
QLB: Collision-AwareQuasi-Newton Solver with Cholesky and
L-BFGS for Nonlinear Time Integration

Bethany Witemeyer

Texas A&M University

USA

Nicholas J. Weidner

Texas A&M University

USA

Timothy A. Davis

Texas A&M University

USA

Theodore Kim

Yale University

USA

Shinjiro Sueda

Texas A&M University

USA

Figure 1: Our method accelerates the convergence of nonlinear implicit time integration schemes, and works with complex

materials, frictional contact, and self collisions.

ABSTRACT

We advocate for the straightforward applications of the Cholesky

and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) algorithms in the context of nonlinear time integration of

deformable objects with dynamic collisions. At the beginning of

each time step, we form and factor the Hessian matrix, accounting

for all internal forces while omitting the implicit cross-coupling

terms from the collision forces between multiple dynamic objects

or self collisions. Then during the nonlinear solver iterations of

the time step, we implicitly update this Hessian with L-BFGS. This

approach is simple to implement and can be readily applied to any

nonlinear time integration scheme, including higher-order schemes

and quasistatics. We show that this approach works well in a wide

range of settings involving complex nonlinear materials, includ-

ing heterogeneity and anisotropy, as well as collisions, including

frictional contact and self collisions.

CCS CONCEPTS

• Computing methodologies→ Physical simulation; Simula-
tion by animation.

KEYWORDS

Physical simulation, deformation, finite elements

ACM Reference Format:

Bethany Witemeyer, Nicholas J. Weidner, Timothy A. Davis, Theodore Kim,

and Shinjiro Sueda. 2021. QLB: Collision-Aware Quasi-Newton Solver with

MIG ’21, November 10–12, 2021, Virtual Event, Switzerland
© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use.

Not for redistribution. The definitive Version of Record was published in Motion,
Interaction and Games (MIG ’21), November 10–12, 2021, Virtual Event, Switzerland,
https://doi.org/10.1145/3487983.3488297.

Cholesky and L-BFGS for Nonlinear Time Integration. InMotion, Interaction
and Games (MIG ’21), November 10–12, 2021, Virtual Event, Switzerland.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3487983.3488297

1 INTRODUCTION

Physics-based simulation has become an important tool in computer

animation. Starting with the seminal work by Terzopoulos et al.

[1987], many sophisticated methods have been proposed to improve

various aspects of these simulations. An early example of this is

the linearly implicit Euler integration method of Baraff and Witkin

[1998], which is still in use today in a production environment

due to its favorable blend of efficiency, stability, and visual fidelity

[Kim and Eberle 2020]. More recently, nonlinear integration meth-

ods have become increasingly popular in physics-based animation,

with examples including BDF1 (1st-order Backward Differentiation

Formula) [Hairer et al. 2006], BDF2 (2nd-order Backward Differen-

tiation Formula) [English and Bridson 2008; Geilinger et al. 2020],

TR-BDF2 (Trapezoidal-BDF2) [Xu and Barbič 2017], and SDIRK2

(2nd-order Singly-Diagonal Implicit Runge-Kutta) [Löschner et al.

2020]. Quasistatic simulations with time-varying boundary condi-

tions, which require nonlinear solves, have also been extensively

studied [Smith et al. 2018; Modi et al. 2021; Brown and Narain 2021].

We accelerate the convergence of these nonlinear time inte-

gration schemes by combining the frozen factorization approach

[Bank and Rose 1981; Deuflhard 2011] and the Limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [Nocedal

1980]. With the frozen factorization approach, the Hessian matrix

is kept constant during the nonlinear solve, which can be advan-

tageous since it is often expensive to form and factor the Hessian.

Like other quasi-Newton methods, as long as the gradient vector is

1

https://doi.org/10.1145/3487983.3488297
https://doi.org/10.1145/3487983.3488297


MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Witemeyer, et al.

computed exactly, using an approximate Hessian only affects the

convergence rate and not the final solution. Unfortunately, with the

frozen factorization approach, the number of iterations can become

too large, even though each iteration is quick. We therefore use the

L-BFGS algorithm to prevent the frozen Hessian from going stale.

At the beginning of each nonlinear solve, we form and factor the

Hessian matrix at the current state of the system. Then during each

step of the nonlinear solve, we use the latest system information to

store and apply the implicit updates to the frozen Hessian.

Our method is a general, practical method to accelerate nonlin-

ear time integration for deformable object simulations. The effi-

ciency advantage provided by our approach is the greatest when

the required number of nonlinear iterations is high. In Sec. 4 we

show this experimentally by changing various scene parameters

(e.g., anisotropy, heterogeneity, collisions, time step) and measuring

the corresponding change in the wallclock time. In some cases, we

obtain a speedup of 7.9x compared to the baseline method.

2 RELATEDWORK

There are many existing methods for improving the efficiency of

simulation-based techniques.

Subspace dynamics [Pentland and Williams 1989; Barbič and

James 2005; Choi and Ko 2005; Fulton et al. 2019; Lan et al. 2020]

or condensation [Guyan 1965; Teng et al. 2015; Mitchell et al. 2016;

Weidner et al. 2020] can achieve impressive speedups, but they

inevitably introduce errors in the resulting motion. The focus of our

paper is on improving computational efficiency without changing

the model of the underlying system. Furthermore, unlike some

of these existing techniques, our method does not require any

precomputation of modes or basis functions. The recent work by

Fulton et al. [2019] uses an autoencoder to compute the latent space,

and they also use a combination of matrix factorization and L-BFGS

to accelerate the nonlinear solve. We use a similar idea, but in

the full, unreduced deformation space. Li et al. [2019] also use the

same idea for domain-decomposed time integrator with impressive

results. We do not use domains, but we also introduce a simple way

to make the approach collision-aware.

Unlike these reduction based methods, multigrid methods are

capable of producing massive speedups for the full, non-reduced

problem [McAdams et al. 2011; Tamstorf et al. 2015; Xian et al. 2019].

However, non-trivial extensions are necessary to support complex

materials involving heterogeneity and anisotropy [Chen et al. 2019].

Also, no previous work has simultaneously demonstrated collisions

and higher-order time integration schemes.

Since our method is based on factoring a global matrix and

reusing its decomposition, it is similar in flavor to Projective Dy-

namics (PD), ADMM, and other global-local methods [Bouaziz et al.

2014; Narain et al. 2016; Liu et al. 2017; Peng et al. 2018; Zhang et al.

2019; Brown and Narain 2021]. In particular, the quasi-Newton

approach of Liu et al. [2017] is highly related to our paper, as they

also use L-BFGS to accelerate the convergence. In the context of PD,

their method is clearly the fastest method around, since they require

only one factorization at the beginning of the time step, and during

the rest of the simulation, they only require forward/backward

solves and L-BFGS updates. Furthermore, their L-BFGS updates

allow them to efficiently account for any nonlinear material mod-

els. Outside of the PD framework, however, their initial Hessian

becomes not applicable. They also did not show any results involv-

ing collisions between multiple dynamic objects, self collisions, or

friction.

Position-based Dynamics (PBD) is an attractive option for real-

time multi-physics simulation that is capable of modeling every-

thing from rigid and elastic bodies to fluids [Müller et al. 2007].

Many features have been added over the years, including new ma-

terial models, new constraints, and more sophisticated integrators

[Bender et al. 2017]. However, PBD is a fundamental departure

from classical methods, and cannot be readily deployed without

changing the core of an existing simulator.

Similar to our work, Cholesky factorizations have been re-used

or updated in geometry processing, but they either apply to local

solutions [Herholz et al. 2017; Herholz and Alexa 2018], or update

based on changing boundary conditions [Herholz and Sorkine-

Hornung 2020]. These methods are efficient for nonlinear solves

involving a subset of vertices but are inefficient for nonlinear solves

involving all of the vertices of the deformable objects. They further

assume that the underlying energy is Laplacian. Several simulation

works have also attempted to use updated factorizations, but either

only apply to linear [James and Pai 1999] or co-rotational materials

[Hecht et al. 2012; Mitchell et al. 2016].

3 METHODS

In this section, we describe our approach, which we call QLB: a

Quasi-Newton approach that uses the Cholesky factor L and L-

BFGS updates.
1
First, in §3.1, we describe the general formulation

of the nonlinear solver. Then in §3.2, we describe how we use

Cholesky and L-BFGS to efficiently compute the search direction.

Finally, in §3.3, we describe how we handle dynamic collisions

within this framework.

3.1 Background

Our approach is applicable to a wide range of nonlinear integra-

tors, but for brevity we use BDF1 [Hairer et al. 2006] as a concrete

example throughout this section. Let x and v be the nodal positions

and velocities of the volumetric solid, andM be the constant mass

matrix. Furthermore, let f (x, v) be the force vector, and derivatives

D = 𝑑f/𝑑v and K = 𝑑f/𝑑x be the damping and stiffness matrices,

respectively. We use a trailing superscript with parenthesis to de-

note the time step. Thus, the goal of each integrator is to compute

the nodal positions x(𝑘+1)
given x(𝑘) . After computing x(𝑘+1)

, we

compute the nodal velocities v(𝑘+1)
using the discretization scheme

of the particular integrator.

With BDF1 (see supplemental material for other integrators), we

solve a nonlinear system to advance the state from step 𝑘 to 𝑘 + 1:

Mv(𝑘+1) = Mv(𝑘) + ℎf (𝑘+1)
(1a)

x(𝑘+1) = x(𝑘) + ℎv(𝑘+1) , (1b)

where ℎ is the time step. We substitute Eq. 1a into Eq. 1b to arrive

at the following equation:

x(𝑘+1) = x(𝑘) + ℎ
(
v(𝑘) + ℎM−1f (𝑘+1)

)
. (2)

1
QLB can also mean “Quick Like a Bunny.”

2



QLB: Collision-AwareQuasi-Newton Solver with Cholesky and L-BFGS for Nonlinear Time Integration MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

We now solve for a root x(𝑘+1)
that satisfies the nonlinear system.

After some rearranging (see supplemental material), the Newton

search direction is then Δx𝑖 = −H−1

𝑖
g𝑖 , with

g𝑖 = M
(
x(𝑘+1)
𝑖

− x(𝑘) − ℎv(𝑘)
)
− ℎ2f (𝑘+1)

𝑖

H𝑖 = M − ℎD(𝑘+1)
𝑖

− ℎ2K(𝑘+1)
𝑖

,

(3)

where 𝑖 indicates the current iteration of the nonlinear solve.

3.2 Accelerated Nonlinear Solver

One way to accelerate the nonlinear solver is the frozen Cholesky

approach [Bank and Rose 1981; Deuflhard 2011]. This approach im-

proves the efficiency of nonlinear solvers by forming and factoring

the system matrixH only periodically and reusing the frozen factor-

ization L = chol(H) multiple times, even when H changes during

the nonlinear solver iterations. To compute the search direction,

only forward/backward solves are required: Δx𝑖 = −L−⊤L−1g𝑖 . The
main difficulty with the frozen Cholesky approach, however, is that

the L factor can become stale over time—i.e., LL⊤ is no longer a

good approximation of H.
The L-BFGS algorithm is an ideal candidate to overcome this

difficulty [Nocedal 1980]. Since we are performing a root-finding

operation, we can view the Newton solve as optimizing some func-

tion with gradient g and Hessian H. L-BFGS applies corrections

to the inverse Hessian implicitly, so that the computation of the

line search takes into account the curvature information obtained

during the nonlinear iterations. While this approach has also been

used previously for Projective Dynamics by Liu et al. [2017] and

for reduced dynamics by Fulton et al. [2019], in this paper, we ap-

ply L-BFGS in the context of classical nonlinear integrators for

scenes with collisions between dynamic objects, self collisions, and

frictional contact.

We use the standard, two-loop recursion version of the L-BFGS

algorithm [Nocedal 1980; Nocedal and Wright 2006]. For clarity,

Algorithm 1 Stores the necessary information for implicitly up-

dating H−1
with L-BFGS. Both s and y are lists of vectors ∈ R𝑛 , and

𝜌 is a list of scalars. All three lists have length𝑚. Here we assume

that elements of these lists have been filled up to𝑚 − 1.

1: procedure LBFGSupdate(x, xprev, g, gprev)
2: s𝑚 = x − xprev
3: y𝑚 = g − gprev
4: 𝜌𝑚 = (s⊤𝑚y𝑚)−1

Algorithm 2 Computes z = H̄−1b, where H̄−1
is the implicitly

updated inverse Hessian.

1: procedure LBFGSsolve(b, L) → (z)
2: for 𝑖 =𝑚, · · · , 1 do

3: 𝛼𝑖 = 𝜌𝑖 (s⊤𝑖 b)
4: b−= y𝑖𝛼𝑖
5: z = L−⊤L−1b
6: for 𝑖 = 1, · · · ,𝑚 do

7: 𝛽 = 𝜌𝑖 (y⊤𝑖 z)
8: z+= s𝑖 (𝛼𝑖 − 𝛽)

Algorithm 3 QLB solver for stepping from x(𝑘) to x(𝑘+1)
.

1: procedure QLB(x(𝑘) ) → (x(𝑘+1) )
2: Compute HP (x(𝑘) ) ⊲ Hessian depends on integrator

3: LP = chol(HP) ⊲ persistent Cholesky factor

4: x = x𝑖𝑛𝑖𝑡 ⊲ initial guess depends on integrator

5: while not converged do

6: Compute g(x) ⊲ gradient depends on integrator

7: LBFGSupdate(x, xprev, g, gprev)
8: Δx = −LBFGSsolve(g, LP) ⊲ search direction

9: Line search for 𝜆

10: x+= 𝜆Δx
11: x(𝑘+1) = x

we divide the algorithm into two stages: LBFGSupdate and LBFGS-

solve, shown in Alg. 1 and Alg. 2, respectively. The parameter𝑚

controls the number of past steps to use to compute the correction

to the Hessian. Given𝑚, we store a pair of vectors {s𝑖 , y𝑖 } and a

scalar 𝜌𝑖 from each of the past𝑚 iterations. In LBFGSupdate, we

take the current and previous values of x and g, and then update

s, y, and 𝜌 , throwing away old values from 𝑚 iterations ago. In

LBFGSsolve, we use the stored values to compute z = H̄−1b, where
H̄−1

is the implicitly updated inverse Hessian. Computationally,

the only bottleneck is the forward/backward solve in line 5, since

the two for-loops contain only vector dot products and scalar oper-

ations. Importantly, unlike with the original BFGS algorithm, the

actual rank-1 updates to the inverse Hessian are never constructed,

which would be prohibitively expensive since they would be fully

dense. If𝑚 = 0, this algorithm reverts back to the frozen Cholesky

approach, since the two for-loops would not be executed.

Alg. 3 shows our QLB nonlinear solver that combines Cholesky

and L-BFGS, which can be applied to a variety of nonlinear time

integration schemes. In line 2, we compute the Hessian matrix using

the current vertex positions. (In §3.3, we explain the subscript ‘P’,

which is for ‘persistent’.) Then in line 3, we compute the Cholesky

factor of theHessian, which is passed into the L-BFGS solve function

in line 8.

3.3 Dynamic Collisions

One of the bottlenecks in the QLB procedure is the Cholesky factor-

ization (Alg. 3, line 3). And within the sparse Cholesky factorization

routine, the two major steps are symbolic analysis and numeric

factorization. With our implementation (which uses Cholmod) and

our examples, we found that symbolic analysis can take up to 20%

of the time of numerical factorization. Therefore, it is highly advan-

tageous to keep the sparsity the same if at all possible throughout

the course of the simulation.

If a dynamic object collides only with a kinematic object (or a

kinematically moving object), then the sparsity pattern remains con-

stant. This is because the stiffness matrix entries from the penalty

collision forces already exist in the stiffness matrix of the internal

deformation forces. More formally, let Kext and Kint be the stiffness

matrices of external (collision) and internal (deformation) forces.

With dynamic-static collisions, the non-zero entries of Kext are a

subset of the non-zero entries of Kint. However, when there are

dynamic-dynamic collisions (e.g., between two dynamic objects or

3



MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Witemeyer, et al.

Figure 2: Collision between two bodies with 5 vertices each.

The blue circles represent the non-zero entries from the

elastic forces. (Each circle corresponds to a 3x3 block for

a vertex.) Collisions between a body and a kinematic object

(e.g., ground) add entries only to existing blue entries (green

outline). Dynamic collisions between two bodies (or self con-

tact) add entries to existing blue entries (orange outline) and

to new locations (orange solid). We call solid orange entries

the transient matrix HT and all the other entries (solid blue,

green outline, and orange outline) the persistent matrix HP.

self collisions), then the non-zero entries of Kext are no longer a

subset of the non-zero entries of Kint.

As a simple example, consider a collision between a vertex from

one object and a triangle from another object, as shown in Fig. 2.

The two objects have five vertices each, and the non-zero entries in

the systemmatrix corresponding to these vertices are shown as blue

circles, with each circle representing a 3x3 block of a vertex. One of

the objects is colliding with a kinematic object (e.g., ground), and the
resulting non-zero entries are shown in green. For these kinematic

collisions, no new non-zero entries are required. However, new

non-zero entries are required for collisions between two dynamic

objects or self collisions. The entries corresponding to these types

of collisions are shown in orange. Some of the entries are added to

existing non-zero entries (orange outline), but the cross-coupling

terms are added to new locations in the matrix (orange solid). We

partition H into persistent and transient matrices: H = HP +HT. The

transient matrix contains just the cross-coupling entries (orange

solid), and the persistent matrix contains all of the other entries

(blue solid, green outline, and orange outline).

Through experimentation, we found that ignoringHT and simply

using HP gives the best overall result in terms of wallclock time.

Even though using H = HP + HT results in fewer iterations, the

added overhead of symbolic factorization cannot be overcome. For

the Ducks scene (§4.4), using H = HP + HT resulted in a wallclock

time 11% slower than simply using HP. Additionally, ignoring HT

leads to a simpler implementation.

Intuitively, what is the error introduced by ignoring the transient

matrix HT? Ignoring the transient and only using the persistent

component removes the cross coupling terms from the stiffness

and damping matrices, which correspond to the colliding portions

of the deformable object(s). When we do not take into account the

cross coupling terms, we are in fact assuming that the collision

involves a static object—each body assumes that the other body

is static. Note, however, that this “error” only affects the speed of
convergence and not the final solution.

4 RESULTS

We implemented our system in C++ and ran the simulations on

a desktop with an Intel Core i7-7700 CPU @ 3.6 GHz and 16 GB

of RAM. We use Eigen for dense linear algebra and Cholmod with

MKL for sparse linear factorizations and solves [Guennebaud et al.

2010; Chen et al. 2008]. We use the Stable Neo-Hookean material

as the base isotropic material [Smith et al. 2018] with strain rate

damping [Sánchez-Banderas and Otaduy 2018]. For all materials,

we clamp the eigenvalues to ensure that the Hessian is semidefinite

[Smith et al. 2018, 2019; Kim et al. 2019]. We parallelize the matrix

fill with OpenMP and use multithreaded versions of the libraries.

We compare the following solvers:

• ND (Newton-Direct): A full Newton method where we form the

exact Hessian every iteration and use a direct method (Cholmod)

to solve the linear system.

• QLF (Quasi ChoLesky Frozen): A quasi-Newton method where

we form and factor the Hessian at the beginning of the time step,

and then use this frozen factor for the duration of the time step.

• QLB (ours: Quasi ChoLesky L-BFGS): A quasi-Newton method

where we form and factor the Hessian at the beginning of the

time step, and update the Hessian implicitly with L-BFGS.

verts tets mass

Bar 10,125 51,744 3.00

Arma 25,317 98,486 1.37

Bunny 3,907 14,374 2.25

Ducks 12,800 36,800 1.31

We also tried a PCG-based

Newton solver with block

Jacobi preconditioner and

early termination, but its per-

formance was significantly

worse than ND for the stiff

armadillo example, so we did not include it in our results. How-

ever, for very large meshes with lower stiffness, a carefully crafted

matrix-free PCG implementation may outperform ND. Addition-

ally, we experimented with using a scaled identity as the Hessian

approximation in L-BFGS (line 5 in Alg. 2) [Nocedal 1980], but the

simulation quickly became unstable. We use 1e-6 as the relative

and absolute tolerance for the Newton and quasi-Newton solvers.

A detailed list of parameters is shown in Table 1. Screenshots of the

scenes are shown in Fig. 1, and the animations are available in the

supplemental video. We also include a supplemental document with

the iteration information for the experiments. Our QLB method

consistently performs the best.

4.1 Bar

Our first experiment is a bar undergoing time-varying boundary

conditions. Over a period of 5 simulation seconds, the bar is com-

pressed, stretched, bent, and twisted by rigidly moving the vertices

of the free end of the bar. We vary several different parameters to

see the effect on the convergence of the nonlinear solvers.

4.1.1 L-BFGS storage. First, we modify𝑚, the number of past steps

that are used for the L-BFGS update. We run the same Bar scene

with the default parameters, with𝑚 set to 2, 5, 10, and 20, and the

overall wallclock times are shown in Fig. 4a. As reported in the

literature [Nocedal and Wright 2006], only a modest number is

required, with𝑚 = 10 giving us the best results.

4



QLB: Collision-AwareQuasi-Newton Solver with Cholesky and L-BFGS for Nonlinear Time Integration MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

Table 1: Scene parameters. vary: scene parameter to vary. material: material model. 𝐸: Young’s modulus (Pa). 𝜇: Poisson’s ratio.

damping: damping coefficient. ℎ: time step (s). integrator: time integrator scheme.𝑚: L-BFGS corrections.

vary material 𝐸 𝜇 damping ℎ integrator 𝑚

Bar 𝐸 SNH 6e3, 2e4, 5e4, 1e5 0.49 5e-3 5e-2 BDF2 10

Bar 𝜇 SNH 2e4 0.42, 0.49 5e-3 5e-2 BDF2 10

Bar hetero SNH 6e4, 2e4 0.49 5e-3 5e-2 BDF2 10

Bar aniso aSTVK+SNH 3e4+2e4 0.49 5e-3 5e-2 BDF2 10

Bar integrator SNH 2e4 0.49 5e-3 5e-2 quas., BDF1, BDF2 10

Bar 𝑚 SNH 2e4 0.49 5e-3 5e-2 BDF2 2, 5, 10, 20

Arma damping SNH 1e7 0.49 0, 1e-6 1e-2 BDF2 10

Arma material STVK, SNH 1e7 0.49 0 1e-2 BDF2 10

Arma ℎ SNH 1e7 0.49 0 5e-3, 1e-2, 2e-2 BDF2 10

Bunny - SNH 8e4 0.49 1e-3 5e-3 SDIRK2 10

Ducks - SNH 5e4 0.49 4e-3 1e-2 SDIRK2 10

4.1.2 Young’s Modulus. We run the simulation with the Young’s

modulus values of 6e3, 2e4, 5e4, and 1e5. As shown in Fig. 3a, our

QLB method works well across a range of stiffness values. With the

highest Young’s modulus value of 1e5, our QLB is 7.9x faster than

ND. When the Bar gets stiffer, the wallclock time of QLB increases

more slowly than the wallclock time of both ND and QLF.

4.1.3 Poisson’s Ratio. Nextwe change the Poisson’s ratio to control
the amount of volume preservation. The resulting wallclock times

are shown in Fig. 3b. For all three methods, the wallclock time is

shorter when the Poisson’s ratio is lower. The relative performance

gain by going from the default value of 𝜇 = 0.49 down to 𝜇 = 0.42

is modest for QLB, but it still beats the baseline methods.

4.1.4 Heterogeneity. We repeat the simulation with a heteroge-

neousmaterial distribution, alternating soft and stiffmaterials along

the length of the bar. When heterogeneity is added, the wallclock

times of all three methods increase due to the added nonlinearity.

As shown in Fig. 3c, QLB is the fastest of the three methods despite

the added nonlinearity.

4.1.5 Anisotropy. We use anisotropic fibers within the Bar to in-

troduce nonlinearities. On top of the background SNH material, we

add the anisotropic StVK material [Kim et al. 2019] to model the

fibers. The added complexity makes the three methods noticeably

slower across the board, however as seen in Fig. 3d, the relative

slowdown for QLB is the smallest of the three methods.

4.1.6 Integrator. Finally, with the same default parameters, we

switch out the time integration scheme. In addition to the default

integrator of BDF2, we use BDF1 and quasistatics. The wallclock

times for all three integrators are shown in Fig. 3e. The times for

BDF2 and BDF1 are similar. The conditioning for the quasistatics

integrator is worse, leading to slower wallclock times. QLB has the

smallest relative slowdown when using the quasistatics integrator.

4.2 Arma

Next we simulate the Armadillo with BDF2 for 1 second. The stiff

Arma is attached to a base by its feet, and the base is moved kine-

matically to induce motion.

4.2.1 Damping. We first add damping. Since we use a higher-order

integrator, the added damping is much more controllable and does

not depend heavily on the time step (see below). Fig. 3f shows

the wallclock time for the default and damped Arma. QLB works

well both with and without damping. For the Arma scene with the

default parameters, QLB is 3.1x faster than ND and 3.9x faster than

QLF.

4.2.2 Material. We now change the material model of the object.

In addition to the default material of SNH, we use the StVK material.

The wallclock times for each material are shown in Fig. 3g. For both

materials used, QLB results in the fastest wallclock time.

4.2.3 Time step. Using BDF2, we use half and double the default

time step of ℎ = 1e-2. At the high time step, the resulting simulation

is slightly more damped, due to the small amount of numerical

damping in BDF2. As seen in Fig. 3h, the speedup gained by QLB

is not as large for the high time step, but QLB still results in the

fastest wallclock times for all three step sizes.

4.3 Bunny

We show self collisions with a Bunny with the SDIRK2 integra-

tor for a 3 second scene. We use the contact model by Geilinger

et al. [2020] for collisions with the floor, and the contact model

by McAdams et al. [2011] for self collisions. As shown in the sup-

plemental material, the SDIRK2 integrator requires two nonlin-

ear solves per time step. However, unlike BDF2, it is a single-step

method and is potentially more suitable for simulations with con-

tact [Löschner et al. 2020] (though Geilinger et al. [2020] do use

BDF2). We use a relatively small time step of ℎ = 5e-3 to deal with

the thin ears. The overall wallclock times are shown in Fig. 4b. For

this 3 second simulation, QLB has a 4.5x speedup over ND. QLF

failed to converge and thus is not included for this simulation.

4.4 Ducks

For the final scene, we simulate 100 contacting Ducks with the

SDIRK2 integrator for 2 seconds. For added stability, in addition to

Green damping (Table 1), we also added some velocity-based contact

damping forces. Unlike the BDF1 integrator, adding damping forces

is much more controllable, since changing the time step does not

add significant artificial damping. We use all three methods for this

scene, with a large time step of ℎ = 1e-2. The overall wallclock

5



MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Witemeyer, et al.

ND QLF QLB
0

200

400

600

800

1000
T

im
e 

(s
)

6e3
2e4
5e4
1e5

(a) Bar: Young’s Modulus

ND QLF QLB
0

200

400

600

800

1000

T
im

e 
(s

)

0.42
0.49

(b) Bar: Poissons’ Ratio

ND QLF QLB
0

200

400

600

800

1000

T
im

e 
(s

)

on
off

(c) Bar: Heterogeneity

ND QLF QLB
0

200

400

600

800

1000

T
im

e 
(s

)

on
off

(d) Bar: Anisotropy

ND QLF QLB
0

200

400

600

800

1000

T
im

e 
(s

)

BDF2
BDF1
Quasistatics

(e) Bar: Integrator

ND QLF QLB
0

200

400

600

800

1000
T

im
e 

(s
)

0
1e-6

(f) Arma: Damping

ND QLF QLB
0

200

400

600

800

1000

T
im

e 
(s

)

SNH
StVK

(g) Arma: Material

ND QLF QLB
0

200

400

600

800

1000

T
im

e 
(s

)

5e-3
1e-2
2e-2

(h) Arma: Time Step

Figure 3: Wallclock times for Bar with: (a) different Young’s moduli; (b) different Poisson’s ratios; (c) heterogeneity on/off; (d)

anisotropy on/off; (e) different integration schemes; and Arma with: (f) different damping coefficients; (g) different materials;

(h) different time steps. In all the plots, the Bar and Arma with the default parameters are shown in blue.

2 5 10 20
0

20

40

60

80

100

T
im

e 
(s

)

(a) Bar:𝑚

ND QLB
0

300

600

900

1200

1500

1800

T
im

e 
(s

)

(b) Bunny

ND QLF QLB
0

1000

2000

3000

T
im

e 
(s

)

(c) Ducks

Figure 4: Wallclock times for (a) different numbers of past

steps used for the L-BFGS update for the default Bar scene;

(b) Bunny; and (c) Ducks.

times are shown in Fig. 4c. For this 2 second simulation, QLB is 2.9x

faster than ND and 5.8x faster than QLF.

5 CONCLUSION

We showed through a variety of examples that a straightforward

application of Cholesky and L-BFGS gives excellent performance

when used in the nonlinear solver for higher-order time integration.

We showed that our approach can handle a wide range of complex

material models, including anisotropy and heterogeneity, as well

as collisions between dynamic objects, self collisions, and frictional

contact. In some simulations, QLF performs worse than ND. This

is due to QLF not always converging quickly, and it is hard to

predict when this will happen. QLB does not suffer from this problem
and performed the best in every test case. Our approach is practical,

general, and easy to implement.

5.1 Discussions & Limitations & Future Work

In our work, we only reuse the factorization within a single time

step, but it can also be used across time steps. There are standard

methods to detect when a re-factorization is required, such as max-

imum Newton iterations or the change in the norm of residual

across time steps [Bank and Rose 1981]. In this work, rather than

reusing the factorization, we take larger time steps when possible,

since our approach supports higher-order integrators that do not

significantly suffer from artificial damping.

We use a simple back-tracking strategy for our line search,

which may not always produce stable L-BFGS updates [Nocedal

and Wright 2006]. Though we have not encountered any issues

with our examples, more sophisticated strategies may be needed in

other cases.

Our approach currently does not support hard constraints. Ac-

celerating the quadratic programming approach of Löschner et al.

[2020] using our approach is an interesting avenue of future work.

One advantage of higher-order schemes is that damping becomes

more controllable. It would be interesting to apply our approach to

an adaptive time stepping scheme, since adaptively changing the

time step would not overly introduce numerical damping.

If implemented properly, GPU solvers can often be considerably

faster than their CPU counterparts. Since direct solvers have been

successfully deployed on the GPU [Rennich et al. 2016], our method

can also be ported to the GPU. We leave this as future work.

ACKNOWLEDGMENTS

This work was sponsored in part by the National Science Founda-

tion (CAREER-1846368).

REFERENCES

Randolph E Bank and Donald J Rose. 1981. Global approximate Newton methods.

Numer. Math. 37, 2 (1981), 279–295.
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Annual

Conference Series (Proc. SIGGRAPH). 43–54.
Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-

Kirchhoff Deformable Models. ACM Trans. Graph. 24, 4 (July 2005), 982–990.

6



QLB: Collision-AwareQuasi-Newton Solver with Cholesky and L-BFGS for Nonlinear Time Integration MIG ’21, November 10–12, 2021, Virtual Event, Switzerland

Jan Bender, Matthias Müller, and Miles Macklin. 2017. A Survey on Position Based

Dynamics. In Proceedings of the Eurographics: Tutorials. Article 6.
Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.

Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM
Trans. Graph. 33, 4, Article 154 (July 2014).

George E. Brown and Rahul Narain. 2021. WRAPD: Weighted Rotation-aware ADMM

for Parameterization and Deformation. ACM Trans. Graph. 40, 4 (July 2021).

Jiong Chen, Max Budninskiy, Houman Owhadi, Hujun Bao, Jin Huang, and Mathieu

Desbrun. 2019. Material-Adapted Refinable Basis Functions for Elasticity Simulation.

ACM Trans. Graph. 38, 6, Article 161 (Nov. 2019).
Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam.

2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and

Update/Downdate. ACM Trans. Math. Softw. 35, 3, Article 22 (Oct. 2008).
Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal Warping: Real-Time Simulation

of Large Rotational Deformation and Manipulation. IEEE TVCG 11, 1 (Jan. 2005),

91–101.

Peter Deuflhard. 2011. Newton methods for nonlinear problems: affine invariance and
adaptive algorithms. Vol. 35. Springer Science & Business Media.

Elliot English and Robert Bridson. 2008. Animating Developable Surfaces Using

Nonconforming Elements. ACM Trans. Graph. 27, 3, Article 66 (Aug. 2008).
Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson.

2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer
Graphics Forum (Proc. Eurographics) (2019).

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,

and Stelian Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body

Systems with Frictional Contact. ACM Trans. Graph. 39, 6, Article 190 (Nov. 2020).
Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

Robert J Guyan. 1965. Reduction of stiffness and mass matrices. AIAA journal 3, 2
(1965), 380–380.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. 2006. Geometric numerical
integration: structure-preserving algorithms for ordinary differential equations. Vol. 31.
Springer Science & Business Media.

FlorianHecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien. 2012. Updated

Sparse Cholesky Factors for Corotational Elastodynamics. ACM Trans. Graph. 31,
5, Article 123 (Sept. 2012).

Philipp Herholz and Marc Alexa. 2018. Factor Once: Reusing Cholesky Factorizations

on Sub-Meshes. ACM Trans. Graph. 37, 6, Article 230 (Dec. 2018).
Philipp Herholz, Timothy A. Davis, and Marc Alexa. 2017. Localized Solutions of

Sparse Linear Systems for Geometry Processing. ACM Trans. Graph. 36, 6, Article
183 (Nov. 2017).

Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse Cholesky Updates for

Interactive Mesh Parameterization. ACM Trans. Graph. 39, 6, Article 202 (Nov.

2020).

Doug L. James and Dinesh K. Pai. 1999. ArtDefo: Accurate Real Time Deformable

Objects. In Proceedings of SIGGRAPH. 65–72.
Theodore Kim, Fernando De Goes, and Hayley Iben. 2019. Anisotropic Elasticity for

Inversion-Safety and Element Rehabilitation. ACM Trans. Graph. 38, 4, Article 69
(July 2019).

Theodore Kim and David Eberle. 2020. Dynamic Deformables: Implementation and

Production Practicalities. In ACM SIGGRAPH 2020 Courses. Article 23.
Lei Lan, Ran Luo,Marco Fratarcangeli,Weiwei Xu, HuaminWang, XiaohuGuo, Junfeng

Yao, and Yin Yang. 2020. Medial Elastics: Efficient and Collision-Ready Deformation

via Medial Axis Transform. ACM Trans. Graph. 39, 3, Article 20 (April 2020).
Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M. Kaufman.

2019. Decomposed Optimization Time Integrator for Large-step Elastodynamics.

ACM Trans. Graph. 38, 4, Article 70 (July 2019), 70:1–70:10 pages.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for

Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 4, Article
116 (May 2017).

Fabian Löschner, Andreas Longva, Stefan Jeske, Tassilo Kugelstadt, and Jan Bender.

2020. Higher-Order Time Integration for Deformable Solids. In Proc. ACM SIG-
GRAPH / Eurographics Symp. Comput. Anim. Article 15.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph

Teran, and Eftychios Sifakis. 2011. Efficient Elasticity for Character Skinning with

Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (July 2011).

Nathan Mitchell, Michael Doescher, and Eftychios Sifakis. 2016. A Macroblock Opti-

mization for Grid-Based Nonlinear Elasticity. In Proc. ACM SIGGRAPH / Eurograph-
ics Symp. Comput. Anim. (Zurich, Switzerland). 11–19.

Vismay Modi, Lawson Fulton, Alec Jacobson, Shinjiro Sueda, and David I. W. Levin.

2021. EMU: Efficient Muscle Simulation in Deformation Space. Computer Graphics
Forum 40, 1 (2021), 234–248.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position

based dynamics. Journal of Visual Communication and Image Representation 18, 2

(2007), 109–118.

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projective

Dynamics: Fast Simulation of General ConstitutiveModels. In Proc. ACM SIGGRAPH
/ Eurographics Symp. Comput. Anim. 21–28.

Jorge Nocedal. 1980. Updating quasi-Newton matrices with limited storage. Mathe-
matics of computation 35, 151 (1980), 773–782.

Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science &
Business Media.

Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018.

Anderson Acceleration for Geometry Optimization and Physics Simulation. ACM
Trans. Graph. 37, 4, Article 42 (July 2018).

Alex Pentland and JohnWilliams. 1989. Good Vibrations: Modal Dynamics for Graphics

and Animation, Vol. 23. ACM, New York, NY, USA, 207–214.

Steven C. Rennich, Darko Stosic, and Timothy A. Davis. 2016. Accelerating sparse

Cholesky factorization on GPUs. Parallel Comput. 59 (2016), 140–150.
Rosa M. Sánchez-Banderas and Miguel A. Otaduy. 2018. Strain rate dissipation for

elastic deformations. In Computer Graphics Forum (Proc. Symposium on Computer
Animation), Vol. 37. 161–170.

Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean

Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12 (March 2018).

Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic Eigensystems

for Isotropic Distortion Energies. ACM Trans. Graph. 38, 1, Article 3 (Feb. 2019).
Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation

Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6, Article 245 (Oct. 2015).
Yun Teng,MarkMeyer, TonyDeRose, and Theodore Kim. 2015. Subspace Condensation:

Full Space Adaptivity for Subspace Deformations. ACM Trans. Graph. 34, 4, Article
76 (July 2015).

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically

Deformable Models. In Computer Graphics (Proc. SIGGRAPH), Vol. 21. 205–214.
Nicholas J. Weidner, Theodore Kim, and Shinjiro Sueda. 2020. ConJac: Large Steps in

Dynamic Simulation. In Motion, Interaction and Games. ACM, Article 6.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A Scalable Galerkin Multigrid

Method for Real-time Simulation of Deformable Objects. ACM Trans. Graph. 38, 6,
Article 162 (Nov. 2019).

Hongyi Xu and Jernej Barbič. 2017. Example-Based Damping Design. ACM Trans.
Graph. 36, 4, Article 53 (July 2017).

Juyong Zhang, Yue Peng, Wenqing Ouyang, and Bailin Deng. 2019. Accelerating

ADMM for efficient simulation and optimization. ACM Trans. Graph. 38, 6, Article
163 (Nov. 2019).

7


	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Background
	3.2 Accelerated Nonlinear Solver
	3.3 Dynamic Collisions

	4 Results
	4.1 Bar
	4.2 Arma
	4.3 Bunny
	4.4 Ducks

	5 Conclusion
	5.1 Discussions & Limitations & Future Work

	Acknowledgments
	References

