JNN𝛼o , is computed with backward differentia-

tion of the network. Given that the input and output of the network

are in 𝑆 space, the network Jacobians are also in 𝑆 space.

𝑆 JNN𝛼o =
𝑑 𝑆x𝛼
𝑑 𝑆xori

, 𝑆 JNN𝛼 i =
𝑑 𝑆x𝛼
𝑑 𝑆xins

. (25)

Since
𝑆x𝛼 , 𝑆xori, and 𝑆xins are all in R3

, these network Jacobians are

3 × 3 matrices.

Combining Eq. 23 and Eq. 24 and extracting out the maximal

velocities 𝜙𝐴 and 𝜙𝐵 , the Jacobian Jori for the concrete running

example becomes:

Jori =
©­«
𝑊
𝑆
R 𝑆 JNN𝛼1o

𝑆
𝑊
R 𝑊

𝐴
R Γ(𝐴xori) 0 0

𝑊
𝑆
R 𝑆 JNN𝛼2o

𝑆
𝑊
R 𝑊

𝐴
R Γ(𝐴xori) 0 0

ª®¬
− ©­«

0 𝑊
𝑆
R 𝑆 JNN𝛼1o

𝑆
𝑊
R 𝑊

𝐵
R Γ(𝐵

𝐴
E𝐴xori) 0

0 𝑊
𝑆
R 𝑆 JNN𝛼2o

𝑆
𝑊
R 𝑊

𝐵
R Γ(𝐵

𝐴
E𝐴xori) 0

ª®¬ ∈ R6×18 .

(26)

The Jacobian Jins is derived similarly, except that the insertion is

fixed to body 𝐶 instead of 𝐴.

Jins =
©­«
0 0 𝑊

𝑆
R 𝑆 JNN

𝛼1i

𝑆
𝑊
R 𝑊

𝐶
R Γ(𝐶xins)

0 0 𝑊
𝑆
R 𝑆 JNN

𝛼2i

𝑆
𝑊
R 𝑊

𝐶
R Γ(𝐶xins)

ª®¬
− ©­«

0 𝑊
𝑆
R 𝑆 JNN

𝛼1i

𝑆
𝑊
R 𝑊

𝐵
R Γ(𝐵

𝐶
E𝐶xins) 0

0 𝑊
𝑆
R 𝑆 JNN

𝛼2i

𝑆
𝑊
R 𝑊

𝐵
R Γ(𝐵

𝐶
E𝐶xins) 0

ª®¬ ∈ R6×18 .

(27)

The time derivatives of the individual quantities in
¤J
base

,
¤J
ori

, and

¤J
ins

are listed in the supplementary material. We analytically derive
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Fig. 6. Comparison to published results [Pai 2010]. (a) Two bones and one
muscle, all with the samemass. (b) The solid lines show that after simulating
the system with the muscle for 0.3 seconds, the two angles straighten out as
in the previous work. The dotted lines show the same simulation but with
the mass of the muscle lumped onto the bones.

all of the derivatives, except for the network Jacobians. For these,

we perturb
𝑆xori and 𝑆xins in time to evaluate the network again to

perform finite differencing:

𝑆x+
ori

= 𝑆xori + 𝜖 𝑆vrel
ori
, 𝑆 ¤JNN𝛼o =

(
𝑆 JNN+𝛼o − 𝑆 JNN𝛼o

)
/𝜖,

𝑆x+
ins

= 𝑆xins + 𝜖 𝑆vrel
ins

, 𝑆 ¤JNN𝛼 i =

(
𝑆 JNN+𝛼 i − 𝑆 JNN𝛼 i

)
/𝜖,

(28)

where
𝑆vrel

ori
is computed as

𝑆vrel
ori

= 𝑆
𝑊
R𝑊vrel

ori
, and likewise for

𝑆vrel
ins

.

4 RESULTS
We implemented a prototype in MATLAB. The networks were

trained on a computer with a Ryzen 7 5800X CPU with 32 GB of

RAM and an RTX 3080 Ti GPU with 12 GB of RAM. We trained the

networks using Adam [Kingma and Ba 2015] with the default param-

eters and a learning rate of 10
−4

. For each network, we used 6 layers

with 256 neurons per layer. We used tanh as the activation function

for all layers. The trained networks were loaded and evaluated in

MATLAB. We used around 30k samples, and the training took about

12 hours. More details are in the supplementary document.

4.1 Comparison to Analytical Results
We start with comparisons to the simulation and analytical results

by Pai [2010] to verify that our general framework is in agreement

with published results. First we simulate the scene in Fig. 6a, which

uses the same setup as their Fig. 2. As shown by the solid lines in

our Fig. 6b, the two angles reach zero at 0.3 seconds, just like in the

published result.

Pai also analytically computed the contributions to the self-inertia

of the rat knee joint from the biceps femoris posterior muscle and the

bones of the shank, and reported that the relative contribution from

the muscle with respect to the bones is 45%. We also computed the

inertia from the muscle and the bones using Eq. 7b, and obtained the

value of 45.8%. The slight discrepancy goes down if we include more

mass points, but we found that 10-20 are sufficient for most purposes.

Furthermore, the discrete approach allows us to more easily model

the non-uniform mass distribution along the musculotendon path.
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Fig. 7. Double pendulums with cylinder wrapping. The same trained net-
work is used for a range of input parameters. For comparison, the right-most
double pendulum is simulated without a muscle.
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Fig. 8. (a-b) Energy plots from a Type II muscle with and without QVV. (c-d)
Energy plots from a Type III muscle with and without QVV. Kinetic energy
is shown in blue, potential energy in red, and total energy in yellow.

4.2 Network Jacobian
We use the cylinder wrapping surface as the test bed for our net-

work based Jacobian. We simulate a group of double pendulums

with varying origin/insertion, radius, and the initial rotation of the

wrapping surface, as shown in Fig. 7. In these experiments, the

masses of the proximal bone, the distal bone, and the muscle are

set to be equal. For comparison, in the right-most pendulum, we

remove the muscle, adding half of its mass to the proximal bone and

the other half to the distal bone. Using the same trained network,

the simulator is able to account for all the variations properly.

4.3 Energy Behavior
To show the importance of the

¤J𝛼𝑚 term that we derived, we take one

of the simulations from Fig. 7, and remove
¤J𝛼𝑚 , and consequently the

quadratic velocity vector (QVV) of the muscle mass points [Shabana

2013]. (We keep the QVV of the bones in the simulation.) As shown

in Fig. 8c, evenwith the SDIRK2 time integrator, the energy oscillates

wildly. On the other hand, as shown in Fig. 8d, the energy stays

stable once we put the QVV of the muscle back in. Similarly, in

Fig. 8a-8b, we show the same experiment with a Type II muscle.

Again, without the QVV of the muscle, the energy fluctuates, but

with the QVV of the muscle included, the energy remains stable.

4.4 Simulation Stability
The effect of muscle inertia is stronger when a relatively light bone

is actuated by a relatively large muscle mass located away from

the joint. In Fig. 1b, we show an example of such a case with the

flexor digitorum profundus and superficialias muscles (FDP & FDS),

which originate near the elbow and inserts into the distal and middle

phalanges, respectively. For our simulation, we modeled the bones

and joints using open source data [Lee et al. 2015], and we manually

modeled the FDP and FDS as Type II muscles, with the tendons

routed through pulleys implemented as path points. We fixed all

joints except for the three joints of the index finger, which we

modeled as revolute joints. The mass of the bones are set from the

meshes, with a relatively large density of 5 g cm
−3

to account for the

rest of the finger mass, and the mass of the muscles are set to 200 g

each. With a fixed time step of 1 ms, we apply different amounts of

force for the first two time steps of the simulation, to model flicking

the fingertip with the other hand. With the traditional approach,

the simulation becomes unstable when the force is increased to

5 N, whereas with our approach, the simulation becomes unstable

when the force is increased to 20 N. This is due to the fact that

with the traditional approach, the muscle inertia gets absorbed into

the forearm segment, and thus the generalized inertia of the finger

joints is not affected by the muscles, unlike with our approach. (The

peak force during typing is around 2 N [Kim et al. 2014].) We note

that the inertia due to the muscles in this particular example is

substantially underestimated, since we assume that strain is equal

throughout the length of the musculotendon. If we also take into

account the fact that the tendon is highly stiff, joint motion would

cause more of the muscle mass to move, which would increase the

inertia further.

4.5 Comparison to OpenSim
For our next experiment, we use marker-based motion-capture data

to drive the skeleton and compute the resulting torques at the joints

with inverse dynamics. We show a 0.5 second clip in Fig. 9. The

figure shows the swing phase: from take-off to touch-down. We use

OpenSim to scale the bone lengths/masses, joint locations, muscle

origin/insertion, path points, and wrapping surfaces to the specific

subject. The skeleton has 11 DOFs: 6 for pelvis, 3 for the right hip, 1

for the right knee, and 1 for the right ankle. We model four muscles

that span the ankle: gastrocnemius lateral (Type III), gastrocnemius

medial (Type III), soleus (Type I), and tibialis anterior (Type II). The

subject runs on a treadmill at 19.1 km/h, and we use OpenSim to
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𝑡 = 0.0 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.4 𝑡 = 0.5

Fig. 9. The swing phase of a 19.1 km/h treadmill run, showing only the right leg. The four muscles (and their types) are: gastrocnemius lateral (Type III),
gastrocnemius medial (Type III), soleus (Type I), and tibialis anterior (Type II). The wrapping surface for the gastrocs are shown in cyan.
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Fig. 10. (Left) Ankle torque computed by inverse dynamics, showing the
mean and the standard deviation. Blue plot is generated by OpenSim, which
does not support inertial muscles. Red plot is generated by our simulator
with themuscles accounting for 0% of the total mass. Yellow plot is generated
by our simulator with 80% of the tibia mass transferred to the muscles.
(Right) The closeup of the final dip, showing the individual trajectories. Our
simulator generates results that gracefully degrades to OpenSim’s results
as the inertia of the muscles are decreased to zero.

reconstruct the motion of the skeleton from the marker data. We

collect the ankle torque computed with inverse dynamics from the

swing phases from two 10-second trials using OpenSim and our

simulator. We overlay the swing phases on top of each other and

plot the results in Fig. 10. We show the torque results generated by:

• OpenSim (blue), which does not support inertial muscles.

• Our simulator (red) with the muscles accounting for 0% of the

total mass of the tibia segment.

• Our simulator (yellow) with 80% of the tibia mass transferred

to the muscles.

The relative masses of the four muscles are taken from the literature

[Ward et al. 2009]. For each muscle, the mass is distributed into 20

equally spaced points in the middle portion of the musculotendon

that correspond to the muscle (as opposed to the tendons). Fig. 10b

shows the closeup of the final dip. Comparing the blue and red

plots, we confirm that our simulator generates results that gracefully
degrades to OpenSim’s results, as the inertia of the muscles are

decreased to zero. On the other hand, comparing the red and yellow

plots, we note that the ankle moment can differ by as much as 40%

due to the effect of muscle inertia. In the supplementary material,

we show how our result gracefully degrade to OpenSim’s result.

4.6 Spline Joint Knee with Hill-Type Muscles
To demonstrate the generality and flexibility of our approach, we

take the same scene setup as above, but replace the revolute joint

of the knee with a spline joint [Lee and Terzopoulos 2008] and add

the semimembranosus (Type I) and the rectus femoris (Type III).

As shown in Fig. 11, we manually model a spline joint to better

model the motion of the tibia with respect to the femur. (OpenSim

uses a similar technique called a “mobilizer” [Seth et al. 2010].) We

also use Hill-type muscles [Zajac 1989] to drive the knee and ankle

joints, as opposed to using the mocap as in §4.5. We use the damped

equilibrium model with active force-length, active force-velocity,

passive force-length, and tendon force-length curves taken from

the biomechanics literature [Millard et al. 2013]. We manually set

the excitation levels of the gastrocnemius lateral/medial muscles

to a low level. We use a proportional controller based on the ankle

joint angle to set the excitation levels of the tibialis anterior and

the soleus muscles. Then we manually excite the rectus femoris

and semimembranosus muscles, which results in the extension and

flexion of the knee, as shown in Fig. 12.

4.7 Differentiable Reaching with Adjoint Method
For the final result, we use the adjoint method [McNamara et al.

2004; Geilinger et al. 2020; Xu et al. 2021] to compute the simulation

derivatives to optimize for a reaching task using an arm model

[Chadwick et al. 2014] with manually placed muscles, shown in

Fig. 1d. For the three heads of the deltoid muscle, we use sphere-

capped cylinders, and for the three heads of the triceps brachii

muscle, we use cylinders. The task objective is to move the hand to

the specified target, and the task parameters are the constant torques

to be applied to the shoulder (3 DOF) and elbow (1 DOF) joints. We

use fminunc as the optimizer with our analytical derivatives. As a

comparison, when we tried running fminunc in gradient-free mode,

it ended up taking an order-of-magnitude more time to optimize,

Fig. 11. Our approach supports complex joint types. Top row: Knee with a
revolute joint—the tibia separates from the femur. Bottom row: Knee with a
spline joint—the tibia stays close to the femur.
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Fig. 12. For §4.6, we add a spline joint knee and Hill-type muscles to the model used in §4.5. We manually excite the rectus femoris and the semimembranosus
muscles. The excitation levels of the soleus and the tibialis anterior muscles are computed automatically with a proportional controller.

requiringmanymore simulation runs. Our inertial muscles, however,

work seamlessly with the the adjoint method. Furthermore, more

objectives can be added, such as having the hand come to a rest, or

more generally, following a preset trajectory.

5 CONCLUSION & FUTURE WORK
We presented an approach for accounting for the inertia of the mus-

cles in a musculoskeletal simulation. We are able to handle a wide

variety of musculotendon paths, including (I) straight, (II) polyline,

and (III) curved paths over wrapping surfaces. For Type II mus-

cles, we use the Eulerian-on-Lagrangian framework, and for Type

III muscles, we use neural networks. Our approach is compatible

with existing simulation techniques, such as inverse dynamics and

differentiable dynamics, and the motion can be driven by muscle ac-

tivations or joint torques. In the limit, as the mass of the muscles are

transferred to the bones, our simulation results gracefully degrades

to results obtained using previous musculoskeletal simulators with-

out inertial muscles. Finally, it is possible to mix and match inertial

and non-inertial musculotendons, depending on the application.

We use the centerline to account for the muscle mass, which is

still an approximation, but this is a prudent choice, since using a

full, volumetric mesh is impractical for these experiments, at least

currently. For example, it would be a challenge to produce results

with FEM that can gracefully degrade to OpenSim results the way

our method can. It may be possible to tweak the FEM simulation

parameters to produce the desired output, but we believe that using

FEM for these target applications is extremely challenging if not

impossible, considering the high number of parameters and the

computational complexity required by the volume model. Future

workmay address these difficulties with volumetric FEM.We believe

that such work, along with ours, would pave the way toward a fully

comprehensive simulation framework.

Some models use path points that move based on the skeletal

DOFs (e.g., LBS waypoints [Ryu et al. 2021], moving muscle points

[Delp et al. 2007]). Although we have not implemented these, they

can be categorized as Type II path points with their corresponding

Jacobians between the skeletal DOFs and these points.

For muscles with long tendons, our approach still underestimates

the muscle inertia because we assume that the strain is equal along

the entire length of the musculotendon. For future work, we would

like to derive the kinematics of the muscle points while incorporat-

ing inextensible tendons to reduce this underestimation.

We plan to train on more wrapping surface types, including el-

lipsoid, torus, sphere, and double cylinder [Delp et al. 2007; Garner

and Pandy 2000]. In theory, our neural network approach can be

used for any path. However, some wrapping surfaces can require

a lot of parameters, which could make training more difficult and

slower. For example, to train a double cylinder, it would require five

more parameters than a single cylinder. (The first cylinder can be

defined along the Z-axis. Assuming that the second cylinder is not

orthogonal to the first, we need two parameters for a point and two

for the direction, plus the radius.) Similarly, using a network for an

arbitrary shape [Lloyd et al. 2020] could be a challenge, depending

on the number of parameters of the surface.

Network evaluation is a bottleneck in our current implementa-

tion, which is written in MATLAB. We expect that evaluating the

network on the GPU and batching the input as much as possible

would increase the performance significantly. Furthermore, since

our framework allows mixing and matching of inertial and non-

inertial musculotendons (e.g., §4.5), it is possible to find a subset of

musculotendons to add inertia to, in order to find the sweet spot

in terms of efficiency and efficacy. Automatically determining the

set of musculotendons that affects the total inertia the most is an

interesting avenue of future research.

Finally, given that our approach is compatible with the adjoint

method, it would be interesting to optimize for tasks involving

ground contact [Geilinger et al. 2020; Xu et al. 2021]. In our cur-

rent implementation, as with most other musculoskeletal simulators

[Millard et al. 2013], musculoskeletal dynamics and muscle/tendon

dynamics are integrated separately, and so the adjoint method can-

not use muscle excitations as parameters. Going further, we could

add another layer on top of the adjoint method to compute for the

muscle excitations rather than joint torques.
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