
TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 1

GOAL: A Parsimonious Geographic Routing
Protocol for Large Scale Sensor Networks

Myounggyu Won, Wei Zhang and Radu Stoleru

Abstract—Geographic routing is well suited for large scale sensor networks, because its per node state is independent of the network
size. However, due to the local minimum caused by holes/obstacles, the path stretch of geographic routing may degrade up to O(c2),
where c is the path length of the optimal route. Recently, a geographic routing protocol based on the visibility graph (VIGOR) showed
that a constant path stretch can be achieved. The constant path stretch, however, is achieved at the cost of communication and storage
overhead, which makes the practical deployment of VIGOR in large scale sensor networks challenging. To this end, we propose GOAL
(Geometric Routing using Abstracted Holes), a routing protocol that provably achieves a constant path stretch, with lower communication
and storage overhead. To compactly describe holes, we develop a novel distributed convex hull algorithm, which improves the message
complexity O(n log2 n) of state of art distributed convex hull algorithm to O(n logn). The concise representation of a hole is used
by nodes to make locally optimal routing decisions. Our theoretical analysis proves the correctness of the proposed algorithms and
constant-stretch property of GOAL. Through extensive simulations and experiments on a testbed with 42 EPIC motes, we demonstrate the
effectiveness of GOAL and its feasibility for resource constrained wireless sensor networks; specifically, we show that GOAL eliminates
part of communication overhead of VIGOR and reduces the memory overhead of VIGOR by up to 51%.

Index Terms—wireless sensor networks, geographic routing protocols, path stretch

F

1 INTRODUCTION

Geographic routing protocols have attracted significant
attention from the wireless sensor network (WSN) re-
search community, because they are simple and scalable.
In geographic routing, a source node obtains the loca-
tion of a destination node from a location service [1],
or through a hash-function in a data centric storage
scheme [2]. A packet is then forwarded to the neighbor
that is geographically closest to the destination. This
greedy approach allows near-optimal path length in uni-
form and dense networks without obstacles (i.e., network
holes). However, Kuhn et. al. [3] proved that, when holes
are present, the path length may degrade up to O(c2),
where c is the optimal path length, because of the “local
minimum” phenomenon.

In order to bypass the local minimum and ultimately
improve the path stretch, some geographic routing pro-
tocols use the non-local information on a hole (i.e., the
size, location, and shape of a hole) [4][5][6][7]. In these
protocols, holes are identified first. The size and shape
of the identified holes are then propagated to a subset
of nodes, so that these nodes use the information when
they forward a packet to prevent the packet from ending
up in a local minimum. However, unless the information
about a hole is appropriately abstracted, such information

• M. Won, W. Zhang and R. Stoleru are with the Department of Computer
Science and Engineering, Texas A&M University, College Station, TX
77840.
E-mail: {mgwon, stoleru}@cse.tamu.edu, charleyhuman@gmail.com

can only be made known to a limited subset of nodes.
For example, only the nodes located at the boundary of
a hole called boundary nodes, or some of their neighbors
receive such information. Thus, a “reaction” to the local
minimum – for example, switching to the face routing
mode – is only activated when a packet reaches a node
at a local minimum called the stuck node, or some neigh-
boring nodes of the stuck node. This late reaction problem
results in a suboptimal routing path.

Recently, Tan et. al. [8] proposed VIGOR, a geographic
protocol that achieves a constant path stretch. In VIGOR,
a hole is represented as a polygon, which is used to build
a visibility graph, a structure often used in computational
geometry to find the shortest path between a source and
a destination, given obstacles of polygonal shapes. How-
ever, VIGOR suffers from non-negligible protocol-related
communication overhead. First, in order to build the vis-
ibility graph, the locations of all Visibility-based Overlay
Network (VON) nodes (the vertices of the polygons) must
be flooded to all nodes in the network. Second, the VON
nodes must iteratively exchange messages among them-
selves until a complete routing table is constructed. Third,
for each source/destination pair, the source node must
send a control packet to the destination using a default
routing protocol (e.g., GPSR [9]) to find the entry point
among VON nodes, before it begins data transmission.
Furthermore, each node in a network must store the
locations of all VON nodes in a network, incurring the
storage overhead.

In this article, we propose a geographic routing pro-
tocol that achieves a constant path stretch, while signifi-

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 2

cantly reducing the communication and storage overhead
of VIGOR. In our protocol, a hole is compactly described
as a set of extreme points of the convex hull covering
the boundary nodes of the hole. A novel distributed
convex hull algorithm is introduced to build the convex
hull of a hole. To the best of knowledge, this distributed
algorithm improves the message complexity of the state-
of-art distributed convex hull algorithm [10][11], from
O(n log2 n) to O(n log n). A distributed extreme points
reduction algorithm further reduces the size of the set
of extreme points. Consequently, the locations of only a
few extreme points of a convex hull are locally broad-
cast to nodes within h-hops from the hole. Based on
this information on nearby convex hulls, a source node
identifies the interfering holes within h-hops that block
the straight path to the destination. A source node then
computes a set of intermediate destinations that guide
a packet along the locally optimal path. When a packet
reaches an intermediate destination, the set of previous
intermediate destinations are updated iteratively, improv-
ing the routing path. A route to and from the nodes inside
a convex hull is also handled efficiently, for guaranteed
packet delivery. The contributions of this article are as
follows:

• We develop a geographic routing protocol that gen-
erates a path with constant stretch in networks with
holes. The protocol has lower communication and
storage overhead compared with the state-of-the-art
protocol.

• We develop a distributed convex hull algorithm to ef-
ficiently reduce the size of data that describes a hole.
To the best of our knowledge, this distributed convex
hull algorithm has smaller communication overhead,
when compared with the state-of-art algorithm.

• We present a thorough analysis to prove the cor-
rectness and constant path stretch property of our
routing protocol.

• We perform extensive simulations and experiments
on real motes to confirm the effectiveness of our
protocol, and its feasibility for practical deployment
in resource constrained WSN.

2 RELATED WORK

Routing protocols for large scale WSNs can be largely
categorized into geographic routing protocols and hier-
archical routing protocols [12]. Recently, Mao et. al. [12]
proposed S4, a novel hierarchical routing protocol, that
achieves the worst-case stretch of 3 with small per-node
state of O(

√
N), where N is the total number of nodes. Al-

though S4 attains the desirable balance between the path
stretch and size of per-node state, S4 fails to eliminate
the dependence between the per-node state and network
size. In contrast, geographic routing suits particularly
well for resource constrained large-scale WSNs, because

protocol’s state (i.e., the locations of its immediate neigh-
bors) is independent of the network size. However, the
path stretch of geographic routing may degrade up to
O(c2), where c is the optimal path length, due to the local
minimum caused by topological complexities like holes.
Little was known about achieving a constant path stretch
for geographic routing protocols.

Several geographic routing protocols have been pro-
posed to improve the path stretch, by identifying the
forwarding nodes that may lead to a local minimum.
In [5], a node uses the TENT rule to test whether it is
a stuck node or not. If a node determines that it is a
stuck node, it initiates the BOUNDHOLE algorithm to
build a routing path surrounding the hole by discovering
a set of the boundary nodes to guide a packet out of
the local minimum. The boundary nodes are marked
and used as landmarks for a future packet to bypass
the hole, thereby eliminating the need for implementing
face routing. However, the “late reaction problem” (i.e.,
a detour is made at the boundary node) degrades the
path stretch. Arad et. al. [7] use the angle between two
adjacent neighbors to identify the nodes that may forward
a packet to a local minimum. Nodes compare the angle
with a predefined threshold; if the angle is greater than
the threshold, the node is “elevated” so that this node is
avoided by the greedy forwarding process. However, the
decision on whether a node is at a local minimum or not
depends on the source and destination locations. Thus,
such heuristic approach results in the frequent failure of
the algorithm. To remedy this problem, in [6], a network
is divided into k regions. Each node maintains a vector of
size k, where each element indicates whether this node is
a local minimum for the i-th region or not. To determine
the value of each element, the local minimum angle b is
defined, and if the region is covered more than a certain
percentage by this angle, the region is considered to be the
local minimum region. However, none of these protocols
provide the worst case path stretch guarantee.

Several researchers proposed to propagate the informa-
tion on a hole (i.e., the size, shape, and location of a hole)
to a subset of nodes in a limited region. In [4], a stuck
node and its neighbors form an unsafe area of rectangular
shape. The estimated shape of a hole is known to the
nodes in this unsafe area. This distributed information
model is used by forwarding nodes to avoid the local
minimum. Although the propagation of the partial in-
formation on a hole helps improve the path stretch, the
“late reaction” problem persists, preventing the protocol
from providing guaranteed stretch. In [13], a hole is
represented as an ellipse, and the abstracted information
on a hole is broadcast to nodes within h-hops from the
boundary of the ellipse. However, the ellipse often fails to
represent all hole shapes. Both protocols [4][13] contribute
to the reduction of path stretch, but they both fail to
provide a guaranteed constant path stretch.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 3

Recently, Tan et. al. [8] introduced VIGOR, a geographic
routing protocol that guarantees a constant path stretch.
VIGOR finds a near optimal routing path by exploiting
the visibility graph. A hole is represented as a set of VON
nodes, and a virtual overlay network consisting of these
VON nodes guides a packet along the close-to-shortest
path that bypasses holes. One notable aspect of VIGOR,
when compared with S4, is that its per node state is
O(Nvon), where Nvon is the total number of VON nodes,
thereby eliminating the dependency of the per node
state on the network size. However, VIGOR suffers from
communication and storage overhead, which makes the
practical deployment of the protocol in large scale sensor
networks difficult. First, the locations of all VON nodes
must be known to all nodes in a network; Second, each
VON node iteratively exchanges a message containing its
routing table with neighboring VON nodes until the rout-
ing table converges; Third, for each source/destination
pair, the source node must send a probing packet to the
destination by using default routing protocol (e.g., GPSR),
before actual data transmission begins.

In [14], we proposed a geographic routing protocol
that eliminates the communication overhead for con-
structing a routing table and for setting up a routing
path, while retaining the constant path stretch property.
A novel distributed convex hull construction algorithm
abstracts the information on a hole into a set of extreme
points of the boundary nodes of the hole; the abstracted
information is used by forwarding nodes to make a
routing decision that leads to a path with guaranteed
stretch. This article extends our previous work. First,
in a completely new set of simulations we use a more
realistic radio model [15][16], to more accurately estimate
path stretches for different routing protocols. Second,
simulation scenarios are more systematically designed.
We propose a new metric describing the “complexity” of
holes in the network, and we design simulation scenarios
in an increasing order of this new metric. Third, we imple-
mented our proposed routing protocol on mote hardware
and performed experiments on a testbed consisting of
42 EPIC motes. In addition, in Section 7.3, we identify
a practical issue for geographic routing protocols that
achieve a constant stretch. Specifically, the delivery ratio
for such protocols may significantly degrade when data
rate is relatively high, because such routing protocols
rely on a single best path. Thus, this article introduces a
new research problem called constant path stretch multi-
path routing, where, depending on the data rate, the
routing protocol must offer multiple paths, each ensuring
a guaranteed path stretch.

3 PRELIMINARIES

In this section, we define the notations and terms used
throughout this article. Figure 1 illustrates these no-
tations and terms. We consider a dense wireless sen-

s

t

Interfering hole

pe
1 pinit

pe
2

pe
3 pe

4

pe
5

Boundary node

Convex hull

Fig. 1. Illustration of notations and terms.

sor network, consisting of N nodes, denoted by a set
V = {v1, v2, ..., vN}, uniformly distributed in a two
dimensional space. We assume that each node knows
its location, which is given as two-dimensional coordi-
nates, say (x, y). We further assume that the coordinates
(x, y) for each node are unique; that is, we assume that
multiple nodes cannot be deployed at the exactly same
location. There are m holes in the network, denoted by
H1,H2, ..., Hm. Each hole Hi is surrounded by a set of
boundary nodes, denoted by P i = {p1, p2, ..., pn}, pj ∈ V . A
hole is either a closed cycle (p1 = pn), or a chain (p1 ̸= pn)
that forms a cycle with the outer boundary of a network.
We define one boundary node in each set P i, called the
initiator, as follows:

Definition 1: An initiator, denoted by pinit, is a bound-
ary node in P i with the highest y coordinate. If there are
several nodes with the same highest y coordinate, the one
with the lowest x coordinate among them is the initiator
pinit. �

A hole Hi is represented as a set of extreme points
of the convex hull covering the set of boundary nodes
P i; this set of extreme points is denoted by P i

e =
{p1e, p2e, ..., pne } (i.e., P i

e ⊆ P i), where the extreme point
pje is defined as follows (Note that we will use the terms
“node” and “point” interchangeably):

Definition 2: An extreme point is the corner point of a
convex hull.

A path between source s and destination t is denoted
by
−→
st , and the length of the path (i.e., as the number of

hops) between s and t is denoted by |−→st |. A set of useful
notations are as follows:

Definition 3: Given any two points p and q, L(−→pq) is the
set of points on the left hand side of a vector −→pq, and R(−→pq)
represents the set of points on the right hand side of −→pq.

�
Given a path

−→
st , the interfering holes are the holes that

intersect with line segment st. The interfering hole can be
formally defined as follows:

Definition 4: Given a path
−→
st , a hole represented by a

set of extreme points, Pe, is called the interfering hole iff
there exists some pke ∈ Pe, 1 ≤ k ≤ |Pe|−1 such that pk−1

e ∈
L(st) and pk+1

e ∈ R(st), or pk−1
e ∈ R(st) and pk+1

e ∈ L(st).
�

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 4

In particular, we define that two nodes are visible to each
others iff there are no interfering holes between them.

4 GOAL: GEOMETRIC ROUTING USING
ABSTRACTED HOLES

This section provides the details of the proposed ge-
ographic routing protocol. Starting from the overview
of the protocol, the following subsections describe the
details of each component of the protocol.

4.1 Protocol Overview
GOAL consists of two main components: hole abstrac-
tion and packet forwarding. The objective of the hole
abstraction process is to concisely represent holes in a
network. In this process, a hole is represented as the
convex hull of the boundary nodes surrounding the hole.
The hole abstraction process is comprised of three phases.
In the first phase, boundary nodes surrounding a hole are
identified. The second phase constructs the convex hull of
the boundary nodes for each hole; specifically, this phase
finds a set of extreme points from the boundary nodes by
using a probing packet that makes a single traversal along
the boundary of a hole. In the last phase, the locations of
extreme points are broadcast to nodes within h-hops from
each hole.

When the hole abstraction process finishes, each node
knows the locations of extreme points for holes within h-
hops from it. Nodes use these locations to make a routing
decision. To be more specific, a source node identifies
interfering holes and runs our forwarding algorithm to
find an intermediate destination among all the extreme
points that belong to the interfering holes. The source
node then sends a packet to the intermediate destination;
upon receiving the packet, the node at the intermediate
destination runs the same forwarding algorithm to de-
termine the next intermediate destination. This process is
repeated until the packet reaches a destination. The de-
tails of the two components are presented in the following
subsections.

4.2 DCC: Distributed Convex Hull Construction
This section describes the details of the hole abstraction
process. We adopt the boundary node detection scheme
used in VIGOR [8] for implementing the first phase of this
process. This boundary node detection scheme, when it
is done, allows each boundary node to have the notion
of a left and right neighboring boundary node. Once
boundary nodes are found, we select the initiator among
the boundary nodes for each hole. If boundary nodes
form a cycle, pinit is elected using an existing leader
election algorithm on a ring topology, which has message
complexity O(n log n), where n is the number of boundary
nodes [17]. This leader election algorithm is based on two
assumptions: (1) each node has unique ID; and (2) each

Algorithm 1 DCC (code for pinit)

1: if hop count = 0 then
2: Pe ← Pe ∪ {pinit}
3: send a probing packet in counter-clockwise.
4: else
5: if |Npi | = 1 or pinit ∈ R(

−−−−→
p
|Pe|
e p1) then

6: terminate.
7: end if
8: end if

Algorithm 2 DCC (code for pi)

1: for each ple ∈ Pe, 1 ≤ l ≤ |Pe| do
2: if ∀m, l + 1 ≤ m ≤ |Pe|, pme ∈ L(

−−→
plepi) then

3: Pe ← Pe \ {pl+1
e , pl+2

e , ..., p
|Pe|
e }

4: end if
5: end for
6: if pi ∈ R(

−−−−−→
p
|Pe|
e pi+1) then

7: Pe ← Pe ∪ {pi}
8: // EPRA
9: if |Pe| > Threshold then

10: find picrs with minimum dicrs
11: pie ← picrs
12: Pe ← Pe \ pi+1

e

13: end if
14: // End of EPRA
15: forward a probing packet to pi+1.
16: else
17: forward a probing packet to pi+1.
18: end if

node has the notion of a left and right neighbor. The
first assumption corresponds to the unique coordinates
of each node. The second assumption is satisfied by
the boundary node detection scheme. If boundary nodes
form a chain, one of the two boundary nodes at each
end of the chain is elected as pinit. Specifically, if node
p finds that it is the boundary node at the end of the
chain by checking the number of neighboring boundary
nodes, node p sends a message containing its coordinates
to boundary node q at the other end of the chain. If node
q’s y coordinate is greater than node p’s y coordinate,
node q becomes pinit. If node q’s y coordinate is the same
as node p’s y coordinate, x coordinates are compared, and
if node q’s x coordinate is smaller, then node q elects itself
as pinit.

Once pinit is elected, pinit starts the DCC algorithm.
Algorithm 1 describes the pseudo code for pinit. pinit
adds its location to the set Pe as the first extreme point
p1e, and piggybacks the set Pe on a probing packet. This
packet is sent to pinit’s left neighboring boundary node,
starting to traverse the boundary nodes of the hole in
a counter-clockwise direction (Line 2-3). Upon receiving

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 5

pi+3

pe
l

pi+1

pi

pi+2

Hole

Fig. 2. Illustration of DCC.

Pe

1

Pe

2

Pe

3

Pe

4

Pe

5

Pe

6

Pcrs

Pcrs

 1

2

dcrs

 2

dcrs

 1

Fig. 3. Illustration of EPRA.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Y
 (

m
e

te
rs

)

X (meters)

Boundary point
Extreme point

(a)

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Y
 (

m
e
te

rs
)

X (meters)

Boundary point
Extreme point

(b)

Fig. 4. (a) The “tight” set of extreme points; (b) reduced
extreme points.

the packet, a boundary node pi examines whether it is an
extreme point, by executing the code for pi depicted in
Algorithm 2.

Figure 2 illustrates an example describing how extreme
points are identified. For each boundary node pi, if
pi ∈ R(

−−−−→
plepi+1), where ple is the most recently selected

extreme point, then pi is the farthest (w.r.t. the distance
the probing packet traveled) visible boundary node from
ple so far, because next boundary node pi+1 is not visible
from ple; thus, pi is selected as the next extreme point
and added to the set Pe; pi then forwards the probing
packet containing the set Pe to the next boundary node
pi+1 (Line 6-8). Note that, at this point, Pe is {ple, pi}, and
the most recent extreme point p|Pe|

e is pi. Similarly, pi+1 is
added to the set Pe, because pi+1 ∈ R(−−−−→pipi+2) However,
pi+2 is not an extreme point, because pi+2 /∈ R(−−−−−→pi+1pi+3).
Thus, so far, Pe = {ple, pi, pi+1}. Each time the DCC
algorithm checks whether a given boundary node is an
extreme point (i.e., the farthest visible node from the most
recently selected extreme point), the DCC algorithm also
ensures that the set of extreme points Pe is updated when
the current boundary node is farthest from any existing
extreme point in the set Pe. For example, if a boundary
node pi+3 that is visible from ple is found, all previous
extreme points identified after ple (i.e., pi and pi+1) are
deleted from the set Pe (Line 1-5).

The above process is repeated until the probing packet
either returns to the initiator, or reaches the end of
the chain (code for pinit: Line 5-7). The DCC algorithm
requires a single traversal of the probing packet; thus,

S

t

m3
m2

m1

The larger convex hull
P2

P1

Interfering Holes

(a)

S

m1

t …

P1

P2
t '

Interfering Hole

(b)

Fig. 5. Illustration of GOAL: (a) Steps 1-4; (b) Step 5.

together with the pinit election procedure, the message
complexity is O(n log n), a better bound than the message
complexity O(n log2 n) of the currently known distributed
convex hull algorithm on a ring topology [10][11].

The DCC algorithm generates a “tight” convex hull.
This means that for a “smooth” hole, the DCC algorithm
might generate many extreme points (e.g., if the hole is
a perfect circle, all the boundary nodes will be selected
as extreme points). A large number of extreme points
will degrade the system performance; thus, in some cases,
the number of extreme points must be controlled. To this
end, we develop the Extreme Points Reduction Algorithm
(EPRA). EPRA limits the total number of extreme points
by a user defined threshold. It does not incur additional
communication overhead, because it operates as part of
the DCC algorithm.

EPRA is embedded in the DCC algorithm, as shown in
Algorithm 2 (Line 8-14). Figure 3 illustrates an example
that shows how EPRA works. We define picrs as the
intersection of two lines piep

i+1
e and pi+2

e pi+3
e , where 1 ≤

i ≤ |Pe|, and p
|Pe|+1
e = p1e, p|Pe|+2

e = p2e, The Euclidean
distance | ⊥ (picrs, p

i+1
e pi+2

e)| denoted by dicrs, where
⊥ (p, uv) is a line segment connecting p and p’s projection
on line uv, is computed for each picrs. When the probing

packet reaches point pj ∈ R(
−−−−−−→
p
|Pe|
e pj+1), a candidate for an

extreme point, and the number of extreme points found
so far is greater than the predefined threshold (Line 9),
the picrs values for previously found extreme points are
computed; and picrs with the smallest corresponding dicrs
value is assigned as a new extreme point; and existing
extreme points pi+1

e , and pi+2
e are removed from Pe (Line

10-12). This process is repeated as the probing packet tra-
verses the boundary nodes. Figure 4(a) shows an example
of the extreme points generated by the DCC algorithm,
and Figure 4(b) depicts the results when DCC algorithm
is integrated with EPRA.

When the DCC algorithm completes, the initiator for a
hole has the locations of all extreme points for the hole.
The initiator then broadcasts these locations to nodes
within h-hops from the hole.

4.3 Forwarding Algorithm

When the hole abstraction process finishes, the locations
of extreme points are made known to nodes within h-

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 6

′
1

m

1
m ′′

3
H

2
H

1
H

1
m

s t

Fig. 6. Illustration of recur-
sive runs of our routing algo-
rithm.

d

1
m

δ
1

H

α
′t

v

s t

δ ′

(a)

d

1
m

δ
1

H

α
′t

v

s t

A

B

δ ′

(b)

v

t

R

u

w

a

b

c

d

(c)

Fig. 7. (a) Symbols for correctness proof; (b) bounding region representing possible
locations for intermediate destinations; (c) final bounding region R.

hops from a hole. Using this information, source node s
makes a routing decision by following the steps described
below:
Step 1: Source s identifies interfering holes based on the
locations of received extreme points, source s, and desti-
nation t. If there is no interfering hole, source s forwards
a packet using a geographic forwarding algorithm.
Step 2: If there are interfering holes, source s computes
a “larger convex hull” of the set of points P consisting
of the extreme points of the interfering holes, source s,
and destination t. Figure 5(a) shows an example of such
“larger convex hull”. This new convex hull can be easily
constructed by applying an existing centralized convex
hull algorithm to the set P [18]. Source s then considers
two possible paths: one along the upper part of the hull,
denoted by P1 in Figure 5(a), and the other path along
the lower part of the hull, denoted by P2.
Step 3: Source s selects the shorter path between P1

and P2. Source s then uses the extreme points along the
selected path as the intermediate destinations. This step is
depicted in Figure 5(a) with the intermediate destinations,
denoted by m1,m2, and m3.
Step 4: In this step, source s checks whether there exist in-
terfering holes for path −−→sm1. If there is no interfering hole,
the packet is forwarded to m1 using simple geographic
forwarding. Otherwise, Step 5 is executed, where new
intermediate destinations are found for path −−→sm1. Upon
receiving the packet, m1 becomes a new source s; and
the forwarding algorithm reruns from Step 1, to reflect
the new vision of m1.
Step 5: Source s first uses Steps 1 and 2 to find the two
possible paths connecting s and m1. Figure 5(b) shows
such paths. If the length of one path is longer than |st′|+
|t′m1|, source s selects the other path. If both paths are
shorter than |st′| + |t′m1|, the path that is closer to line
sm1 is chosen. Source s then sends a packet to m1 using
Step 4.

Now we show that GOAL has low computational
overhead to justify the feasibility for practical deploy-
ment of GOAL. For Step 1, each set of extreme points
P i
e is scanned to check whether any hole Hi within h-

hops intersects with line segment st. The computational
complexity of Step 1 is thus O(Next), where Next is the
total number of extreme points in the network. Step 2

can be easily implemented using an existing centralized
convex hull algorithm. We note that the best performance
of currently known centralized convex hull algorithms
is O(Next logNext). The worst case happens when all
holes interfere with path

−→
st . Such an extreme case rarely

happens, making the average complexity of GOAL lower
than O(Next logNext).

However, as shown in Figure 6, Steps 4 and 5 of the
forwarding algorithm might be recursively run if there is
an interfering hole, H2, for path −−→sm1, then another inter-
fering hole, H3, for path

−−→
sm′

1, and so on. In Section 5.2, we
will show that the number of such iterations is bounded
by a constant C. Consequently, the computational com-
plexity of GOAL for each node is O(Next logNext).

5 GOAL PROTOCOL ANALYSIS

5.1 Correctness of Convex Hull Construction
This section proves the correctness of the DCC algorithm;
that is, we shall show that given a hole (i.e., a set of
boundary nodes), our algorithm finds all extreme points
that belong to the convex hull of the hole’s boundary
nodes. We first show that the initiator node is an extreme
point.

Lemma 1: pinit is an extreme point.
Proof: If boundary nodes form a chain, the claim trivially
holds. So, we consider only the case where boundary
nodes form a cycle. Assume, by contradiction, that pinit
is not an extreme point. By definition, the y-coordinate of
pinit is larger than any other extreme points. Thus, pinit is
not covered by the convex hull, which is a contradiction.
Note that if there is an extreme point with the same y-
coordinate as pinit, the x coordinates of all extreme points
are greater than pinit. Thus, pinit is not covered by the
convex hull, a contradiction. �

As described in Section 4.2, the DCC algorithm searches
for the farthest visible node from the last discovered
extreme point. The following lemma shows that such
farthest visible node is the next extreme point.

Lemma 2: Given an extreme point pie, the farthest visi-
ble boundary node from pie, say pi+1

e , is the next extreme
point.
Proof: Assume by contradiction that pi+1

e is not the next
extreme point; that is, there exists an extreme point (pi+1

e)′

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 7

that is closer to pie than pi+1
e . If (pi+1

e)′ ∈ L(
−−−−→
piep

i+1
e), a hole

is reshaped as a concave hull. If (pi+1
e)′ ∈ R(

−−−−→
piep

i+1
e), or if

(pi+1
e)′ is on the line piep

i+1
e , then pi+1

e is not visible from
pie. �

The following lemma shows that the farthest visible
node for the last extreme point is the initiator, creating a
cycle of extreme points.

Lemma 3: pinit is the farthest visible boundary node of
pne when Pe = {p1e, p2e, ..., pne }.
Proof: Since the y-coordinate of pinit is the highest among
all boundary nodes (or the x-coordinate of pinit is the
lowest among all boundary nodes), all boundary nodes
on pinit’s left hand side are not visible from pne . Thus, pinit
is the farthest visible node from pne . �

Now we are ready for the correctness proof.
Theorem 1: Given a hole Hi, DCC finds all extreme

points, say P i
e = {p1e, p2e, ..., pne }, of the convex hull cover-

ing the boundary nodes of Hi.
Proof: By Lemma 1, p1e = pinit, and subsequent extreme
points are determined by Lemma 2. Lastly, by Lemma 3,
p1e is the farthest visible node from pne . Thus, connecting
all pie, 1 ≤ i ≤ n (i.e., p1e - ... - pne - p1e), we get a convex hull.
Now we prove that there are no more extreme points.
Assume by contradiction that there is one more extreme
point in Pe. Without loss of generality, assume that a point
p′e is between two extreme points, pie and pi+1

e for some
i, 1 ≤ i ≤ |Pe|−1. By Lemma 2, pi+1

e is the farthest visible
node of pi. Consider the case where p′e ∈ L(

−−−−→
piep

i+1
e). In

this case, the resulting polygon becomes concave. If p′e
∈ R(

−−−−→
piep

i+1
e) or p′e is on the line piep

i+1
e , then, pi+1

e is no
longer visible from pie. �

5.2 Correctness and Constant Path Stretch of GOAL
In this section, we prove the correctness of GOAL, and
show that a path generated by GOAL has a constant path
stretch. Consider path −−→sm1 in Figure 7(a), where m1 is the
first intermediate destination for path P1 on the upper
hull of the “larger convex hull” (recall Figure 5(a)), and
H1 is an interfering hole for path

−→
st . Before we present

our main proof, we first define some symbols and their
geometric properties. Let α be the angle between two line
segments sm1 and st. The range of α is 0 ≤ α < π, because
if α > π, then m1 would have been in R(−→st), being a
point for path P2, a path on the lower hull of the “larger
convex hull”. The term d refers to the Euclidean distance
from source s to the first interfering hole (i.e., the length
of line segment st′). d is smaller than r · h, where r is the
communication radius of a node, and h is the number
of hops within which the abstracted information about
hole H1 is broadcast. δ represents the maximum height
of an interfering hole for −−→sm1. Note that the height of an
interfering hole for −−→sm1, denoted by δ′, is smaller than δ,
because if not, s will choose a path s− t′ −m1. δ can be
expressed as d sinα, where 0 ≤ α ≤ π.

Theorem 2: GOAL is correct.
Proof: In order to prove guaranteed packet delivery, it
suffices to show that a packet is successfully routed
from source s to its first intermediate destination m1,
because when a packet arrives at the first intermediate
destination m1, m1 becomes source s; and s applies the
same forwarding algorithm from Step 1 to forward a
packet to its next intermediate destination. Therefore, if
we prove a successful delivery from s to m1, without
loops or arbitrarily long paths, a guaranteed delivery can
be proved by induction.

The height of an interfering hole δ′ for path −−→sm1 must
be smaller than δ, because otherwise such a hole would
have been detected as an interfering hole for path

−→
st

(i.e., δ′ ≤ δ). Therefore, we obtain the upper bound for
the possible positions of a new intermediate destination,
which is depicted as a dotted line A in Figure 7(b).
Next let point v be the new intermediate destination that
belongs to the interfering hole for −−→sm1. One observation
is that |sv|+|vm1|must be smaller than d+|t′m1|, because
if |sv|+ |vm1| > d+ |t′m1|, then s would have selected a
path s → t′ → m1. Thus, the possible locations of a new
intermediate destination (i.e., the location of point v) must
be bounded by an ellipse denoted by B having s and
m1 as foci and passing through point t′. Considering the
two boundaries we computed and the range of the angle
between sm1 and sv (i.e., 0 to π), the possible locations of
a new intermediate destination are bounded by region R
as shown in Figure 7(c). This region cannot be arbitrarily
large, since δ is at most d which depends on the constant
parameter h. �

Theorem 3: GOAL has constant stretch.
Proof: Without loss of generality, we represent our net-
work as a Unit Disk Graph (UDG). More precisely, we
adopt the k bounded degree unit disk graph where the
degree of each node is bounded by k [19]. However, k
bounded degree unit disk graph can be constructed from
a general unit disk graph [3].

As shown in Theorem 2, for any pair of intermediate
points u and v, including source s and destination t,
possible locations for an intermediate destination for path
−→uv are bounded by some region R. According to Kuhn
et. al. [3], the total number of nodes NR in region R is
bounded by (k + 1) 8π (A(R) + p(R) + π), where A(R) is
the area of region R, and p(R) is the perimeter of region
R. Thus, the total number of nodes in R is bounded as
follows:

NR ≤ (k+1)
8

π
{(3

2
d sinα+2)|uv|+2d sinα ·(d+1)+6d+π}

≤ (k + 1)
8

π
{(3

2
d+ 2)|uv|+ 2d2 + 8d+ π} (0 < α < π)

≤ (k + 1)
8

π
{(3

2
r · h+ 2)|uv|+ 2d2 + 8d+ π} (d < r · h).

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 8

t

1

hole

h

d >> 1

d/2

d - h

A

B

C

s

Optimal path

Path of GOAL

(a)

t

1

hole

h

d >> 1

d/2

d - h

A

Bs

R δ
δ

(b)

Fig. 8. (a) the single-hole case; (b) the multi-hole case.

By the assumption of dense and uniform distribution of
nodes and the property of greedy forwarding, a packet is
forwarded outward from a point s at each step of the
algorithm. This implies that each node in region R is
visited at most once. Thus, the total number of hops HR

in R is bounded by NR (i.e., HR ≤ NR).
Now consider all (u, v) pairs between

−→
st , and assume

that the system parameter h is chosen as the maximum
hop count of the network so that all nodes in a network
know the locations of extreme points. The total number
of hops from s to t, Hst is then given as follows:

Hst ≤
∑

(u,v)∈−→
st

[(k + 1)
8

π
{(3

2
r · h+ 2)|uv|+ 2d2 + 8d+ π}].

≤ ((k + 1)
8

π
{(3

2
r · h+ 2)

∑
(u,v)∈−→

st

|uv|+ 2d2 + 8d+ π}.

where
∑

(u,v)∈−→
st
|uv| is the shortest path in the Visibility

Graph [20]. By [8], the shortest path between s and t in
the Visibility Graph is bounded by some constant factor
of Euclidean distance between s and t as the following:∑

(u,v)∈−→
st
|uv| ≤ 1

1−sin(π
ϵ)
|st|. Therefore, we get:

Hst ≤ C1|st|+ C2.

C1 = (k + 1)
8

π
(
3

2
r · h+ 2)

1

1− sin(πϵ)
.

C2 = 2(r · h)2 + 8(r · h) + π.

�

5.3 Average Path Stretch of GOAL

We showed that the worst-case path stretch of GOAL is
constant. Now we theoretically analyze the average path
stretch of GOAL when the system parameter h can vary.
In this analysis, we consider a d × d square region in
which nodes are uniformly and densely deployed (i.e.,
a path between two nodes can be thought of as a line
segment connecting the two nodes). This analysis for a
network region of square shape can be easily extended to

a rectangular-shaped network; and arbitrarily shaped net-
work region can be approximated by a rectangular shape.
We assume that each node has circular communication
range with radius 1, and holes are abstracted as convex
hulls.

We first consider the case where there is a single hole
in a network. As shown in Figure 8(a), the area of triangle
△ABC, which represents the degree of deviation from the
optimal path, are maximized when: i) source s is located
in the middle of one side of the square; ii) destination t
is located in the middle of other side of the square that
faces the side that has s; and iii) the hole with width 1
is located along the side that has t. The following lemma
proves the average path stretch of GOAL for the single-
hole case.

Lemma 4: The average stretch λ of GOAL for the single
hole case is 1 + 1

1+
√
5

.

Proof: The path length of optimal path is
√

d2

4 + d2 + d
2 ,

and the path length of GOAL is (d− h) +
√

d2

4 + h2 + d
2 .

Thus, the path stretch is f(h) =
(d−h)+

√
d2

4 +h2+ d
2√

d2

4 +d2+ d
2

, and the

average path stretch λ for input h is given as follows:

λ =

∑d
h=1 f(h)

d
≤ 1 +

1

1 +
√
5

because 1
(
√
5+1)d

<< 1 and
∑d

h=1

√
d2

4 +h2+ d
2√

d2

4 +d2+ d
2

≤ d. �

Now we investigate the average stretch for the multi-
hole case. A key observation is that the multi-hole case
can be considered as a series of single-hole cases for each
interfering hole for

−→
st for the following reasons: (1) each

intermediate destination makes a new routing decision by
rerunning the forwarding algorithm, and (2) if there are
more than two interfering holes within h-hops, they are
considered as a single convex hull covering all the holes.
Consider Figure 8(b). When a packet reaches a node at B,
the packet is detoured to the intermediate destination at
A. One difference from the single-hole case is that there
might be other holes that interfere with the path from B
to A. However, as proven in Theorem 2, the deviation
of the path

−−→
BA is bounded by the region R. Thus, the

average stretch of path
−−→
BA, λ′ becomes:

λ′ =

∑d
h=1

(d−h)+

√
d2

4 +h2+

√
d2

4 +h2√
d2

4 +d2

d
≤ 2 +

1√
5
≈ 2.5.

Using this property, we obtain the following result.
Theorem 4: The average path stretch of GOAL is 2+ 1√

5
.

Proof: Given source s and destination t, assume that s
visits n intermediate destinations, denoted by i1, ..., in.
The average path stretch from s to the first intermediate
destination i1 is at most 2.5. Thus, the path length of

−→
si1 is

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 9

GPSR

GOAL

(a)

GPSR

GOAL

(b)

GPSR

GOAL

(c)

GPSR

GOAL

(d)

Fig. 9. Different hole deployment schemes: (a) hole Scenario 1; (b) hole Scenario 2; (c) hole Scenario 3; and (d) hole
Scenario 4; These hole schemes are arranged in an increasing order of the concavity of deployed holes.

2.5d1, assuming that optimal path length is d1. Now we
consider the path

−→
i1t and the possible interfering holes

for the path as a single-hole case. We similarly find that
the path length of

−−→
i1i2 is at most 2.5d2, where d2 is the

optimal path length of
−−→
i1i2. If we repeat this process for all

the remaining intermediate destinations, the total average
path stretch for

−→
st is 2.5(d1+···+dn−1)+dn

d1+···+dn
≤ 2.5. �

5.4 Discussion

It is important to remark that the constant and aver-
age path stretch results we have proved for GOAL are
when source and destination nodes are outside convex
hulls, which is precisely what our motivating applica-
tion requires. More precisely, we are developing a dis-
aster management application [21] consisting of WSN,
adhoc and delay tolerant networks. In our application,
and many others, holes typically have “regular” shapes,
thus having tight convex hulls. This results in very few
nodes falling inside convex hulls. In order to handle
the source/destination node inside a convex hull, our
GOAL protocol uses the cycle of boundary nodes to
guide a packet to either leave a convex hull, or reach
the destination inside a convex hull (it is important to
remark that the constant and average path stretch bounds
do not apply to this special situation). There are three
cases GOAL considers:

Case 1: Source s is inside a convex hull. Source s
computes the shortest path based on the GOAL routing
protocol, and it sends the packet to the first intermediate
destination. If source s has a clear path to the first inter-
mediate node, the packet is routed to the first intermedi-
ate destination by using greedy forwarding. However, if
the packet is blocked by a hole, then the packet would
reach one of the boundary nodes. The packet then starts
a counter clockwise traversal along the boundary nodes
until greedy routing to the first intermediate node can be
resumed. Upon receiving the packet, the first intermedi-
ate destination resumes the GOAL routing.

Case 2: Destination t is inside a convex hull. This case
is similarly handled as Case 1. A packet is forwarded
along a set of intermediate destinations previously de-
termined by our routing protocol. Upon reaching the last

intermediate destination, the packet is greedily forwarded
to destination t. If the last intermediate destination has a
clear path to destination t, geographic forwarding is suf-
ficient for the packet to reach the destination. Otherwise,
the packet would reach one of the boundary nodes. Then,
the packet starts traversing the set of boundary nodes in
a counter clockwise direction until greedy forwarding to
destination t can be resumed.

Case 3: Both source s and destination t are inside
convex hulls. This case can be simply handled as a
combination of Case 1 and Case 2.

An idea for handling all possible source/destination
pairs in a cohesive manner (i.e., including
source/destination inside convex hulls), which we
are currently exploring, is to use visibility-graph-based
routing technique, i.e., VIGOR, only for routing a packet
inside a convex hull; conceptually, the idea is to decompose
the global visibility graph into multiple subgraphs, each
subgraph representing the inner structure of each convex
hull; the smaller size of the visibility graph reduces the
communication overhead for building routing tables, and
for setting up a routing path. However, this idea faces
some challenges: first, it requires higher implementation
overhead, because we need to combine two independent
routing protocols into a resource constrained node; thus,
extracting common features of the two routing protocols,
removing conflicting or unnecessary part of the protocol,
and efficiently merging them are important to design
an efficient routing protocol; second, this idea fails to
completely remove the communication overhead of
VIGOR. Thus, the development of this idea remains as
our future work.

6 SIMULATION RESULTS

In this section we present performance evaluation results
of our protocol executing in large scale sensor networks.
These large scale sensor network results are obtained
through simulations. In Section 7 we will provide exper-
imental results for our GOAL protocol, obtained through
a real hardware implementation and evaluation a real
testbed consisting of 42 EPIC motes.

We implemented VIGOR [8], GOAL, GPSR [9],
GOAFR+ [22], and the centralized shortest path routing

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 10

 0

 200

 400

 600

 800

 1000

Scenario1 Scenario2 Scenario3 Scenario4

T
o
ta

l
n
u
m

b
e
r

o
f
tx

 o
n

 p
e
ri
m

e
te

r
ro

u
ti
n
g
 m

o
d
e
 (

K
)

Fig. 10. Total number of packet transmissions in
perimeter-routing mode. This measure represents the de-
gree of concavity of a hole.

 40

 30

 20

 10

 0

 10

 20

 30

 40

 40 30 20 10 0 10 20 30 40

Y
 (

m
e

te
rs

)

X (meters)

DoI=0.0
DoI=0.2

(a)

 40

 30

 20

 10

 0

 10

 20

 30

 40

 50

 40 30 20 10 0 10 20 30 40

Y
 (

m
e

te
rs

)

X (meters)

DoI=0.0
DoI=0.4

(b)

Fig. 11. Illustrations of radio ranges for different DOI
values: (a) Radio range with DOI=0.2; and (b) Radio range
with DOI=0.4. We adopt a radio model based on the
degree of irregularity (DOI).

protocol) in C++, since we are focusing on the topological
behavior of routing protocols. For this set of simulations,
we randomly deployed 3,000 nodes in a two dimensional
network of 1,000×1,000m2 region. Holes with varying
sizes and shapes are strategically designed; specifically,
we considered four network configurations, each having
different degrees of concavity of deployed holes, as shown
in Figures 9(a), 9(b), 9(c), and 9(d). The degree of con-
cavity is quantified by measuring the total number of
packet transmissions in perimeter-routing mode, given
the data transmissions between randomly selected 10,000
source/destination pairs. Figure 10 shows the degree of
concavity for each network configuration. As shown, the
four network scenarios are arranged in the increasing
order of the concavity of the deployed holes.

In modeling the physical layer of each node, we
adopted the radio model from [15][16]. This model is use-
ful to account for the realistic communication channels.
He et. al. [15][16] defines the degree of irregularity (DOI)
as the maximum radio range variation in the direction
of radio propagation. Figure 11(a) and Figure 11(b) show
the radio range for DOI=0.2 and DOI=0.4, respectively.
The default communication radius was set to 30m with
DOI=0.4; the corresponding average node density was
approximately 9.

We compared our protocol, GOAL, with VIGOR, GPSR,
and GOAFR+; specifically, we measured and compared
average path stretch, maximum path stretch, communi-
cation overhead, and storage overhead among the four
protocols. The focus of these comparisons is to show: (1)
the low path stretch of GOAL, (2) the low communication
and storage overhead of GOAL; and (3) the impact of
important parameters. In particular, the comparisons with
GOAL and GOAFR+ serve as a base line; that is, the
results of such comparisons are used for representing how
much the routing protocols with constant path stretch
(i.e., GOAL and VIGOR) can improve the performance
compared with widely used geographic routing proto-
cols. For this set of experiments, we varied the following
parameters: h, δ, communication radius r, and the per-
centage of location errors p. The term h is the number of
hops from the boundary of a hole, within which nodes
receive the information on the hole; δ refers to the width
of a bounding box used to find VON nodes [8]; the
percentage of location errors p is used to simulate the
error in the location of a node; that is, the location of a
node, represented as two-dimensional coordinates (x, y),
may change to (x ± p′, y ± p′) with random probability,
where p′ = {z ∈ R : z > 0 and z < r · p}.

6.1 Hop Stretch
In this set of experiments, we measured the path stretches
for different routing protocols. Given a source and a
destination, we define the path stretch as the following:

path stretch =
measured hop count

minimum hop count
,

where the measured hop count is the number of hops
along the routing path connecting the source and destina-
tion; the minimum hop count means the hop count for the
shortest path connecting the source and destination; the
minimum hop count is measured by using a centralized
shortest path routing protocol. We set δ to 30m, and h
to a sufficiently large number (e.g., h = 10 for all four
scenarios) to allow the abstracted information on a hole
to reach all nodes in the network. We randomly selected
10,000 source/destination pairs, and the path stretch for
each pair was calculated.

Figures 12(a), 12(b), 12(c), and 12(d) depict the CDF
of calculated path stretches for Scenario 1, Scenario 2,
Scenario 3, and Scenario 4, respectively. We observe that,
regardless of the network scenarios with the different
level of concavity, the path stretches of both VIGOR and
GOAL are close to 1. The difference between the path
stretch of VIGOR and that of GOAL is negligible. The
main reason for such low path stretches of the constant-
stretch routing protocols is that those protocols, by us-
ing non-local information (e.g., abstracted information
on existing holes), allow forwarding nodes to choose a
neighbor such that the packet does not end up in a

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 11

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Path stretch

GPSR

GOAFER+

VIGOR

GOAL

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Path stretch

GPSR

GOAFER+

VIGOR

GOAL

(b)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Path stretch

GPSR

GOAFER+

VIGOR

GOAL

(c)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Path stretch

GPSR

GOAFER+

VIGOR

GOAL

(d)

Fig. 12. The CDF graphs of path stretches for each deployment scenarios: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3;
and (d) Scenario 4.

local minimum. In contrast to the small path stretches of
constant-stretch routing protocols, the classic geographic
routing protocols, GPSR and GOAFR+, exhibit large
path stretches. We also observe that, as the degree of
hole-concavity increases, the path stretches of GPSR and
GOAFR+ deteriorate. In particular, a network scenario
with small holes with low concavity (i.e., Scenario 1)
shows that the path stretches of GPSR and GOAFR+ do
not degrade much, because the chances for a packet being
stuck in a local minimum is relatively smaller compared
with other scenarios having holes with high concavity.

We summarize the statistical data of path stretches
by means of the average and maximum path stretch.
The average and maximum stretch are often used to
measure the average and worst-case performance of a
routing protocol, respectively. Figure 13(a) depicts the
average stretches for different routing protocols in the
four scenarios. As shown, the average path stretches
of GOAL and VIGOR are small, regardless of the hole
scheme, as both protocols prevent a packet from falling
into a local minimum. Compared with the classic geo-
graphic routing protocols (e.g., GPSR and GOAFR+), the
average path stretch of GOAL is up to 500% smaller
in our network configurations. We also observe that the
concavity of deployed holes influences the performance
of a routing protocol. As shown in Figure 13(a), the
average path stretch increases when there are holes with
more complex shapes in a network. The difference in the
worst-case performance between traditional geographic
routing protocols and GOAL is much larger as shown in
Figure 13(b); the maximum stretch of GOAL is smaller
than GPSR and GOAFR+ by up to 3,800%. Additionally,
we observe that, similar with the results for the average
path stretch, the maximum path stretch increases, as there
are holes with more complex shapes in the network.

6.2 Communication Overhead
Section 6.1 shows that the path stretch of GOAL is as
small as that of VIGOR. Besides the constant path stretch
property, the strength of GOAL lies in the reduced com-
munication and storage overhead compared with VIGOR.
In this section, we shall analyze the communication over-
head of VIGOR to verify the energy efficiency of GOAL.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Scenario1 Scenario2 Scenario3 Scenario4

A
v
e

ra
g

e
 p

a
th

 s
tr

e
tc

h

GPSR
GOAFER+
VIGOR
GOAL

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

Scenario1 Scenario2 Scenario3 Scenario4

M
a
x
 p

a
th

 s
tr

e
tc

h

GPSR
GOAFER+
VIGOR
GOAL

(b)

Fig. 13. Statistical summary of path stretches: (a) Average
hop stretch; and (b) Maximum hop stretch. GOAL achieves
significant improvements in both average and maximum
path stretch.

The main source of VIGOR’s communication overhead
comes from two aspects of the protocol: first, each VON
node must iteratively exchange routing tables with other
VON nodes until its routing table converges; second, for
each source/destination pair, the source node must send a
control packet to the destination using the default routing
protocol (e.g., GPSR) to find the entry point among the
VON nodes; that is, the source node must join the overlay
network of the VON nodes, by sending a control packet
to the destination, before the packet transmission begins.

We first measured the total number of packet transmis-
sions used for building routing tables by varying δ. The
parameter δ defines the width of a bounding box that is
used to construct VON polygons. If this value is large,
we can reduce the number of total VON nodes, thereby
reducing the communication overhead for constructing
the routing tables. However, if δ is large, the edges
of VON polygons may intersect; furthermore, the path
stretch may deteriorate, because the boundary of a hole
is not precisely represented. Figure 14 depicts the results.
As shown, each network scenario suffers from a large
number of data packet transmissions to build routing
tables. We also find that this communication overhead
decreases when δ increases, at the cost of imprecise
representation of the boundary of a hole that leads to
increased path stretch.

We then measured the total number of control packet
transmissions used for setting up a routing path. Simi-
lar with the experimental configurations in Section 6.1,

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 12

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 35 40 45 50 55 60 65 70 75 80

N
u
m

b
e
r

o
f
tr

a
n
s
m

is
s
io

n
s
 f
o
r

 r
o
u
ti
n
g
 t
a
b
le

 b
u
ild

-u
p

δ (m)

Scenario 1
Scenario 2
Scenario 3
Scenario 4

Fig. 14. Communication overhead due to routing table
construction. VON nodes iteratively exchange messages
until routing tables are built.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Scenario1 Scenario2 Scenario3 Scenario4

N
u

m
 o

f
T

X
 f

o
r

p
a

th
-s

e
t

u
p

 (
k
) r=30

r=50
r=70
r=90

Fig. 15. Communication overhead due to path set-up.
VIGOR requires each source/destination pair to exchange
a control packet, using the underlying default geographic
routing protocol, before actual data transmission occurs.

we randomly chose 10,000 source/destination pairs. Fig-
ure 15 shows the results. One observation is that this
communication overhead is influenced by the concavity
of deployed holes. The main reason is that VIGOR uses
the underlying default geographic routing protocol for
transmitting this control packet to a destination, and the
path stretch of the geographic routing protocol degrades
when there are holes of complex shapes. The communi-
cation radius r of a node is another factor that affects this
type of communication overhead. As shown in Figure 15,
larger communication radius allows nodes to use fewer
packet transmissions.

Finally, it is important to mention that GOAL elim-
inates these two types of communication overhead of
VIGOR, thereby achieving its energy efficiency, and its
feasibility for practical deployment.

6.3 Storage Overhead

In the previous section, we analyzed the communica-
tion overhead of VIGOR. In this section, we study the
storage overhead of VIGOR. In VIGOR, each VON node
maintains a routing table; each entry of the routing table
specifies the best neighboring VON node for a given des-
tination VON node. In addition, each non-VON node has
to maintain the visibility set, a set of visible VON nodes.

TABLE 1
Storage overhead of VIGOR and GOAL

δ
30 40 50 60 70 80

VIGOR 74 67 60 57 55 54
GOAL 36 36 36 36 36 36

 0

 0.5

 1

 1.5

 2

1 2 3 4 5 6 7

A
v
e

ra
g

e
 p

a
th

 s
tr

e
tc

h

h

VIGOR
GOAL

Fig. 16. The impact of system parameter h. The parameter
h defines the number of hops from a hole within which the
information about the hole is distributed.

In order to compute this visibility set, each non-VON
node has to know all the locations of VON nodes. Thus,
additional memory requirement for nodes in VIGOR is
theoretically O(Vvon), where Vvon is the number of VON
nodes. Compared with VIGOR, the memory overhead of
GOAL is theoretically O(Vext), where Vext refers to the
number of total extreme points in a network, because
each node has to maintain the locations of all the extreme
points when the h value is sufficiently large (note that the
memory overhead of GOAL may be reduced by adjusting
the h value at the cost of increased path stretch). We
note that Vext is smaller than Vvon, because the extreme
points are the subset of the VON nodes. Therefore, GOAL
reduces the storage overhead.

Table I compares the memory overhead of GOAL with
that of VIGOR in the network scenario shown in Fig-
ure 9(d). Specifically, Table I compares the total number
of VON nodes of VIGOR, and the total number of extreme
points of GOAL on each row of the table with varying
δ values. As expected, the number of VON nodes is
larger than the number of extreme points. In addition,
the number of VON nodes decreases as we increase the
δ value, and obviously, GOAL is not influenced by the
δ value. If the δ value is sufficiently large, the number
of VON nodes may be reasonably small; however, this is
possible at the cost of worse path stretch, possibly with
crossing edges, because imprecise representation of the
boundary of a hole increases the chances of using the face
routing when a packet is routed between two neighboring
VON nodes.

6.4 Impact of h

The system parameter h is the number of hops from
the boundary of a hole, within which nodes receive hole

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 13

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
v
e
ra

g
e
 p

a
th

 s
tr

e
tc

h

Location error (%)

Fig. 17. The impact of location error rates. The location L
of each node may randomly change in the range of L ±
[0, r · p] depending on the error rate p.

information (i.e., the set of extreme points for the hole);
thus, if we use small h, the communication overhead
is reduced. However, small h value increases the path
stretch, because nodes that are far from a hole do not
know about the existence of a hole. Those nodes send
a packet along a suboptimal routing path. To see the
impact of h on a path stretch, we measured the average
path stretches of both GOAL and VIGOR by varying the
parameter h in the network Scenario 4. Figure 16 presents
the results. As shown, if we increase h, the path stretch of
GOAL decreases. If h becomes larger than the maximum
hop count from a hole to the boundary of the network
(h = 6 in the network Scenario 4), the path stretch no
longer decreases. Note that VIGOR is not influenced by
this parameter; the path stretch of VIGOR is drawn for
the comparison with GOAL. When h is small, the path
stretch of GOAL is larger than VIGOR; however, as we
increase h, the path stretch of GOAL becomes as small as
VIGOR.

6.5 Impact of Location Error

In this section, we investigate how location errors affect
our protocol. We vary the location error rate p and
investigate how the path stretch changes depending on
different error rates. Assume the location of a node is
given as two-dimensional coordinates (x, y). This location
may randomly change based on the location error p;
that is (x, y) may change to (x ± p′, y ± p′) with random
probability, where p′ = {z ∈ R : z > 0 and z < r · p}. We
measured the average path stretches for different location
error rates, from 10% to 50%. Figure 17 depicts the results.
As shown, the path stretch increases as we increase the
error rates. A reason is that forwarding nodes might
choose a neighbor based on the geographic forwarding
algorithm, but the chosen neighbor might not be the
neighbor that is geographically closest to the destination,
due to location errors, thereby increasing the path stretch.

Application

CC2420

IDC

sendMsg() recvMsg()

GPSR DCC

GOAL

Fig. 18. System components of GOAL. GOAL consists of
three main components: Intermediate Destination Locator
(IDC), Distributed Convex Hull Construction (DCC), and
underlying geographic routing (GPSR)

A B

C

Fig. 19. A snapshot of the testbed. This testbed consists of
42 EPIC motes connected to the main PC through a USB
interface. The nodes that are denoted by characters A, B,
and C are used to test the link quality.

7 SYSTEM IMPLEMENTATION AND EXPERI-
MENTS

We implemented our GOAL protocol on Epic motes run-
ning TinyOS 2.1.1. The GOAL protocol consists of three
main modules: Intermediate Destination Locator (IDC),
Distributed Convex Hull Construction (DCC), and the un-
derlying routing algorithm (GPSR). Figure 18 shows the
structure of GOAL protocol. The IDC module provides
interfaces, i.e., sendMsg() and recvMsg(), for an application
layer to send and receive a packet, respectively. The main
role of the IDC module is to find the next intermediate
destination, based on the received extreme points in its
database. If the intermediate destination is determined,
the IDC module invokes the send command of the GPSR
module to send a packet to the intermediate destination.
The IDC module also receives a packet from the underly-
ing GPSR module, and computes the new intermediate
destination based on the current location and the set
of extreme points. The DCC module is used to abstract
the information on existing holes in a network. The
GPSR module simply routes a packet to the destination
that is provided by the IDC module; upon receiving a

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 14

 0

 60

 120

 180

 240

 300

 360

 0 60 120 180 240 300 360

y
 (

c
m

)

x (cm)

(a)

 0

 60

 120

 180

 240

 300

 360

 0 60 120 180 240 300 360

y
 (

c
m

)

x (cm)

(b)

Fig. 20. The topology of testbed: (a) a topology with a
large hole; (b) a topology with a small hole.

packet from the underlying CC2420 module, this module
forwards the packet to the IDC module.

Experiments were performed in an indoor testbed con-
sisting of 42 EPIC motes. The motes are attached to the
ceiling of an office area, which measures about 6m ×
4.5m. The EPIC mote has a MSP430 processor running at
25MHz, 10KB RAM, 48KB program memory, and CC2420
IEEE 802.15.4 Chipcon wireless transceiver [23]. In order
to prevent significant signal attenuation, each mote is
detached from the ceiling approximately 6cm. The motes
are connected to the PC through a USB interface, which
enables us to debug, power, and program the deployed
motes. Figure 19 shows the map of our testbed. We set the
RF power of motes to 2 (i.e., CC2420 DEF RFPOWER is
set to 2) [24]. The resulting topologies of the testbed with
a large hole and a small hole are shown in Figures 20(a)
and 20(b), respectively. To simulate holes, the links that
pass through the holes are not considered for our exper-
iments.

Figure 21 shows the packet delivery rate for the links
between node A and node B, and between node A and
node C, as depicted in Figure 19. As shown, the link
between node A and node B is relatively symmetric and
shows stable packet delivery rate of nearly 100%; on the
other hand, the link between node A and node C is
highly asymmetric, and has unreliable packet delivery
rate. To account for such asymmetric links with unreliable
wireless channels, we employ link-layer retransmission.
The default retransmission limit is set to 10. When a node
fails to send a packet more than 10 times, it attempts to
send the packet to the next best neighbor to enhance the
packet arrival rate, while allowing for larger hop stretch.

In the following sections, we compare GOAL with
GPSR, mainly focusing on verifying the feasibility of the
practical deployment of GOAL protocol. We measure the
path length, total number of transmissions, and packet
delivery ratio. We vary the hole size and packet arrival
rate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

P
a
c
k
e
t
d
e
liv

e
ry

 r
a
te

time (min)

A to B
B to A
A to C
C to A

Fig. 21. The packet delivery rate of the link in the testbed.
Some links are highly asymmetric.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Hop count

GPSR
GOAL

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

C
D

F

Hop count

GPSR
GOAL

(b)

Fig. 22. Illustration of path length as the number of hop
counts: (a) in a network with a large hole; and (b) in a
network with a small hole.

7.1 Path Length

In this set of experiments, we validate that GOAL
achieves a low path stretch in realistic environments.
We considered two network scenarios: one with a large
hole and the other one with a small hole. We randomly
selected 10 source/destination pairs, and measured the
hop count for each routing protocol in different network
scenarios. The results are drawn as the CDF of the hop
count for each routing protocol in each network scenario.

We note that it is hard to expect dramatic improve-
ments in path length in this network configuration due
to several reasons: first, the small size of the testbed
restricts us from creating a sufficiently large hole with
various shapes that will degrade the path stretch of
classic geographic routing protocols; second, due to the
limited number of motes, the network has limited hop
counts. Despite these difficulties, we found that GOAL
still achieves a better path stretch than GPSR.

Figure 22(a) depicts the CDF of hop count for the
network scenario with a large hole. As shown, 90% of
the hop counts are less than about 5 for GOAL, and 6.5
for GPSR. The average hop count is 3.5 and 4.1 for GOAL
and GPSR, respectively. Overall, GOAL performs better
than GPSR in terms of the path length.

Now we consider the network scenario with a small
hole. Our expectation was that the performance gap
between GOAL and GPSR would be smaller for this
network scenario than for the scenario with a large hole,
because smaller holes with the same shape reduce the
chances for a packet being stuck in a local minimum.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Tx count

GPSR

GOAL

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Tx count

GPSR

GOAL

(b)

Fig. 23. The total number of packet transmissions includ-
ing link-layer retransmissions: (a) in a network with a large
hole; and (b) in a network with a small hole.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50

P
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

Packet arrival ratio (Hz)

GPSR
GOAL

Fig. 24. Packet delivery ratio of GOAL and GPSR.

However, we found that the results are the opposite,
because, as shown in Figure 20(b), in this particular
network configuration, the small hole does not allow data
to flow around its bottom side; thus, when data flow is
directed to the bottom side of the hole, the data flow
must be redirected to the upper side of the hole, creating
the larger hop count. Figure 22(b) shows the results. The
average hop count for GOAL is 5, while the average
for GPSR is 7.1, showing a larger gap between the two
protocols. Figures 22(a) and 22(b) also depict the increase
in the gap between the two protocols.

7.2 Communication Overhead

Each node implements the link-layer retransmission. Due
to unpredictable wireless channels, the link-layer retrans-
missions frequently occur. Thus, a single transmission-
trial over a single hop often means multiple packet trans-
missions. This fact indicates that the impact of the larger
hop count is profound, particularly for large-scale sensor
networks. In this section, we quantify the impact of larger
path length as the total number of packet transmissions
including the link-layer retransmissions.

Figures 23(a) and 23(b) show the CDF of the total
number of transmissions for a network scenario with
a large hole, and a small hole, respectively. In both
scenarios, GOAL has a smaller number of packet trans-
missions compared with GPSR, because the path length
of GOAL is shorter than the path length of GPSR. We
also observe that the scenario with a small hole shows a
larger performance gap between the two protocols.

In Section 7.1, we showed that, in the network scenario
with a large hole, the path length of GOAL is 15% shorter
than that of GPSR; and for the scenario with a small
hole, the path length of GOAL is 27% shorter than that of
GPSR. Now we consider the performance improvements
in terms of the total number of packet transmissions. We
found that GOAL has 34% fewer packet transmissions
than GPSR for the scenario with a large hole; and GOAL
shows 41% fewer packet transmissions than GPSR for the
scenario with a small hole. These results indicate that the
performance gain obtained from the shorter path length
is more significant than the actual difference in the path
length when we consider the practical deployment (i.e.,
when we view the difference from the perspective of the
total number of packet transmissions).

7.3 Packet Delivery Ratio
It was empirically shown in many sensor network appli-
cations that the packet delivery ratio (PDR) for a path
has a close relationship with the number of hops of the
path [25]. A simple reason is that each link of a path has
its probability of packet loss; thus, if a path consists of
multiple links, such probability for each link is multiplied,
resulting in a higher packet loss rate. This section is
designed to empirically validate that GOAL has smaller
PDR, because GOAL has a smaller average path stretch.
For this set of experiments, we picked two nodes such
that the line segment connecting the two nodes crosses
the hole in the network. We then varied the data rate
from 10Hz to 50Hz.

Figure 24 presents the results. Interestingly, the PDR of
GOAL is not much greater than that of GPSR; the PDR
of GOAL is even lower than that of GPSR for some data
rates. We investigated the causes for the unexpectedly
high PDR of GOAL, and found the reason was that
GPSR, when faced with high packet arrivals, chooses
alternate paths. More precisely, GPSR chooses a next best
neighbor when the retransmission exceeds the link-layer
retransmission limit; thus, when data rate is high, and
the receiver does not respond with ACK, the sender often
chooses a next best neighbor, creating an alternate routing
path. Considering this “multipath generation” of GPSR,
GOAL provides competitive PDR. These results provide
motivation for a new research direction: the development
of constant-stretch multipath routing protocol in network
with holes and high packet arrival rate. We plan to
investigate how multiple paths, each with guaranteed
path stretch, can be provided for better reliability and
higher PDR.

8 CONCLUSIONS

In this article, we present GOAL, a geographic routing
protocol that achieves constant stretch with low overhead.
A hole is compactly represented by leveraging our dis-
tributed convex hull construction algorithm. Our extreme

TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, VOL. X, NO. X, SEPTEMBER 2011 16

points reduction algorithm further reduces the data size.
The data representing holes enable each source node to
take an early detour around a hole, achieving a constant
stretch. We prove the correctness for the proposed al-
gorithms and show the constant path stretch property
of GOAL. Through extensive simulations and real-world
experiments on a testbed consisting of 42 EPIC motes, we
demonstrate the effectiveness of GOAL and its feasibility
for practical deployment in resource constrained large
scale sensor networks.

REFERENCES

[1] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, “A
scalable location service for geographic ad hoc routing,” in Proc. of
ACM MOBICOM, 2000.

[2] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan,
and S. Shenker, “GHT: a geographic hash table for data-centric
storage,” in Proc. of ACM WSNA, 2002.

[3] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric
ad-hoc routing: of theory and practice,” in Proc. of ACM PODC,
2003.

[4] Z. Jiang, J. Ma, and W. Lou, “An information model for geographic
greedy forwarding in wireless ad-hoc sensor networks,” in Proc. of
IEEE INFOCOM, 2008.

[5] Q. Fang, J. Gao, and L. J. Guibas, “Locating and bypassing holes
in sensor networks,” in Proc. of IEEE INFOCOM, 2004.

[6] C. Liu and J. Wu, “Destination-region-based local minimum aware
geometric routing,” in Proc. of IEEE MASS, 2007.

[7] N. Arad and Y. Shavitt, “Minimizing recovery state in geographic
ad hoc routing,” IEEE Transactions on Mobile Computing, vol. 8, 2009.

[8] G. Tan, M. Bertier, and A.-M. Kermarrec, “Visibility-graph-based
shortest-path geographic routing in sensor networks,” in Proc. of
IEEE INFOCOM, 2009.

[9] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing
for wireless networks,” in Proc. of ACM MOBICOM, 2000.

[10] S. Rajsbaum and J. Urrutia, “Some problems distributed computa-
tional geometry,” in International Colloquium on Structural Informa-
tion and Communication Complexity (SIROCCO), 1999.

[11] S. Rajsbaum and J. Urrutia, “Some problems in distributed com-
putational geometry,” Theor. Comput. Sci., vol. 412, pp. 5760–5770,
September 2011.

[12] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith, “S4: Small state
and small stretch compact routing protocol for large static wireless
networks,” Networking, IEEE/ACM Transactions on, pp. 761 –774,
june 2010.

[13] P. Li, G. Wang, J. Wu, and H.-C. Yang, “Hole reshaping routing in
large-scale mobile ad-hoc networks,” in Proc. of IEEE GLOBECOM,
2009.

[14] M. Won, R. Stoleru, and H. Wu, “Geographic routing with constant
stretch in large scale sensor networks with holes,” in Proc. of IEEE
WiMob, 2011.

[15] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher,
“Range-free localization schemes for large scale sensor networks,”
in Proc. of ACM MOBICOM, 2003.

[16] L. Hu and D. Evans, “Localization for mobile sensor networks,”
in Proc. of ACM MOBICOM, 2004.

[17] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Sim-
ulations and Advanced Topics. John Wiley & Sons, 2004.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms. The MIT Press, 2001.

[19] Y. Wang and X.-Y. Li, “Localized construction of bounded degree
and planar spanner for wireless ad hoc networks,” in Proc. of
DIALM-POMC, 2003.

[20] K. Clarkson, “Approximation algorithms for shortest path motion
planning,” in Proc. of ACM STOC, 1987.

[21] S. M. George, W. Zhou, H. Chenji, M. Won, Y. Lee, A. Pazarloglou,
R. Stoleru, and P. Barooah, “DistressNet: a wireless AdHoc and
sensor network architecture for situation management in disaster
response,” IEEE Communications Magazine, vol. 48, no. 3, Mar. 2010.

[22] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric
ad-hoc routing: of theory and practice,” in Proc. of PODC, 2003.

[23] P. Dutta, J. Taneja, J. Jeong, X. Jiang, and D. Culler, “A building
block approach to sensornet systems,” in Proc. of ACM SenSys, 2008.

[24] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” in Proc. of
ASPLOS, 2000.

[25] V. Shnayder, B.-r. Chen, K. Lorincz, T. R. F. F. Jones, and M. Welsh,
“Sensor networks for medical care,” in Proc. of ACM SenSys, 2005.

