
An Implementation of Smoothed Particle
Hydrodynamics

Jesse Sprinkle
Texas A&M University Computer Science

College Station, USA
jrs7943@tamu.edu

Abstract—This document was written to provide insight into
my implementation of Smoothed Particle Hydrodynamics. The
implementation was done as a final project for the course CSCE
489 Computer Animation, Fall 2021.

I. INTRODUCTION

The goal for this project was to produce a real-time fluid
animation. The chosen fluid simulaiton model was Smoothed
Particle Hydrodynamics (SPH). In this report, the research,
design, parameters, and implementation of this model will be
described.

II. SMOOTHED PARTICLE HYDRODYNAMICS

SPH is a fluid simulation model developed in the 70s by
Monaghan and Gingold, original paper here [1]. The general
idea is this: fluids are modeled by the Navier-Stokes Equations
(NSE) over a continuous field. We discretize this field, then
calculate each parameter at each time step. In this method, we
use the incompressible varient of the NSE:

du

dt
= −∇p

ρ
+ v∇2u+ g (1)

Where p is the pressure, ρ is the density, v is viscocity, u is
the velocity, and g is external forces such as gravity.

A. Derivation of Discretization

To derive this discretization, we start with the following
fact:

A(z) =

∫
R

A(x)δ(x− z)dx (2)

If you wish to know more about this equation, read into the
Dirac Delta function. This equation is essentially states that
any point can be calculated by adding every point over the
field and multipying it by zero unless it is the point you are
trying to calculate the value of, just in continuous terms.

We can’t discretize this integral, as we don’t know how to
discretize the Dirac Delta function. So, we approximate it with
a weighting function W , called a kernel. We assume A(x) is
continuous, and as a result nearby points should be similar to
A(z) which makes replacing with a kernel reasonable.

A(z) =

∫
R

A(x)W (|x− z|, h)dx (3)

The kernel takes in a distance to z and a smoothing length h,
which is there to give the function a reference of distance. For
example, in many cases if |x−z| > h, then W (|x−z|, h) = 0.

We can now approximate this integral with a summation
to discretize. However, we cannot neglect the volume term in
moving from a continuous space to a discrete space:

A(z) =
∑
i

ViA(xi)W (|xi − z|, h) (4)

It is from this equation we can approximate every term of
the NSE at a particular point, for example:

ρ(z) =
∑
i

Viρ(xi)W (|xi − z|, h) =
∑
i

miW (|xi − z|, h)

(5)
where m is mass.
It is important to know that modifications are often made

depending on the situation, so not every SPH implementation
uses the same equations. We use the following equations:

−∇p(xi)

ρ(xi)
=

∑
k

mk(
p(xi)

ρ(xi)2
+

p(xk)

ρ(xk)2
)∇W (|xi−xk|, h) (6)

∇2u =
∑
k

mk∇2W (|xi − xk|, h)(u(xk)− u(xi)) (7)

The Laplacian term in Eq. 7 is actually the scalar that would
be multiplied by a vector to get the Laplacian. Most of the
equations used in the final implementation are located here
[2] [3]

We can now create particles that contain the data, such as
position, density, mass, of the discrete space.

III. OTHER EQUATIONS AND PARAMETERS

At the start of the simulation, it is expected the position,
velocity, and mass of the particles to be known. From this we
can use Eq. 5 to calculate density. There are multiple choices
in pressure calculations. There are two common choices:

pi = k(
ρi
ρ0

− 1) (8)

pi = k((
ρi
ρ0

)7 − 1) (9)

Where k is a stiffness constant to be tuned as wished and
ρ0 is a reference density (for example 1000kg/m3 for water).
There exist many more complex equations for pressure. We
use Eq. 8 in our implementation. Often, the reference density
is decided upon, then the mass is calculated as such:

m = ρ0h
3 (10)

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Dirac_delta_function

Another choice is the kernel. There exist many kernels,
however I used the one in [2]. The smoothing length h is
situationally based on the kernel and simulation. For example,
if the particles are intended to be small, h should be smaller.
In general, it is a parameter you tune based on model scale
and optimization.

The viscocity constant v is another parameter to tune based
on the fluid you would like. In general v will be much
higher than real world viscocities [3]. The external acceleration
constant g is also to be tuned as wished. If your model is to-
world scaled for example, (0, -9.8, 0) could simulate gravity.

IV. SIMULATING WALLS

It is often nice to have the fluids in a container. To create a
one, you can simply put invisible immovable particles with a
custom initial density to better reflect particles, or sometimes
have multiple layers of particles. More generally, you can bind
fixed particles to any surface you want particles to collide with.

V. OPTIMIZATION

The runtime to calculate values for each particle in a
standard search of all the particles is O(n2). This cannot be
used to simulate thousands of particles in real time. There are
dozens of search algorithms out there, but I will only explain
the method I used.

To find the nearby particles, a grid with cells of size h was
used. At each time step, each particle sorted itself into the
grid based on its position. To search for nearby particles, each
particle would only check the cell and surrounding cells for
particles. This vastly improved simulation speed.

To increase speed further, we can utilize multithreading.
From the equations above, it is easy to see how many worker
threads running at a time can calculate all the independent
values.

To increase render speed, as thousands of particles are
rendered per frame, we can use instancing.

VI. IMPLEMENTATION

The initial parameters are set as such: h = 0.1, v =
0.01, k = 2.0, g = (0,−0.23, 0), dt = 0.05. For wall
particles d0 = 2500 while for regular particles d0 = 1000.
In my scene, the viscosity lowers to 0.0004 after 6 seconds,
as the initial viscosity is there to get the fluid stable.

A. Scene Initialization

To create the simulation, I created a grid of particles (with
small random offsets) for the fluid and created a larger box
around it without a top. The wall particles and fluid particles
are put into two vectors so we only have to iterate over the
fluid particles.

Creating worker threads for each iteration is too slow, so
we create 80 workers threads for calculating density and 80
worker threads for calculating accelerations and store them.
These threads are given a range of particles the calculate their
values over and wait for the step function to tell them to
calculate their section.

B. Stepping

At the start of each time step, we update the grid with
the positions of the particles. Then, we activate the density
worker threads which calculate the density and pressure of
each particle. When all are completed, the acceleration worker
threads wake up and calculate the acceleration each particle.
The particle velocities get updated, followed by the particle
positions (we use implicit euler which is the standard method).

VII. RESULTS

While the model can handle tens of thousands of particles,
my model can only handle 3000 fluid particles to run in near
real time. However, for larger particle counts we do get a
decent simulation as can be seen in Fig. 1. It is clear more
optimization needs to be done to simulation things on a larger
scale.

VIII. REVISIONS

In the future, I plan to further optimize my model. A few
things I plan on doing is switching vectors of particles of data
to particles backed by arrays of data to better utilize cacheing.
I plan on implementing a faster particle search algorithm,
perhaps with some cacheing and hashing, or only updating
the particle grid positions every other time step.

One optimization I haven’t seen anything on is a replace-
ment for particle based walls. Though I’m not sure the per-
formance increase, I may attempt to replace the wall particles
with planes and bounce the particles off them.

A final change that I would like to do is skin the fluid. Cur-
rently the model is just a bunch of particles, so implementing
a nice fluid look could really improve the looks.

Fig. 1. !3,000 Particles Swaying in a Container

https://learnopengl.com/Advanced-OpenGL/Instancing

IX. CONCLUSION

I learned much from this project, from fluids to optimiza-
tions. While not the most grand or impressive of projects, I
genuinely felt challenged by the research and problem solving

I had to do to get my model in the state it is.

REFERENCES

[1] R. A. Gingold, J. J. Monaghan, Smoothed particle hydrodynamics:
theory and application to non-spherical stars, Monthly Notices of the
Royal Astronomical Society, Volume 181, Issue 3, December 1977,
Pages 375–389

[2] D. House, J. Keyser, Foundations of Physically Based Modelling and
Animation, CRC Press, 2017, Pages 283-292

[3] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, M. Teschner, SPH
Fluids in Computer Graphics, EUROGRAPHICS, 2014

	Introduction
	Smoothed Particle Hydrodynamics
	Derivation of Discretization

	Other Equations and Parameters
	Simulating Walls
	Optimization
	Implementation
	Scene Initialization
	Stepping

	Results
	Revisions
	Conclusion
	References

