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In this document, we list the changes and additions made to our EOL cloth paper [Weidner et al. 2018] in order to
improve the results and stability of our described methods.

1 VERTEX DEFORMATION GRADIENT

In our formulation of generalized forces in the paper, we take and element-wise average whenever we need the
deformation gradient at a vertex. If we take the numerical average of the faces around a vertex, though, we are averaging
the rotation and the non-rotational components of the deformation gradient together. When the faces of a vertex
are rotationally different by a significant margin, this can introduce error into the vertex deformation gradient. This
occurs in practice because the surrounding faces of EOL vertices are often rotationally misaligned, creating a sharp
bending edge or asperity. To avoid this error we decompose and average the deformation gradient into rotational and
non-rotational components separately.

For a deformation gradient F ∈ R3×2, we can use singular value decomposition to break F down into

USVT = F , (1)

where U ∈ R3×3, S ∈ R3×2, and V ∈ R2×2. Appending a zero row onto V we create a V̄ ∈ R3×2 matrix which can be
used to extract the rotational component of F as

Q = UV̄T . (2)

This Q is a R3×2 matrix so to make it a R3×3 rotation matrix we cross its two columns and store the result in the third
column. The remaining (non-rotational) component of the deformation gradient is P ∈ R2×2. To form this we need to
break S down into its upper left R2×2 matrix. This S̄ ∈ R2×2 in Matlab notation is

S = S(1:2,1:2), (3)

and is used to then generate
P = V S̄VT . (4)

Now that we have broken down the components of a single F , we can use this break down to compute a weighted
average of multiple F s from the incident faces of a vertex. For two faces Fa ∈ R3×2 and Fb ∈ R3×2, we can decompose
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each into

Fa = QaPa

Fb = QbPb .
(5)

The rotational component Q ∈ R3×3 is averaged as

Q = exp (wa log (Qa ) +wb log (Qb )), (6)

wherew is the incident angle of the corresponding face, and non-rotational part can be linearly added as

P = waPa +wbPb . (7)

Lastly the final deformation gradient F is the product of the first two columns of Q and P . Using Matlab notation again:

Q = Q(:,1:2)

F = Q̄P .
(8)

This vertex wise deformation gradient calculation retains the energy lost from a simple element wise averaging, and
allows for more realistic cloth force propagation during simulation.

2 FLAT NULL SPACE

When the cloth is in contact with an object, we construct inequality constraints in order to allow the cloth to lift away
from the object without moving inside of it. There is a situation, primarily in the first few timesteps of initial contact
with the object, that the cloth is locally flat around the contact point. If any of the object tangents used to generate the
inequality constraints are parallel within some margin to the local tangent of the newly introduced EOL vertices, we
end up with a one sided null space that allows these nodes to move indefinitely. In order to avoid this, we introduce a
check into our constraint construction algorithm.

This algorithm is an augmentation of the Lagrangian constraint construction component of the algorithm discussed
in the paper, and we define "locally flat" as no two faces incident to a vertex having an angle between them greater than
some threshold. For the box normals n1 and n2 we follow Algorithm 1.

Algorithm 1 EOL Lagrangian Constraint Generation

1: for each EOL vertex v do
2: if v colliding with box edge then
3: if v is locally flat then
4: Lagrangian Constraint: nT1 Ûx = 0, nT2 Ûx = 0
5: else
6: Lagrangian Constraint: nT1 Ûx ≥ 0, nT2 Ûx ≥ 0
7: end if
8: end if
9: end for

3 POINT CONSTRAINTS

We break our constraints down into two separate cases: contact with a box corner and contact with a box edge. In
the case of a box corner, we constructed the Lagrangian constraint of an EOL vertex from an orthogonal frame at the
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corner of the box. If we denote the box normals as n1, n2, and n3, then the Lagrangian velocity constraint is defined as
nT1 Ûx ≥ 0, nT2 Ûx ≥ 0, and nT3 Ûx ≥ 0. This constraint originates from the fact that we do not want our EOL vertex to move
into the box, and the free space described by this constraint region avoids this.

In our results we showcase EOL Cloth sliding smoothly over individual points. These points are much more restrictive
than box corners because the cloth can droop around the point in every direction. In this case the only acceptable
Lagrangian motion is along the point normal. To construct the Lagrangian constraints of an EOL vertex on a point, we
take a point normal n1 and construct two arbitrary orthonormal vectors n2, and n3. The Lagrangian velocity constraint
is then nT1 Ûx ≥ 0, nT2 Ûx = 0, and nT3 Ûx = 0. Again we do not need any constraints on the Eulerian velocity of a point EOL
vertex.
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