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Detection in Wireless Sensor Networks
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Abstract—Wireless Sensor Networks (WSNs) often suffer from disrupted connectivity caused by its numerous aspects such
as limited battery power of a node and unattended operation vulnerable to hostile tampering. The disruption of connectivity,
often referred to as network cut, leads to ill-informed routing decisions, data loss, and waste of energy. A number of protocols
have been proposed to efficiently detect network cuts; they focus solely on a cut that disconnects nodes from the base station.
However, a cut detection scheme is truly useful when a cut is defined with respect to multiple destinations (i.e., target nodes),
rather than a single base station. Thus, we extend the existing notion of cut detection, and propose an algorithm that enables
sensor nodes to autonomously monitor the connectivity to multiple target nodes. We introduce a novel reactive cut detection
solution, the Point-to-Point Cut Detection, where given any pair of source and destination, a source is able to locally determine
whether the destination is reachable or not. Furthermore, we propose a lightweight proactive cut detection algorithm specifically
designed for a network scenario with a small set of target destinations. We prove the effectiveness of the proposed algorithms
through extensive simulations; specifically, in our network configurations, proposed cut detection algorithms achieve more than
an order of magnitude improvement in energy consumption, when coupled with an underlying routing protocol.

Index Terms—wireless sensor networks, topology control, network cut detection
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1 INTRODUCTION

Wireless sensor networks (WSNs), consisting of large
numbers of low-cost and low-power wireless nodes,
have recently been employed in many applications:
disaster response [1], military surveillance [2], and
medical care [3] among others. The inherent na-
ture of WSNs such as unattended operation, battery-
powered nodes, and harsh environments pose major
challenges. One of the challenges is to ensure that
the network is connected. The connectivity of the
network can easily be disrupted due to unpredictable
wireless channels, early depletion of node’s energy,
and physical tampering by hostile users. Network
disconnection, typically referred to as a network cut,
may cause a number of problems. For example, ill-
informed decisions to route data to a node located in
a disconnected segment of the network might lead to
data loss, wasted power consumption, and congestion
around the network cut.

Several centralized algorithms have been proposed
to efficiently detect a cut [4][5][6][7]. These algorithms
attempt to detect a cut by assigning the task of net-
work connectivity monitoring to a subset of nodes. In
particular, Shrivastava et al. [7] proposed an algorithm
to detect a linear cut in a WSN, by strategically de-
ploying specially designated nodes, called sentinels.
Some researchers have recently proposed distributed
cut detection algorithms for WSNs [8][9][10]. In these
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schemes, each sensor node is able to autonomously
determine the existence of a cut. A common aspect
of existing cut detection algorithms is that they focus
on a “binary problem”: is there a cut in the network,
or not? However, this may not be sufficient since,
in some applications, despite the existence of a cut
somewhere in the network, a sender can still commu-
nicate with a target node, if they are not disconnected
by the cut. For example, some WSN applications
adopt the strategy to deploy multiple sink nodes, in
order to improve throughput and prolong network
lifetime [11][12]. In these applications, detecting a cut
with respect to one sink node does not necessarily
mean that nodes in the disconnected network segment
should refrain from reporting data, because they may
send the data to other connected sink nodes.

In this article, we propose solutions for a more gen-
eral cut detection problem – the destination-based cut
detection problem. Unlike the traditional cut detection
problem, we attempt to find a network cut between
a sender and any node in a set of given destina-
tions. We first propose Point-to-Point Cut Detection
protocol (P2P-CD). P2P-CD allows a source node to
identify a cut with respect to any destination node.
In this protocol, the boundary of a cut is compactly
represented as a set of linear segments. The compact
representation of a cut allows the information on
existing cuts (i.e., the shape and location of the cut) to
be efficiently distributed throughout the network with
small overhead. A source node, using the distributed
information, locally determines whether any given
destination is reachable or not.

P2P-CD is a reactive algorithm; in other words, a
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cut is reactively detected in contrast to the proac-
tive solutions that periodically probe the network
for potential cuts; thus, P2P-CD is energy efficient.
However, the energy efficiency comes at the cost of
overhead: each node has to store a data structure that
contains the information on the cuts in the network,
and nodes must be localized. Thus, we also propose a
lightweight cut detection algorithm (RE-CDM) partic-
ularly designed for the scenario, where nodes need
to detect a cut with respect to a small number of
destinations instead of any destination. This scenario
typically arises in WSN applications with multiple
sinks. RE-CDM allows each sensor node to monitor
the connectivity to multiple sink nodes in real time.
RE-CDM is a proactive cut detection algorithm, being
less energy efficient than P2P-CD. However, it does
not require nodes to be localized, and nodes do not
need to store data on the partial global topology,
which makes a good fit with resource constrained
nodes in WSNs. The contributions of our article are
summarized as follows:

• We extend the notion of the cut detection by
introducing a novel problem called destination-
based cut detection

• We propose a point-to-point cut detection proto-
col, P2P-CD, that detects a cut between any pair
of source and destination. P2P-CD is more energy
efficient than RE-CDM when many destination
nodes are present, at the price of higher imple-
mentation complexity of the protocol.

• We propose a more lightweight protocol, RE-
CDM, that efficiently detects cuts between a
source node and a small set of destinations.

• Extensive simulations for large-scale sensor net-
works demonstrate that our protocols are correct,
and efficient.

The remainder of this article is structured as fol-
lows. In Section 2 we discuss related work, and the
taxonomy for cut detection schemes. We formulate
the problem and briefly survey existing solutions in
Section 3. The details of our proposed protocols are
presented in Section 4, and the performance evalua-
tion results in Section 5. We conclude in Section 6.

2 RELATED WORK

2.1 Cut Detection
Many researchers stressed the importance of network
partition monitoring problem [13][14][15]. Chong et
al. [14] considered the problem as a security issue,
mentioning that cuts can be intentionally created in
a hostile environment, and nodes must detect them.
Cerpa and Estrin [15], in their self-configuring topol-
ogy scheme, emphasized that the cut detection prob-
lem is potentially crucial in many WSN applications,
but left it as future work.

The cut detection problem was first considered in a
wired network [4]. Kleinberg et al. [4] introduced the

concept of (ϵ, k)-cut, which is defined as a network
separation into two sets of nodes, namely (1 − ϵ)n
nodes and ϵn nodes (n refers to the total number of
nodes), caused by k independently disabled edges.
A set of agents, denoted by a set D, is strategically
deployed in the network to detect the (ϵ, k)-cut. Each
agent exchanges a control packet with other agents
periodically. A cut is assumed to be present if the
control message loss exceeds some threshold. The
authors are interested in the size of D, and prove
that the size of the set D is O(k3 1

ϵ log
1
ϵ + 1

ϵ log
1
δ ) to

detect (ϵ, k)-cut with probability 1− δ. Ritter et al. [6]
proposed a cut detection algorithm where a sink node
broadcasts an alive message. A cut is detected by border
nodes, which are located on the border of network, if
these nodes fail to receive the alive message more than
a certain number of times.

Shrivastava et al. [7] recently introduced a protocol
to detect a cut in wireless sensor networks. Their
work is largely based on [4]. The protocol deploys
sentinels, a counterpart of agents in [4], to detect ϵ-
cut, which is defined as a linear cut that separates the
network into two parts, where one part has at least
ϵ-fraction of total nodes. The paper aims to minimize
the number of sentinels based on the assumption that
in sensor networks, linear-shaped or other geometric
shaped cuts are more likely to happen, rather than
the cut with k independent edge failures. They prove
that O( 1ϵ ) sentinels are required to detect ϵ-cut with
ϵ < 1. The limitations of their cut detection algorithm
is that they consider only the linear cuts, being unable
to detect arbitrarily shaped cuts. Additionally, their
algorithm is a centralized solution, requiring global
topology information.

Barooah et al. [9][10] addressed the issues that pre-
vious cut detection algorithms have. The Distributed
Source Separation Detection (DSSD) algorithm is fully
distributed and detects arbitrarily shaped cuts. A
positive scalar value, called state, is maintained by
each node. The state of each node is updated based
on the states of its immediate neighbors. If a node
is connected to a sink, its state converges to some
positive value. Otherwise, its state converges to zero.
The DSSD algorithm, however, suffers from control
message overhead, since the algorithmic iterations for
the convergence depends on the degree of the net-
work. Won et al. [8][16] introduced an energy efficient
solution that minimizes the iteration count for the
convergence, thereby minimizing the control message
overhead. The main idea is to run the DSSD algorithm
on the overlay network consisting of a small number
of representative nodes, called leaders. The degree of
the overlay network is at most 4, allowing the minimal
convergence rate. However, these algorithms detect
cuts with respect to only a single sink node.

In [17], we considered a novel cut detection prob-
lem, called the destination-based cut detection, where
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Cut detection scheme criterion 1 criterion 2 criterion 3 properties
Flooding k1 1 proactive k1 is the number of nodes in the

disconnected network segment.
Linear Cut Detection [7] k2 1 proactive centralized; detects only a linear cut. k2 is

the number of sentinels.
DSSD [9] N 1 proactive distributed; detects a cut of any shape.
RE-CD [8] N 1 proactive cluster-based; more energy efficient

than DSSD.
RE-CDM N k3 proactive extends RE-CD; supports cut detection

with respect to k3 sinks.
P2P-CD N N reactive detects a cut between any pair of nodes;

requires node location
TABLE 1

Taxonomy for cut detection schemes. Existing cut detection schemes are categorized based on three criteria:
(a) who detects a cut; (b) detects a cut with respect to which nodes; (c) proactive/reactive.

cuts are detected with respect to any target desti-
nation. We then presented two algorithms for this
problem: one algorithm is suitable for the large scale
network with many peer-to-peer communications;
and the other algorithm is a good fit for the network
scenario with a small number of target destinations
such as the sensor network applications with multiple
sink nodes, where sensor nodes send data only to the
sink nodes. This article extends our previous work.
First, we present a complete taxonomy for existing
cut detection schemes not only to provide guidelines
for the future research on this topic, but also to clarify
the contributions of this article. Second, we consider
several practical issues. We propose an algorithm to
eliminate false positives caused by errors in describing
the geometric structure of a cut in a network. We then
take the asynchronous duty cycling into consideration
in order to implement more realistic network settings.
Under this network setting, we measure more realistic
energy consumption. Third, we develop several new
metrics for our simulations to show the efficacy of our
proposed algorithms.

2.2 Taxonomy for Cut Detection

Systematically organizing the previously introduced
cut detection algorithms not only helps better un-
derstand the contributions of this article, but also
provides guidelines for future research on this topic.
We categorize the algorithms based on three criteria.
First, we consider which nodes detect a cut. Some al-
gorithms allow only a small subset of nodes to detect
a cut, whereas some algorithms allow all nodes in
the network to detect a cut. Second, we consider that,
with respect to which nodes, a cut is detected. Such
“target” nodes might be the sink node, or for some
algorithms, all nodes. The last criterion describes
whether the cut detection algorithm is proactive or
reactive. The proactive solution periodically checks
the existence of a cut, whereas the reactive solution
runs the algorithm only when there is a cut; thus, a
reactive solution is a more energy efficient scheme.

Table 1 summarizes the taxonomy for existing cut
detection algorithms. As shown, the most basic type
of cut detection algorithms is the flooding. In this
scheme, a sink node periodically broadcasts a probing
packet throughout the network so that the receivers
can check the network connectivity to the sink. One
drawback of this scheme is that the nodes in the
connected network segment cannot detect a cut; only
the k1 number of nodes in the disconnected network
segment can detect a cut. The Linear Cut Detection
algorithm proposed by Shrivastava et. al [7] sig-
nificantly reduces the message overhead caused by
broadcasting the probing packet throughout the net-
work, by allowing only a small subset of nodes, called
the sentinels, participate in the cut detection process;
thus, in this scheme, the k2 sentinels detect a cut
with respect to a sink node. The DSSD algorithm [9]
operates in a distributed manner and allows all the N
nodes in the network to detect a cut with respect to a
sink node. RE-CD [8] algorithm improves the energy
efficiency of the DSSD by minimizing the convergence
rate of the DSSD algorithm. Despite its better energy
efficiency, this algorithm still permits all the nodes in
the network detect a cut with respect to a sink node.

At this point, we note that existing algorithms focus
on detecting a cut with respect to a single node, the
sink node, and furthermore they are all proactive
solutions. Two proposed algorithms in this article
extend the notion of existing cut detection; specifically,
we extend the number of “target” nodes. First of
all, RE-CDM is designed to enable nodes to detect
a cut with respect to k3 sink nodes. This algorithm is
distributed, but a proactive solution. Our reactive cut
detection algorithm, P2P-CD then further extends the
second criterion, the number of target destinations, to
all the N nodes in a network at the cost of several
requirements: 1) each node has to be localized; 2)
additional storage space is required; and 3) part of
global topology information must be known to the
nodes in the network. Despite these requirements, this
algorithm, is reactive, thereby being energy efficient.

In sum, P2P-CD realizes the concept of peer-to-peer
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Fig. 1. An illustration of DSSD algorithm. When a node is connected to the sink, its state converges to some
positive value. The four nodes in the middle marked as red dotted circles die at iteration 6, creating a cut. After
the cut occurs, the state of the node connected to the sink converges to new convergence value (i.e., from
approximately 11 to 17); the state of the node that is disconnected from the sink converges to 0, being able to
detect the cut.

cut detection. In other words, in P2P-CD, a source
node can detect a cut with respect to any destination;
the RE-CDM is a more lightweight solution that does
not rely on the space and implementation overhead,
which suits well for the applications that have a small
number of target nodes, such as the applications for
WSN with multiple sinks.

3 PRELIMINARIES AND PROBLEM FORMU-
LATION

We consider a two dimensional network, represented
as a connected graph GV = (V,E), where V =
{v1, v2, · · · , vn} is a set of deployed sensor nodes,
and E represents a set of links between nodes in V .
We denote a set of sink nodes (i.e., base stations) by
S = {s1, s2, · · · , sn}, S ⊆ V . We assume that each
node knows its location either from an onboard GPS,
or by employing node localization protocols [18]. We
also assume that a location-based routing protocol is
available, such as GPSR [19]. A set Ni ⊆ V denotes
the immediate neighbors of a node vi ∈ V . The
term Cv(G) represents the connected component of
graph G that contains a vertex v. From here on we
will use the terms “source” and “destination” for the
sender/receiver pair of a unicast communication. As
it will become clear later, destination nodes can be
either sink nodes (i.e., base station), or peer nodes.

Now we are ready to formally define the
“Destination-based Cut Detection” problem: Consider
a set of destinations, denoted by T = {t1, t2, · · · , tn},
where T ⊆ V . How can a source node vi ∈ V
determine whether any given destination t ∈ T is in
Cvi(GV ), in an energy efficient manner? Informally,
we aim to develop energy efficient protocols that
allow a node to find its connectivity to any node t ∈ T .

Before presenting our solutions for the destination-
based cut detection problem, we briefly describe some
background materials. The DSSD algorithm [9] moni-
tors the connectivity of a node to a single sink, say
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Fig. 2. An illustration of the virtual grid network, with
leaders, depicted by triangles, elected in each grid cell.
The communication among leaders, depicted by dotted
lines, is multi-hop.

s1 ∈ S. For ease of presentation, we assume that
v1 ∈ V is s1. Each node vi ∈ V maintains a positive
scalar vi(k), called the state, which is updated at each
iteration of the algorithm as the following, where k
refers to the iteration counter.

vi(k + 1) =

∑
vj∈Ni

vj(k)

|Ni|+ 1
.

The state of a sink node v1 is updated slightly differ-
ently as the following.

v1(k + 1) =

∑
v1∈N1

v1(k) + ω

|N1|+ 1
.

Here the variable ω, called the “sink strength”,
is a system parameter. The algorithm proceeds in
iterations, and each node updates its state. If there is
no cut in the network, the state of a node converges
to some positive value, otherwise, the state rapidly
converges to 0, allowing a node to detect a cut.
Figure 1 illustrates how DSSD algorithm works.

The RE-CD [8] algorithm was proposed for reduc-
ing the overhead of DSSD. In RE-CD, as shown in
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Figure 2, a network is divided into a grid of clusters.
In each cluster a leader is elected. In particular, the
sink becomes a leader for the cluster that it belongs
to. The DSSD algorithm is then executed on the virtual
grid network consisting of the leaders (represented as
triangles in Figure 2) and the virtual links between
them. RE-CD minimizes the convergence rate of the
DSSD algorithm, because the number of neighbors
for each leader is at most 4 due to the grid network
topology (note that the convergence rate of the DSSD
algorithm depends on the maximum degree of the
network [9]). RE-CD is energy efficient, because only
a subset of nodes participate in the cut detection
process.

4 DESTINATION-BASED CUT DETECTION

This section discusses the details of the two cut de-
tection algorithms that we propose.

4.1 Main Ideas

Before presenting the details, we first overview the
two proposed algorithms with the tradeoffs between
them. Both algorithms are designed for detecting cuts
with respect to a given set of destinations. Our first
protocol, Point-to-Point Cut Detection (P2P-CD), is
designed to provide a solution that enables each node
to determine connectivity to any destination. Note
that a cut partitions a network into multiple network
segments; we call such network segment a cut region.
P2P-CD is based on the knowledge of partial global
topology: it uses the shape and location of a cut
region. An important issue for this algorithm is thus
to compactly, yet precisely, represent the boundary of
a cut region. Figure 3 illustrates the general idea on
how P2P-CD works. There is a cut in the middle of the
network separating the network into two cut regions,
denoted by A and B. In P2P-CD, the boundary of a
cut region is represented as a set of line segments.
By connecting the line segments, P2P-CD yields a set
of vertices of a polygon covering the cut region. The
locations of the vertices of the polygon are distributed
to the nodes in the cut region. Based on the set
of received polygons (there might be multiple cuts
in the network), nodes determine whether a given
destination is reachable or not. The second cut de-
tection protocol we propose, RE-CDM, is suitable for
scenarios in which the number of target destinations
is small (e.g., a set of a few sink nodes). RE-CDM can
be used by sensor nodes to autonomously determine
connectivity to multiple sink nodes. This protocol
does not require global topology information, nor
the location information, thereby reducing the space
and implementation overhead. However, it is suitable
only for the applications with the small number of
target destinations, because its overhead grows with
the increasing number of destinations.
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Fig. 3. An illustration of the Point-to-Point Cut Detec-
tion (P2P-CD) algorithm. A packet initiated by source
node S reaches the boundary of the cut, vinit in the
middle of the figure. During the Cut Boundary Abstrac-
tion, the boundary of the cut region is detected and
abstracted. Information about the abstracted boundary
is sent to all nodes within the boundary, which aids
them in identifying connection/disconnection from any
other node in the network.

4.2 Point-to-Point Cut Detection

The point-to-point cut detection (P2P-CD) protocol
enables each node in a network to determine the
connectivity to any destination. This protocol executes
in two main steps. In the first step, the Cut Boundary
Abstraction, the boundary of a cut region is identified
and represented as a polygon P = {p1, p2, · · · , pn},
where each element of P is the location of a node
that represents the vertex of P . Consider Figure 3 for
an example. In this figure, the polygon corresponding
to the cut region A is P = {v5, v7, v8, v9}. After the
polygon P is identified, it is broadcast to the nodes
in the cut region corresponding to the polygon P .
In the second step, the Cut Detection phase, nodes
determine whether a destination is reachable based
on the following available information: its location,
the location of the destination, and a set of polygons
P = {P1, P2, · · · , Pn} that the node has received. Note
that a node might receive multiple polygons when it is
involved with multiple cuts (e.g., as we will later see
in Figure 5(a) and Figure 5(b)). Following subsections
discuss the details of each step of the protocol.

4.2.1 Cut Boundary Abstraction

The cut boundary abstraction algorithm aims to ab-
stract the boundary information of a cut region. We
call the nodes surrounding the boundary of a cut re-
gion boundary nodes. Our algorithm uses similar tech-
nique used in [20] to concisely represent the boundary
of a cut region. When a destination is unreachable,
a packet would reach one boundary node, say vinit.
Using the right-hand rule of the face routing, this
packet travels along the boundary of the cut region
until it reaches again vinit, thus detecting the existence
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Algorithm 1 Cut Boundary Abstraction (for vi)
Input: F1, F2, δ, and pi.

1: if vi ̸= vinit then
2: Cut id ← id of initiator.
3: // �δ: a rectangle with width δ.
4: if ∀p ∈ F2 ∪ {pi}, p is in �δ then
5: F2 ← F2 ∪ {pi}.
6: forward.
7: else
8: F2 ← ∅.
9: F1 ← F1 ∪ {the last element in F2}.

10: forward.
11: end if
12: else
13: P ← F1.
14: broadcast P .
15: end if

of a cut [19]. In particular, we call such node vinit
the initiator. The initiator then sends a probing packet
that travels around the boundary of the cut region.
The probing packet contains two fields. The first field
is used to store the locations of the vertices of the
polygon representing the boundary of a cut region.
We denote the set of such locations by an ordered
set F1. The second field contains all the locations of
visited nodes. We denote the locations of the visited
nodes by an ordered set F2.

Algorithm 1 depicts the cut boundary abstraction
phase. Upon receiving the probing packet, a node
marks the ID of the currently detected cut as the node
ID of the initiator. The node then finds a rectangle
with width δ, a system parameter, that can cover all
the locations in the second field, including the location
of the current node. If such a rectangle exists, the
location of the current node is appended to the end of
the second field of the probing packet, and the packet
is forwarded to the next boundary node (Line 2-6).
If such a rectangle does not exist, all the locations in
the second field are deleted, and the last element in
F2 is appended to the end of the first field (Line 8-
9). The current node then forwards the packet to the
next boundary node. Note that, in order to keep the
size of set F2 manageable, if the size of F2 exceeds a
threshold, F2 is emptied and the last element of F2 is
appended to the end of F1. Note that the threshold
is determined based on the maximum packet size in
order to make the set fit in a packet. Finally, when
the probing packet finishes traversing the boundary,
we get a set P = {p1, p2, · · · , pn} in the first field of
the probing packet, representing the polygon covering
the cut region. This information is then broadcast to
the nodes in the cut region (Line 14), and used by the
nodes during the second step of the protocol, namely
the Cut Detection.

Consider Figure 3 for an example. In this figure,
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Fig. 4. An illustration of the false positive. According
to the P2P-CD algorithm, the line connecting node
v2 and v5 becomes one of the edges of a polygon
covering the given cut region. However, if this edge is
used, node v3 is not covered by the polygon, causing
the false positive. The FPE (False Positive Elimination)
algorithm finds a new polygon, the two edges of which
are represented as dotted lines, that makes the false
positive rate be 0%.

source s attempts to send a packet to destination t.
This packet then reaches node vinit and is routed
along the boundary of the cut region A according
to the right hand rule of face routing. The packet
then returns to node vinit starting the cut abstraction
process by sending a probing packet to node v2. When
the probing packet reaches node v6, the first field of
the probing packet contains set F1 = {vinit} and the
second field contains set F2 = {vinit, v2, v3, v4, v5}. The
node v6 then examines if there exists a rectangle with
width δ that can hold all the locations in set F2∪{v6}.
Since there does not exist such a rectangle box, the
points in F2 are deleted and F1 becomes {vinit, v5}.

As discussed, the boundary of a cut region is
compactly represented as a polygon. Despite its con-
cise representation, a polygon, however, might fail
to precisely describe the boundary of a cut region,
causing false positives. Specifically, a false positive
occurs when a polygon fails to cover all the nodes in
a cut region. Figure 4 illustrates a scenario where the
false positive occurs. This figure shows a fraction of
the boundary nodes for cut region A. According to the
cut abstraction phase of the P2P-CD algorithm, nodes
v1, v2, and v5 serve as the vertices of the polygon
representing the boundary of the given cut region.
We note that this polygon, however, fails to cover
node v3 that is outside the polygon; thus, when a
node attempts to send a packet to node v3, it will
determine that node v3 is unreachable, although the
node is reachable, causing the false positive.

In order to eliminate the false positive, our P2P-CD
algorithm is slightly modified at the cost of extra data
storage for saving additional vertices. The proposed
idea, named the FPE (False Positive Elimination), is
simple, yet effective. Instead of constructing a poly-
gon by connecting the two nodes at each end of a
bounding box, we build a polygon by connecting the
edges of bounding boxes that face the outside of a
cut region. This can be easily done by saving the
locations of the previous bounding box, and calcu-
lating the intersecting points with the currently in-
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Fig. 5. Illustrations of multiple cuts. (a) A new cut a −
b− c−d−g−f shares its boundary with the previously
detected cut with the boundary a − b − c − d − e (b)
An independent cut represented as the rectangle with
dotted lines, inside an existing cut, Pold.

vestigated bounding box in the cut abstraction phase.
See Figure 4 for an example. In this example, we use
a series of dotted lines as the edges of the polygon
covering the cut region, rather than using the two
line segments, which are v1v2 and v2v5. In Section 5.3,
we shall investigate the impact of the false positives
and show that this false positive is indeed eliminated
when we adopt the FPE mechanism.

4.2.2 Multiple Cuts

Additional cuts might appear after existing cuts have
been detected. Such a cut either shares the boundary
of previously detected cut(s), or is an independent
cut that does not share its boundary with previously
detected cuts. Figure 5(a) depicts the former case. The
old cut Pold represented by the polygon a−b−c−d−e
shares its boundary with the new cut a−b−c−d−g−f .
In this case, when the probing packet reaches the
boundary nodes of previously discovered cut(s), the
cut ID(s) of previously detected cut(s) is recorded in
the probing packet, if it has not been done so. When
the probing packet returns to the initiator, the set of
recorded cut IDs, called the UPDATE INDEX set, and
the set P representing the polygon for the new cut are
encoded in the broadcast packet, which then is dis-
tributed to the nodes in the cut region. Upon receiving
this broadcast packet with the UPDATE INDEX set,
nodes update their database for the detected cuts.
The details of this update process is described in the
following subsection.

Figure 5(b) illustrates the latter case where a new
cut does not share its boundary with previously de-
tected cuts. In this figure, the rectangle with dotted
lines represents the new cut. In this case, the same
boundary abstraction algorithm is used to describe
the new cut as a polygon. One difference is that when
a probing packet returns to the initiator, the initiator
sets the addition bit of the broadcast packet, so that
the nodes in the cut region add a new polygon to its
database, P.

 

p 

Fig. 6. Example of the ray tracing algorithm, with a
point p determining if it inside or outside a polygon, by
counting the intersection points to the left and right of
a line passing through it. In this example, the number
of intersections to each side is odd, thus the point is
inside the polygon.

4.2.3 Cut Detection

When the cut boundary abstraction phase is finished,
each node in a cut region recognizes the cut boundary
as a polygon, represented as a set P = {p1, · · · , pn}.
Given the locations of source s and destination t, and
the collection of polygons, P, the Cut Detection phase
determines whether destination t is reachable from
source s. To find the connectivity between any pair of
source and destination, we borrow an idea from the
point-in-polygon (PIP) problem in the computational
geometry that finds whether a point is inside a given
polygon or not. There are two well known algo-
rithms to solve this problem: ray casting algorithm
and winding number algorithm [21]. We choose to
use the ray casting algorithm, because the winding
number algorithm involves costly operations [21] that
are not feasible for the sensor motes with constrained
computational capability.

Ray casting algorithm works as follows. Given a
point p, the algorithm finds how many sides of the
polygon intersect with the y threshold of the point p.
If there are odd times of intersections on each side
of p, p is inside the polygon; otherwise, if there are
even times of intersections on each side of p, p is
outside the polygon. Figure 6 illustrates an example.
The point p has 3 intersections on its right side and
3 intersections on its left side; thus, p is determined
to be inside the polygon. We denote the ray casting
algorithm by PIP(P, p), where P refers to a polygon,
and p is the point to be tested. We define that if p is
inside P , PIP(P, p) > 0, otherwise PIP(P, p) < 0.

Algorithm 2 depicts the Cut Detection phase of the
P2P-CD protocol. As we described, the type of the
broadcast packet can be either the update type or
addition type. If the packet is the update type, from P,
we delete the polygons having the cut IDs specified
in the UPDATE INDEX, and add P to P (Line 2-4).
For example, in Figure 5(a), the polygon {a, b, c, d, e} is
deleted and a polygon P = {a, b, c, d, g, f} is added to
P. If the control message is the addition type, it simply
adds P to collection P (Line 6). If there is a packet to
send, the Cut Detection phase tests if the destination
is reachable. Specifically, given the location of the
source, ps, and the location of the destination, pt,
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Algorithm 2 Cut Detection
Input: ps, pt,P and UPDATE INDEX

1: upon receiving the broadcast packet:
2: if update type then
3: P← P \ {Pi}, ∀i ∈ UPDATE INDEX
4: P← P ∪ P .
5: else
6: P← P ∪ P .
7: end if
8: upon having a packet to destination at pt:
9: if ∀P ∈ P, (PIP (P, ps) · PIP (P, pt) > 0) then

10: t is reachable.
11: else
12: t is not reachable.
13: end if

the algorithm checks if the following condition holds
for each P ∈ P: PIP (P, ps) · PIP (P, pt) > 0. If the
condition holds for all P , ps and pt are connected (Line
9-13).

Consider Figure 5(b) as an example. In this figure,
we have two cuts, Pold and Pnew, source s, and two
destinations t1 and t2. Since both s and t1 are inside
Pold, PIP (Pold, ps) · PIP (Pold, pt1) > 0. However,
while s is outside Pnew, t1 is inside Pnew, which
gives PIP (Pnew, ps) · PIP (Pnew, pt1) < 0; thus t1
is not reachable from s. On the other hand, for t2,
PIP (Pold, ps) ·PIP (Pold, pt2) > 0 and PIP (Pnew, ps) ·
PIP (Pnew, pt2) > 0, thereby t2 being reachable from
s.

4.3 Energy Efficient Cut Detection for Multiple
Sinks

As we described, P2P-CD is a suitable protocol for
a network with frequent peer to peer communica-
tions. However, this protocol maybe an overkill for
a network scenario where there are a small number
of target destinations, because this protocol requires
each node to save the information on partial global
topology. For example, in many sensor network appli-
cations, sensor nodes transmit the data with perceived
phenomenon only to a sink node, or multiple sink
nodes. In other words, the number of target destina-
tions is limited. For these applications, we develop a
lightweight cut detection algorithm, which relies on
neither location information, nor the knowledge on
global topology.

The energy efficient cut detection for multiple sinks,
called the RE-CDM, is a more generic solution that
builds on our previous work, RE-CD [8]. RE-CDM
is based on the virtual grid network consisting of
the leaders and the virtual link between them, as in
RE-CD. In RE-CDM, however, multiple sink nodes
are elected as leaders, and each leader node now
maintains a set of states, as opposed to RE-CD, in
which a single state is maintained. Each state value
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Fig. 7. Experimental setup depicting 2,500 nodes
deployed in a 1,000×1,000m2 area and the cut in a
network. A superimposed 8×8 grid is used for selecting
leader nodes for RE-CDM.

represents the connectivity to a sink node. Note that
although multiple sink nodes are typically deployed
in such a way that they cover as many sensor nodes
as possible, thereby being distant with each other, if
we have more than one sink node in the same grid
cell, the one with higher residual energy becomes the
leader. The set of states for multiple sinks are updated
at each iteration of the algorithm. The updated states
are then encoded in the state message, which is then
sent to the neighboring leaders. In essence, RE-CDM
overlays the multiple executions of RE-CD for each
sink, while using a single state message.

We describe RE-CDM more formally. Consider mul-
tiple sink nodes S = {s1, s2, · · · , sn}. Let a set
L = {ℓ1, ℓ2, · · · , ℓn} be the leaders, and N ℓ

i be the
neighboring leaders of a leader ℓi (i.e., |N ℓ

i | ≤ 4).
Each leader node ℓi maintains a set of states, each
of which corresponds to a sink s ∈ S and is denoted
by ℓi(s

k), where k is the iteration count of the RE-
CDM algorithm. At each iteration of the algorithm,
each leader node ℓi /∈ S updates the set S as the
following.

For all s ∈ S, ℓi(s
k+1) =

∑
ℓj∈Nℓ

i
ℓj(s

k)

|N ℓ
i |+ 1

.

Each node ℓi ∈ S update the set S as the following.

For all s ∈ S, ℓi(s
k+1) =

∑
ℓj∈Nℓ

i
ℓj(s

k) + ω

|N ℓ
i |+ 1

Here, ω is a system parameter. A state message is
now sequentially encoded with the states for multiple
sink nodes (i.e., from ℓi(s

k+1
1 ) to ℓi(s

k+1
n )), and sent to

adjacent leaders.
Despite its scalability and energy efficiency, RE-

CDM might not work efficiently for large number of
sink nodes, because the state message size grows, and
may be split into multiple packets depending on the
number of sinks.
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Fig. 8. Illustration of the source of energy consump-
tion. When node 1 has a packet for node 2, node 1
waits until node 2 becomes active at slot 5. Node 1 then
turns on its radio at slot 5 and transmits a packet to
node 2; thus, this packet transmission process requires
one additional active slot (slot 5) besides scheduled
ones.

5 LARGE-SCALE SIMULATIONS

We evaluate the performance of the proposed proto-
cols through simulations. We implement P2P-CD and
RE-CDM in C++, mainly focusing on the topological
behavior of the protocols. We randomly deploy 2,500
sensor nodes in a network of 1,000×1,000m2 region
with a cut, as shown in Figure 7. The communication
radius of a node is varied from 35m to 75m, resulting
in an average number of neighbors from 10.32 to
41.36. We ensure that the network is connected. An
event occurs every 10sec at a random location, and
then a node nearest to the event reports the event
data to a random destination.

For accurate energy consumption estimation, we
consider an asynchronous duty cycle network, where
each node has a randomly generated periodic sched-
ule. Nodes periodically wake up and sleep based on
the schedule. We assume that a node knows about the
schedules of its neighbors, or the parameters used for
the pseudo-random schedule generator like [22] (i.e.,
these parameters are used to deduce the schedules
of its neighbors). In order to coordinate the sched-
ule of a node with its neighbors, we assume that
a local synchronization is implemented. The local
time synchronization can be implemented by using a
MAC-layer time stamping technique [23]. The MAC-
layer time stamping technique achieves the accuracy
of 2.24µs at the cost of exchanging a few bytes of
packet transmissions with its immediate neighbors
every 5 minutes. This accuracy is by far enough for
our asynchronous duty cycle scheme. Each period of
the schedule consists of 100 time slots. The unit time
for each slot is 50ms. The number of time slots during
which a node is active varies according to the duty
cycle ratio, which is a system parameter.

To simulate the energy consumption, we assume
that each node has a radio with 250kbps data rate, and
maximum packet size of 128B, similar to the Zigbee
compliant CC2420 [24]. We consider the following
metrics: total energy consumption, network lifetime,
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Fig. 9. Accumulated energy measured for long time.
The gap of energy consumption between GPSR and
GPSR+P2P-CD comes from the packet transmissions
for unreachable destinations.

false positive rate (a false report of “unreachable
destination”), probing packet size, detection delay,
and control packet overhead. We vary the follow-
ing parameters: δ, communication radius, and duty
cycle ratio. We use GPSR as the underlying routing
protocol, and build different cut detection algorithms
on top of it. We compare GPSR+P2P-CD, GPSR+RE-
CDM, GPSR+Flooding, and GPSR with no cut detec-
tion scheme. The details of experimental results are
described in the following subsections.

5.1 Energy Consumption
In an asynchronous duty cycle network, nodes con-
sume energy when they are awake for either idle
listening, or data transmission. Regardless of the pro-
tocols run on the network, the same amount of energy
is spent for idle listening, because the predefined
working schedules determine the energy consump-
tion for idle listening; thus, we consider only the
data transmission for the following reasons. First, the
current draw for receive mode and transmit mode are
different (the difference depends on a radio module;
for some radio modules, more current is draw for
receive mode). More important reason is that when
a node transmits a packet, it may have to use an
additional slot to wake up its radio. Figure 8 illustrates
this concept. When node 1 attempts to transmit a
packet to its neighbor, node 2, it has to turn on its
radio at slot 5, which was originally scheduled for
sleep. This causes extra energy consumption.

This experiment is designed to see how much en-
ergy P2P-CD can save when P2P-CD is coupled with
GPSR. The communication radius was set to 70m,
δ to 60m, and duty cycle ratio to 1%. We measure
accumulated energy consumption in Joules for GPSR,
GPSR+P2P-CD, and GPSR+RE-CDM, as a function
of operation time. Figure 9 depicts the results. P2P-
CD significantly reduces the energy consumption by
preventing packet transmissions to unreachable des-
tinations. RE-CDM is not much helpful for energy
saving in this simulation scenario, because it detects
a cut with respect to a small set of destinations; in
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Fig. 10. Communication overhead for P2P-CD to
detect a cut. As shown P2P-CD incurs an upfront
cost for detecting the cut, cost that is amortized over
time, when compared with the cost incurred by GPSR
every time a packet is sent towards a non-reachable
destination.

our network setting of 8 by 8 grids, it detects a
cut with respect to 64 nodes. Moreover, the periodic
state message exchanges make RE-CDM less energy
efficient than P2P-CD. However, as we prove later,
for network scenarios with a small set of destinations,
such as a WSN application with multiple sinks, RE-
CDM is as energy efficient as P2P-CD.

The P2P-CD protocol incurs communication over-
head. Specifically, a probing packet is sent along the
boundary of a cut region, and a message contain-
ing the obtained set P needs to be flooded to the
nodes in the cut region. Figure 10 shows how this
control packet overhead affects the energy efficiency.
The abrupt increases in the energy consumption for
GPSR+P2PCD at 10sec and 40sec represent the over-
head for identifying the cuts. Due to this overhead,
consumed energy for GPSR+P2PCD is higher than
GPSR until about 150sec. However, this overhead is
compensated by avoiding unnecessary packet trans-
missions to unreachable destinations; while consumed
energy of GPSR+P2PCD gradually increases, GPSR
has frequently arising rapid increases in the energy
consumption, caused by attempting to send a packet
to unreachable destinations. As a result, after 150sec,
GPSR exhibits higher energy consumption.

5.2 Network Lifetime

Another important issue (in addition to high energy
consumption) caused by a cut in a network, is un-
balanced energy consumption. A packet destined to
an unreachable destination always travels around the
boundary of a cut region, thereby exhausting the
energy of the nodes on the boundary faster than
other nodes. In order to verify this unbalanced en-
ergy consumption, we measure the standard devia-
tion of energy consumption of all the nodes in the
network. Figure 11 depicts the results. As expected,
the unbalance in energy consumption of GPSR is
much worse than GPSR+P2P-CD, and slightly worse
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Fig. 11. Standard deviation of energy consumption
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Fig. 12. Network lifetime for GPSR, GPSR+RE-CDM,
and GPSR+P2P-CD. The cut detection schemes elon-
gate the network lifetime when coupled with an under-
lying routing protocol.

than GPSR+RE-CDM. This unbalance deteriorates as
operation time elapses.

This unbalanced energy consumption directly af-
fects the network lifetime, which is defined as the
elapsed time until a node first dies. In this set of
experiments, we are interested in obtaining the ex-
pected network lifetimes for GPSR, GPSR+RE-CDM,
and GPSR+P2P-CD. For this experiment, we assume
that a sensor node is powered by a single AA battery
which has capacity of 2000mWh, which is a usual
energy source for modern sensor motes. We measure
the network lifetime by varying the communication
radius. As shown in Figure 12, we observe slight
increases in network lifetime for all three algorithms
(GPSR, GPSR+P2P-CD, and GPSR+RE-CDM) as we
increase the communication radius. One reason is that
higher communication radius helps to increase the
network lifetime by using less number of packet trans-
missions, but the effect of communication radius is
almost negligible. Comparing network lifetime among
these three protocols, we note that GPSR has the short-
est lifetime; GPSR+RE-CDM has slightly better life-
time than GPSR; and GPSR+P2P-CD highly improves
the network lifetime. These results conform to the
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are).

distribution of energy consumption in the network.
Higher duty cycle ratios expedite the aging process,

because nodes have to be in the wake-up state for
longer period of time. Figure 13 shows the impact of
the duty cycle ratio on network lifetime. As shown,
as the duty cycle ratio increases, the network lifetime
rapidly decreases. One notable observation is that
the gap in the network lifetime between GPSR and
GPSR+P2P-CD becomes smaller with increasing duty
cycle ratio. A reason is that when the duty cycle ratio
is large, it is more likely that a node sends a packet
to its neighbors by using the predefined working
schedule, instead of using an additional wake-up slot.

5.3 False Positive Rate

A false positive occurs when a node determines that
a destination is unreachable, even though the des-
tination can actually be reached. As we described
previously in Section 4.2.1, this false positive is caused
by the inaccuracy in describing the boundary of a cut
region; in other words, when a polygon representing
the cut boundary cannot cover all the nodes in the cut
region, we observe the false positives. The parameter
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Fig. 15. (a) A cut abstracted with δ = 10 meters. As
shown a smaller δ allows a more precise approximation
of the cut boundary. This is done, however, at the ex-
pense of more points describing the cut boundary, an
overhead. (b) A cut abstracted with δ = 50 meters. As
shown, fewer points/rectangles are used for describing
the cut boundary, at the risk of more false positives, as
shown in Figure 14.

δ can be used to adjust the accuracy of the boundary
description. Smaller δ values permit more precise rep-
resentation of the boundary, while incurring higher
overhead. We measure the false positive rate from
10,000 random source and destination pairs. Figure 14
shows the results. As expected, the false positive rate
increases as the δ value increases; however, even for
small δ values, the false positive persists. In Section
4.2.1, we introduced a FPE (False Positive Elimination)
scheme to eliminate the false positives at the cost of
storage overhead. Figure 14 depicts the results we
obtained after the FPE is applied. As shown, the false
positive is 0% when the FPE algorithm is applied.

5.4 Packet Size
Smaller δ values allow a precise description of a cut
region, because a polygon with more vertices is used
to describe the cut region. However, the size of the
control packet, that is broadcast to nodes in the cut
region, must be large to contain more vertices. In
contrast, larger δ values permit smaller control packet
size, because fewer vertices are used to represent
the cut region. This, however, is done at the cost of
possible errors, because the bounding box with large
width may contain the nodes that do not belong to
the cut region. Figure 15(a) and 15(b) show how the
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Fig. 16. An illustration of the proof for choosing optimal
δ. Given any node, say v1, in a bounding box, we
attempt to find the position of its neighboring node,
say v2, such that δ, the height of the intersection area,
is minimized. The δ is minimized as

√
3
2 · r, when v2

is located as shown in this figure. Thus the width of
a bounding box can be at most

√
3
2 · r; otherwise, a

bounding box may contain a node that is reachable
from neither v1 nor v2
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vertices for the polygon are chosen for different δ
values, and Table II presents the relationship between
the δ values and corresponding number of vertices.

TABLE 2
The size of P , in terms of number of vertices.

δ Cut Region(L) Cut Region(R)
10 69 62
30 16 13
50 12 11

Based on the simulation results, we attempt to de-
termine the appropriate δ value for our experiments.
We note that the largest δ value that does not cause
errors (i.e., finding a bounding box that contains a
vertex not within the cut boundary) is

√
3
2 · r, where r

is the communication radius of a node (See Figure 16
for proof). Therefore, in our simulation settings, we
choose

√
3
2 ·70 ≈ 60 meters as our δ value, because the

default communication radius is 70 meters.

5.5 Detection Delay
Detection delay is defined as the elapsed time be-
tween the occurrence of a cut and the detection of
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Fig. 18. Control packet overhead of P2P-CD and
RECDM. A reactive solution, P2P-CD, has lower con-
trol packet overhead, compared with the RE-CDM, a
proactive solution.

the cut. In RE-CDM, a node detects a cut when its
state converges either to a new positive value, or 0.
As Figure 17 illustrates, RE-CDM requires 7 iterations
until nodes being able to detect a cut, regardless of
the duty cycle ratio. Note that the iteration period of
the RE-CDM was set to 100 seconds. These results
indicate that if we use a smaller iteration period, RE-
CDM would detect a cut faster; but, the control packet
overhead would increase with the smaller iteration
periods.

The P2P-CD algorithm detects a cut when the prob-
ing packet finishes traveling around the boundary of
the cut region, and the set of vertices of the polygon
representing the boundary is broadcast to the nodes
in the cut region. Figure 17 shows the detection delay
for P2P-CD per duty cycle ratio. For larger duty cycle
ratio, a node has more active neighboring nodes. As
a result, larger duty cycle ratio allows the probing
packet to travel faster, and thus reducing the detection
delay, as the figure indicates.

5.6 Control Packet Overhead

A control packet refers to a packet used to detect a
cut. The P2P-CD algorithm has two types of control
packets: the probing packet, and the broadcast packet
used to distribute the polygon to the nodes in a cut
region. In RE-CDM, a control packet is the packet
that carries the state message. In this experiment, we
measure the overhead of this control packet, in the
form of the accumulated number of control packet
transmissions. For this experiment, we fix the duty
cycle ratio to 1%, and delta to 60m; and we vary
communication radius and operation time.

The P2P-CD algorithm is a reactive solution; thus,
once it detects a cut, it does not incur additional
control message overhead, unless different cuts ap-
pear in the network. Figure 18 depicts the results.
As shown, the control packet overhead for P2P-CD
is constant, because the cut has been detected before
100 second (i.e., the time for the first iteration of the
RE-CDM algorithm). On the other hand, the accumu-
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Fig. 19. Energy consumption for a network with a small
number of target destinations. RE-CDM performs well
in this particular network setting, compared with P2P-
CD. The energy consumption of the flooding method
grows fast even in the network with a few sinks.

lated number of control packet transmissions for RE-
CDM continuously increases, because RE-CDM is a
proactive solution that periodically scans the network
for detecting a cut. Figure 18 depicts the results.
In particular, when the communication radius of a
node is smaller, the control packet overhead becomes
higher, because a control packet must be transmitted
over a larger number of hops to travel the same
distance.

5.7 Number of sinks

In the previous experiments, we have focused on a
scenario with N target destinations, where N is the
number of nodes in the network. Now we consider a
new scenario with fewer target destinations ranging
from 1 to 8. Performing simulations under this new
scenario is important because our RE-CDM is specif-
ically designed for a network with a small number
of target nodes (e.g., a wireless sensor network with
multiple sinks). In this set of experiments, we are
interested in how our RE-CDM performs in terms
of energy efficiency when there are a small number
of target destinations. In particular, we compare RE-
CDM with the flooding method, a primitive cut de-
tection algorithm, where each sink node broadcasts a
probing packet throughout the network in order to en-
able nodes detect a cut. We assume that when an event
occurs (i.e., every 10 seconds at a random location
according to the previous experimental settings), each
node reports data to a randomly selected sink node.
We measure the accumulated energy consumption in
Joules after 10,000 seconds of operation time.

Figure 19 depicts the results. Compared with the
scenario with N target destinations, which is shown
in Figure 9, RE-CDM performs significantly better,
having as low energy consumption as P2P-CD. Fur-
thermore, unlike P2P-CD, RE-CDM does not require
nodes to maintain global topology information in
their storages, nor the location information of neigh-
boring nodes. Note that, as RE-CDM does not require

location information, it can be coupled with routing
protocols that are not based on node localization.
Although the energy consumption of RE-CDM would
gradually increase as operation time elapses due to
the periodic state-message exchanges, we believe that
it is a proper solution for the applications where nodes
have limited storage and computational capabilities,
and appropriate localization methods are unknown.

Investigating the energy consumption of the flood-
ing method, the simplest cut detection scheme, al-
lows us to understand where our proposed solutions
stand in terms of energy efficiency. As shown in
Figure 19, the flooding method shows as low energy
consumption as RE-CDM when there is a single target
destination (i.e., a sink). However, if we increase the
number of sink nodes, consumed energy for the flood-
ing method linearly increases, because each sink node
periodically broadcasts a probing packet throughout
the network. For more than 5 sink nodes, the flooding
method performs even worse than when no cut detec-
tion algorithm is used (i.e., the GPSR). Furthermore,
the flooding method suffers from the limitations that
only a part of nodes is able to detect a cut; thus,
this method can only be useful for a network with
very small number of target destinations (e.g., a single
sink node), where only the nodes in a disconnected
network segment are required to detect a cut.

6 CONCLUSIONS

In this article, we introduced a new problem, called
the destination-based cut detection, which extends the
notion of the existing cut detection problem. This
new problem was derived from a novel taxonomy for
cut detection schemes; systematically organizing ex-
isting cut detection algorithms is expected to provide
guidelines for future research on this topic, as well as
improving the understanding of our contributions.

We then proposed two algorithms to address the
destination-based cut detection problem. We first in-
troduced the point-to-point cut detection protocol
(P2P-CD) which enables each node to be able to
detect a cut with respect to any destination node. This
protocol significantly reduces energy consumption
when coupled with an underlying routing protocol
at the cost of the knowledge on partial global topol-
ogy. Our second algorithm, the robust and energy
efficient cut detection for multiple sinks (RE-CDM)
is a more lightweight solution in that it does not
require information on global topology, nor node’s
location information. This algorithm was designed for
network scenarios with a small number of sink nodes.
Through extensive simulations, we showed that both
algorithms achieve more than an order of magnitude
improvement in energy consumption, when coupled
with an underlying routing protocol.
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