
Differentiable Simulation of Inertial Musculotendons:
Supplementary Document

YING WANG, Texas A&M University, USA

JASPER VERHEUL, Cardiff Metropolitan University, UK

SANG-HOON YEO, University of Birmingham, UK

NIMA KHADEMI KALANTARI, Texas A&M University, USA

SHINJIRO SUEDA, Texas A&M University, USA

ACM Reference Format:
Ying Wang, Jasper Verheul, Sang-Hoon Yeo, Nima Khademi Kalantari, and Shinjiro Sueda. 2022. Differentiable Simulation of Inertial
Musculotendons: Supplementary Document. ACM Trans. Graph. 41, 6, Article 1 (December 2022), 6 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 DERIVATION DETAILS

In this section, we provide additional derivation details for Type II and Type III muscle paths.

1.1 Type II: Path Point Muscles

For Path Point Muscles, we require

J𝛼𝑚 = J𝛼𝑧J𝑧𝑚
¤J𝛼𝑚 = ¤J𝛼𝑧J𝑧𝑚 + J𝛼𝑧 ¤J𝑧𝑚,

(1)

where

J𝑧𝑚 =

(
I
J𝑠𝑥

)
J𝑥𝑚, ¤J𝑧𝑚 =

(
0
¤J𝑠𝑥

)
J𝑥𝑚 +

(
I
J𝑠𝑥

)
¤J𝑥𝑚 . (2)

In the rest of this subsection, we will derive J𝑠𝑥 , ¤J𝑠𝑥 , J𝛼𝑧 , and ¤J𝛼𝑧 .

1.1.1 Derivation of J𝑠𝑥 and ¤J𝑠𝑥 .
Here, we follow the derivation of EOL strands by Sachdeva et al. [2015]. Let 𝑛 be the number of path points between

the origin and insertion, as shown in Fig. 1. Then there are 𝑛 + 1 line segments, and within each segment 𝑖 , we define

Δx𝑖 = x𝑖+1 − x𝑖 , Δ𝑠𝑖 = 𝑠𝑖+1 − 𝑠𝑖 . (3)

The length of each segment is then
𝑙𝑖 = ∥Δx𝑖 ∥, (4)

and we further define
Δx̄𝑖 =

Δx𝑖
𝑙𝑖

. (5)

Authors’ addresses: Ying Wang, Texas A&M University, USA, ying.wang@tamu.edu; Jasper Verheul, Cardiff Metropolitan University, UK, jpverheul@
cardiffmet.ac.uk; Sang-Hoon Yeo, University of Birmingham, UK, s.yeo@bham.ac.uk; Nima Khademi Kalantari, Texas A&M University, USA, nimak@
tamu.edu; Shinjiro Sueda, Texas A&M University, USA, sueda@tamu.edu.

2022. Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0003-0431-4384
HTTPS://ORCID.ORG/0000-0002-2939-8046
HTTPS://ORCID.ORG/0000-0002-7140-7954
HTTPS://ORCID.ORG/0000-0002-2588-9219
HTTPS://ORCID.ORG/0000-0003-4656-498X
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0003-0431-4384
https://orcid.org/0000-0002-2939-8046
https://orcid.org/0000-0002-7140-7954
https://orcid.org/0000-0002-2588-9219
https://orcid.org/0000-0003-4656-498X

2 Wang, Y. et al.

<latexit sha1_base64="4+bzYA/vUHAJeZMIQIoizkqd350=">AAACEHicbVBNS8NAEN34WeNX1KOXYBE9lUSKeix68VjBfkATwmYzbZduNmF3Iy2hP8GLf8WLB0W8evTmv3HbBtHWBwOP92aYmRemjErlOF/G0vLK6tp6acPc3Nre2bX29psyyQSBBklYItohlsAoh4aiikE7FYDjkEErHFxP/NY9CEkTfqdGKfgx7nHapQQrLQXWiRdCj/I8jbESdDg2h4HjeaYMHNMDHv3ogVV2Ks4U9iJxC1JGBeqB9elFCcli4IowLGXHdVLl51goShiMTS+TkGIywD3oaMpxDNLPpw+N7WOtRHY3Ebq4sqfq74kcx1KO4lB36vv6ct6biP95nUx1L/2c8jRTwMlsUTdjtkrsSTp2RAUQxUaaYCKovtUmfSwwUTpDU4fgzr+8SJpnFfe8Ur2tlmtXRRwldIiO0Cly0QWqoRtURw1E0AN6Qi/o1Xg0no03433WumQUMwfoD4yPb7Y7nQc=</latexit>✓
x0

s0

◆

<latexit sha1_base64="119fffiG5diPQAbvexr4VaYW7RM=">AAACEHicbVBNS8NAEN34WeNX1KOXYBE9lUSKeix68VjBfkATwmYzbZduNmF3Iy2hP8GLf8WLB0W8evTmv3HbBtHWBwOP92aYmRemjErlOF/G0vLK6tp6acPc3Nre2bX29psyyQSBBklYItohlsAoh4aiikE7FYDjkEErHFxP/NY9CEkTfqdGKfgx7nHapQQrLQXWiRdCj/I8jbESdDg2h4HreaYMXNMDHv3ogVV2Ks4U9iJxC1JGBeqB9elFCcli4IowLGXHdVLl51goShiMTS+TkGIywD3oaMpxDNLPpw+N7WOtRHY3Ebq4sqfq74kcx1KO4lB36vv6ct6biP95nUx1L/2c8jRTwMlsUTdjtkrsSTp2RAUQxUaaYCKovtUmfSwwUTpDU4fgzr+8SJpnFfe8Ur2tlmtXRRwldIiO0Cly0QWqoRtURw1E0AN6Qi/o1Xg0no03433WumQUMwfoD4yPb7llnQk=</latexit>✓
x1

s1

◆
<latexit sha1_base64="k4OSTgLluUWPFgMoLBsv0G2jgCo=">AAACEHicbVDLSsNAFJ3UV42vqEs3wSK6Kkkp6rLoxmUF+4AmhMnkth06mYSZibSEfoIbf8WNC0XcunTn3zh9INp64MLhnHu5954wZVQqx/kyCiura+sbxU1za3tnd8/aP2jKJBMEGiRhiWiHWAKjHBqKKgbtVACOQwatcHA98Vv3ICRN+J0apeDHuMdplxKstBRYp14IPcrzNMZK0OHYHAYVzzNlUDE94NGPHlglp+xMYS8Td05KaI56YH16UUKyGLgiDEvZcZ1U+TkWihIGY9PLJKSYDHAPOppyHIP08+lDY/tEK5HdTYQuruyp+nsix7GUozjUnfq+vlz0JuJ/XidT3Us/pzzNFHAyW9TNmK0Se5KOHVEBRLGRJpgIqm+1SR8LTJTO0NQhuIsvL5Nmpeyel6u31VLtah5HER2hY3SGXHSBaugG1VEDEfSAntALejUejWfjzXiftRaM+cwh+gPj4xu8j50L</latexit>✓
x2

s2

◆
<latexit sha1_base64="J02YsonnBatwefXMkpe+pmbEST0=">AAACFHicbVDLSsNAFJ34rPEVdekmWARBKIkUdVl047KCfUATwmR62w6dTMLMRFpCP8KNv+LGhSJuXbjzb5y0QbT1wDCHc+6dufeECaNSOc6XsbS8srq2XtowN7e2d3atvf2mjFNBoEFiFot2iCUwyqGhqGLQTgTgKGTQCofXud+6ByFpzO/UOAE/wn1Oe5RgpaXAOvVC6FOeJRFWgo4m5ijI+MTzTJnfpge8++MFVtmpOFPYi8QtSBkVqAfWp9eNSRoBV4RhKTuukyg/w0JRwkC/nkpIMBniPnQ05TgC6WfTpSb2sVa6di8W+nBlT9XfHRmOpBxHoa7U8w3kvJeL/3mdVPUu/YzyJFXAyeyjXspsFdt5QnaXCiCKjTXBRFA9q00GWGCidI6mDsGdX3mRNM8q7nmlelst166KOEroEB2hE+SiC1RDN6iOGoigB/SEXtCr8Wg8G2/G+6x0ySh6DtAfGB/fRmKfmw==</latexit>✓
xn

sn

◆

<latexit sha1_base64="iMOghI1z63Ej6kDl3/jWG/MXjSk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0IPpuv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwD6w42c</latexit>

l0
<latexit sha1_base64="WZJZsRFk0UedokJv7dDcH4ClgT4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0IPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwD8R42d</latexit>

l1
<latexit sha1_base64="nrZD0jf333fyNZJqcxC7RaqWVnU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9lX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1jKjdo=</latexit>

ln

<latexit sha1_base64="2dfgt2FsUgZpDrYp7f1tJUjxL1U=">AAACGHicbVDLSgMxFM3UVx1fVZdugkUQhDojRV0W3bisYB/QKSWTudOGZjJDkpGWoZ/hxl9x40IRt935N6YPRFsPBA7n3Htz7/ETzpR2nC8rt7K6tr6R37S3tnd29wr7B3UVp5JCjcY8lk2fKOBMQE0zzaGZSCCRz6Hh928nfuMRpGKxeNDDBNoR6QoWMkq0kTqFc8+HLhNZEhEt2WBkDzqZOHNHnmerGbM9EMGP3ykUnZIzBV4m7pwU0RzVTmHsBTFNIxCacqJUy3US3c6I1IxyMNNTBQmhfdKFlqGCRKDa2fSwET4xSoDDWJonNJ6qvzsyEik1jHxTafbrqUVvIv7ntVIdXrczJpJUg6Czj8KUYx3jSUo4YBKo5kNDCJXM7Ippj0hCtcnSNiG4iycvk/pFyb0sle/LxcrNPI48OkLH6BS56ApV0B2qohqi6Am9oDf0bj1br9aH9TkrzVnznkP0B9b4GygSoHs=</latexit>✓
xn+1

sn+1

◆

Fig. 1. An EOL strand with 𝑛 path points between origin and insertion.

Then we form the following three matrices:

L =

©«

𝑙0 + 𝑙1 −𝑙0
−𝑙2 𝑙1 + 𝑙2 −𝑙1

−𝑙3 𝑙2 + 𝑙3 −𝑙2
. . .

. . .
. . .

−𝑙𝑛−1 𝑙𝑛−2 + 𝑙𝑛−1 −𝑙𝑛−2

−𝑙𝑛 𝑙𝑛−1 + 𝑙𝑛

ª®®®®®®®®®®®¬
∈ R𝑛×𝑛 (6)

ΔS =

©«

−Δ𝑠1 Δ𝑠0

−Δ𝑠2 Δ𝑠1
. . .

. . .

−Δ𝑠𝑛 Δ𝑠𝑛−1

ª®®®®®®¬
∈ R𝑛×𝑛+1 (7)

ΔX̄ =

©«

−Δx̄⊤0 Δx̄⊤0
−Δx̄⊤1 Δx̄⊤1

. . .
. . .

−Δx̄𝑛 Δx̄𝑛

ª®®®®®®¬
∈ R𝑛+1×3(𝑛+2) . (8)

The Jacobian for mapping from the Lagrangian velocities to the Eulerian velocities can be expressed as:

J𝑠𝑥 = −L−1ΔSΔX̄ ∈ R𝑛×3(𝑛+2) , (9)

This Jacobian maps the Lagrangian velocities of the 𝑛 + 2 points (origin, insertion, and internal path points) to the
Eulerian velocities of just the 𝑛 internal path points (excluding origin and insertion). In other words, if we know the
Lagrangian velocities of the origin, insertion, and the internal path points, then we can compute the Eulerian velocities
of the internal path points. (The Eulerian velocities of the origin and insertion are always zero.)

The time derivative of the Jacobian is:

¤J𝑠𝑥 = −L−1
(
¤L J𝑠𝑥 + Δ¤SΔX̄ + ΔSΔ ¤̄X

)
. (10)

To derive these matrix quantities, we use the following scalar and vector quantities.

Δ ¤x𝑖 = ¤x𝑖+1 − ¤x𝑖 (11)

Δ¤𝑠𝑖 = ¤𝑠𝑖+1 − ¤𝑠𝑖 (12)

¤𝑙𝑖 =
Δx⊤

𝑖

𝑙𝑖
Δ ¤x𝑖 (13)

Manuscript submitted to ACM

Differentiable Simulation of Inertial Musculotendons:
Supplementary Document 3

Δ ¤̄x𝑖 =
(
I − Δx̄𝑖Δx̄⊤𝑖

) Δ ¤x𝑖
𝑙𝑖

. (14)

1.1.2 Derivation of J𝛼𝑧 and ¤J𝛼𝑧 .
As noted in the main text, we use 𝛼 to denote the percentage length of a mass point along the whole path, and 𝛽 to

denote the percentage length of the same mass point within the particular line segment that the mass point is on. For
convenience, at startup, we convert 𝛼 into its corresponding Eulerian coordinate 𝑠 . For example, if 𝛼 = 0.5 for a mass
point, then we set 𝑠 for this mass point to be 𝐿/2, where 𝐿 is the total length of the path. Then at runtime, 𝛽 can be
computed from 𝑠 as

𝛽 =
𝑠 − 𝑠0
𝑠1 − 𝑠0

, (15)

where 𝑠0 and 𝑠1 are the Eulerian coordinates of the two path points that contain the mass point.
Given 𝛽 , we can compute the world position of the mass point as:

𝑊x𝛼 = (1 − 𝛽)𝑊x0 + 𝛽𝑊x1 . (16)

The time derivative of 𝛽 is
¤𝛽 = − 1

Δ𝑠
((1 − 𝛽) ¤𝑠0 + 𝛽 ¤𝑠1) , (17)

where Δ𝑠 = 𝑠1 − 𝑠0, so the world velocity of the mass point becomes:

𝑊 ¤x𝛼 = (1 − 𝛽)𝑊 ¤x0 + 𝛽𝑊 ¤x1 −
Δx
Δ𝑠

((1 − 𝛽) ¤𝑠0 + 𝛽 ¤𝑠1) , (18)

where Δx = x1 − x0. This was derived previously by Sueda et al. [2011]. To ease the derivation of the time derivative,
we define the deformation gradient of the line segment as:

F =
Δx
Δ𝑠

. (19)

Rearranging Eq. 18, we obtain:

𝑊 ¤x𝛼 =

(
(1 − 𝛽)I 𝛽I −(1 − 𝛽)F −𝛽F

)
︸ ︷︷ ︸

J𝛼𝑧

©«
𝑊 ¤x0
𝑊 ¤x1

¤𝑠0

¤𝑠1

ª®®®®®¬
. (20)

The time derivative, ¤J𝛼𝑧 , requires ¤𝛽 (Eq. 17) as well as ¤F. The time derivative of the deformation gradient is

¤F = − 1
Δ𝑠

(Δ ¤x + FΔ¤𝑠) . (21)

1.2 Type III: Wrapping Surface Muscles

1.2.1 Derivation of ¤Jbase.
The two quantities in Jbase that we must take the time derivative of are𝑊

𝐵
R and Γ(𝐵

𝑆
E 𝑆x𝛼).

For a body with rotation matrix R and angular velocity 𝜔 in body space, we can take the time derivative (see Murray
et al. [2017]):

¤R = R[𝜔], (22)

and so𝑊
𝐵
¤R =𝑊

𝐵
R[𝜔𝐵].

Manuscript submitted to ACM

4 Wang, Y. et al.

To compute the time derivative of Γ(𝐵
𝑆
E 𝑆x𝛼), we only need the time derivative of 𝑆x𝛼 , since 𝐵

𝑆
E is constant.

¤Γ(𝐵𝑆E
𝑆x𝛼) =

(
[𝐵
𝑆
R 𝑆¤x𝛼]⊤ 0

)
. (23)

For this base Jacobian, 𝑆x𝛼 is the position of the muscle mass point assuming for a moment that it is tied to the surface
𝑆 . Therefore, we can compute its time derivative as:

𝑆¤x𝛼 = 𝑆
𝐵R Γ(𝐵𝑆E

𝑆x𝛼) 𝜙𝐵 . (24)

1.2.2 Derivation of ¤Jori and ¤Jins.
For ¤Jori, we need the time derivatives of𝑊

𝑆
R, 𝑆

𝑊
R,𝑊

𝐴
R, Γ(𝐴xori), and Γ(𝐵

𝐴
E𝐴xori).

Assuming that the surface is attached to body 𝐵, The rotation matrix𝑊
𝑆
R is

𝑊
𝑆
R =𝑊

𝐵
R 𝐵

𝑆R. (25)

The surface does not move with respect to the body, so using Eq. 22,

𝑊
𝑆
¤R =𝑊

𝐵
R[𝜔𝐵] 𝐵𝑆R. (26)

The time derivative of the inverse rotation is simply the transpose of the time derivative:

𝑆
𝑊
¤R =

𝑊
𝑆
¤R⊤ . (27)

Next, using Eq. 22 again,
𝑊
𝐴
¤R =𝑊

𝐴
R[𝜔𝐴] . (28)

The position of the origin with respect to 𝐴 is fixed, so

¤Γ(𝐴xori) = 0. (29)

However, the position of the origin with respect to 𝐵 changes over time, since 𝐵
𝐴
E =𝑊

𝐵
E−1𝑊

𝐴
E changes over time:

𝐵
𝐴
¤E =

𝑑

𝑑𝑡
{𝑊
𝐵
E−1}𝑊

𝐴
E +𝑊

𝐵
E−1 𝑑

𝑑𝑡
{𝑊
𝐴
E}. (30)

Using the inverse derivative identity and the fact that ¤E = E[𝜙] (see [Murray et al. 2017]), we have, after some
rearranging:

𝐵
𝐴
¤E = 𝐵

𝐴E[𝜙𝐴] − [𝜙𝐵] 𝐵𝐴E. (31)

Therefore, the time derivative of Γ(𝐵
𝐴
E𝐴xori) is

¤Γ(𝐵𝐴E
𝐴xori) =

([
(𝐵
𝐴
E[𝜙𝐴] − [𝜙𝐵] 𝐵𝐴E)

𝐴xori
]⊤ 0

)
. (32)

2 SAMPLING & NETWORK ARCHITECTURES

In this section, we provide further experiments with the sampling threshold and the number of layers for the neural
network for Type III muscles. To eliminate the Jacobian discontinuity, we throw away data samples near sharp features.
By throwing away more data samples around sharp features, it becomes easier for the network to converge. However,
if we throw away too many samples, the resulting simulation produces obvious artifacts, such as the one shown in
Fig. 2a, where the threshold was set to 20% (𝑙/𝐿 in §3.3.1 in the main text). If we set the threshold to 10%, there remains
some small artifacts. Therefore, we set the threshold to 1%, which we empirically determined to give almost negligible
artifacts while still giving us acceptable convergence.
Manuscript submitted to ACM

Differentiable Simulation of Inertial Musculotendons:
Supplementary Document 5

(a)

0 1000 2000 3000 4000 5000 6000 7000
Steps

10-6

10-5

10-4

10-3

Lo
ss

Number of Layers

3
6
8
12

(b)

Fig. 2. (a) When the threshold is set to 20%, the simulation produces noticeable artifacts near the Jacobian discontinuity. (b)
Convergence plots with 3 (blue), 6 (red), 8 (yellow), and 12 (purple) layers.

With the threshold fixed at 1%, we tried training the network with 3, 6, 8, and 12 layers. As shown in Fig. 2b, all four
networks converged adequately well. We chose to use a network with 6 layers, since it gave us a good tradeoff between
speed and accuracy; however, with more hyperparameter tweaking, fewer layers may become more suitable.

3 FAILURE CASES

If we use values outside the training range, the network is not able to generate good results. Fig. 3 shows three such
examples. In Fig. 3a, the runtime radius is outside of the training range. The resulting muscle path visibly penetrates the
wrapping surface. In Fig. 3b, the origin point is outside of the training range. The resulting muscle path is visibly curved.
In Fig. 3c, the insertion point is outside of the training range. The resulting muscle path is visibly curved and irregular.

(a) Radius (b) Origin (c) Insertion

Fig. 3. Three failure cases: (a) The network was trained on radius between 0.01 and 0.2. Here, the network fails for a radius value of 0.25.
(b) The network was trained on origin between (−1.0, −1.0, −1.0) and (1.0, 1.0, 1.0) in the coordinate space of the wrapping surface.
Here, the network fails for an origin value of (−1.1, 1.1, 0.45) . (c) The network was trained on insertion between (−1.0, −1.0, −1.0)
and (1.0, 1.0, 1.0) in the coordinate space of the wrapping surface. Here, the network fails for an insertion value of (−0.22, 1.17, −1.1) .
Note that the 𝛼 = 1 point clearly deviates from its intended position.

Manuscript submitted to ACM

6 Wang, Y. et al.

4 GRACEFUL DEGRADATION

0 0.1 0.2 0.3 0.4
Time (s)

-10

-5

0

5

10

T
or

qu
e

(N
 m

)

In §4.5 of the main text, we showed that the inverse dynamics output computed
by our simulator matches the output computed with OpenSim [Delp et al. 2007],
if we remove the muscle mass. We then showed that if we put 80% of the segment
mass into the muscles, we obtain a torque value that is different by as much
as 40%. In the inset figure, we plot the output of our simulator as we smoothly
vary the muscle mass percentage from 0% (dark blue) to 80% (dark red), showing
graceful degradation of our simulator to OpenSim.

REFERENCES
Scott L Delp, Frank C Anderson, Allison S Arnold, Peter Loan, Ayman Habib, Chand T John, Eran Guendelman, and Darryl G Thelen. 2007. OpenSim:

open-source software to create and analyze dynamic simulations of movement. IEEE transactions on biomedical engineering 54, 11 (2007), 1940–1950.
Richard M Murray, Zexiang Li, and S Shankar Sastry. 2017. A mathematical introduction to robotic manipulation. CRC press.
Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, and Dinesh K. Pai. 2015. Biomechanical Simulation and Control of Hands and

Tendinous Systems. ACM Trans. Graph. 34, 4, Article 42 (Jul. 2015), 10 pages.
Shinjiro Sueda, Garrett L. Jones, David I. W. Levin, and Dinesh K. Pai. 2011. Large-Scale Dynamic Simulation of Highly Constrained Strands. ACM Trans.

Graph. 30, 4, Article 39 (Jul. 2011), 10 pages.

Manuscript submitted to ACM

	1 Derivation Details
	1.1 Type II: Path Point Muscles
	1.2 Type III: Wrapping Surface Muscles

	2 Sampling & Network Architectures
	3 Failure Cases
	4 Graceful Degradation
	References

