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Abstract. Reliable network connectivity in wireless sensor networks
(WSN) is difficult to achieve. Harsh, unattended, low-security environ-
ments and resource-constrained nodes exacerbate the problem. An ability
to detect connectivity disruptions, due to either security or environmen-
tal problems, allows WSN to conserve power and memory while reducing
network congestion. We propose RE2-CD, an integrated solution incor-
porating both robustness to attack and energy-efficiency. To enhance
security, a robust outlier detection algorithm assists nodes in detecting
a specific threat in their environment. To improve energy-efficiency, a
cluster-based cut detection algorithm recognizes and reacts to disrupted
connectivity. Extensive simulations across a range of network sizes and
densities indicate that energy-efficiency can be improved by an order
of magnitude in denser networks while malicious nodes are detected at
deviations of 1% from expected behavior.

1 Introduction

Wireless sensor networks (WSN), composed of numerous sensor nodes with
small, low-power, inexpensive radios, have attracted a large amount of research
that has led to interesting and innovative applications. However, challenging
problems still exist. One of the most challenging problems in WSN is maintain-
ing network connectivity to reliably deliver data to a specified point, or sink, in
an energy-efficient manner. Disrupted connectivity, known as a “cut”, can lead
to skewed data, ill-informed decisions and even entire network outages. It can
also lead to memory and power exhaustion in disconnected nodes and network
congestion in disconnected segments. Such data loss and wasted resources can
be avoided if a node can independently determine if a cut exists in the network.

Cut detection algorithms attempt to recognize and locate cuts. Using a state-
based convergence mechanism, the current state-of-the-art cut detection algo-
rithm, Distributed Source Separation Detection (DSSD) [1], reliably detects
arbitrarily-shaped cuts and allows individual nodes to perform cut detection
autonomously. However, the algorithm suffers from a number of problems. First,
DSSD fails to address security, a critical component of sensor deployments in
unattended environments. Second, the algorithm requires a lengthy, iterative
convergence process. Finally, all nodes participate in the frequent broadcasts
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required to achieve convergence. This is cost-prohibitive with regards to power,
especially in denser networks.

In light of these problems, we propose an algorithm with two principal com-
ponents. Outlier detection, a statistical data analysis technique, resolves the
security threat where a malicious node injects erroneous data into the cut de-
tection process. Using data analysis, outlier detection identifies malicious source
data and provides a light-weight, energy-efficient mechanism to validate neighbor
data. Additionally, we propose an improved cut detection algorithm called ro-
bust cluster-based cut detection. This algorithm divides the network into a set of
location-based clusters. Cluster leaders form a virtual grid network and the cut
detection algorithm runs on this high-level network. As the algorithm executes,
leaders converge to some state. A leader finding inconsistency in its expected
state informs its neighbors and the sink that a cut has happened.

The contributions of this paper are:

– A method for identifying and recovering from changes caused by certain
types of malicious nodes.

– An improved cut detection algorithm that converges faster while using less
energy.

– Increased energy efficiency through more rapid detection of disrupted con-
nectivity.

The paper is organized as follows. Section 2 discusses related work about cut
detection and outlier detection algorithms in WSN. We introduce the robust
cluster-based cut detection algorithm in Section 3. Our implementation is ad-
dressed in Section 4 which is followed by experimental results in Section 5. We
offer conclusions and ideas for future work in Section 6.

2 Related Work

Outlier detection is a statistical analysis tool often used to identify problems in
data sets like measurement error or abnormal data distribution. Outlier detection
can be categorized into largely two mainstreams: a parametric approach, which
assumes a priori known distribution of the data, and a non-parametric approach
that does not rely on a specific distribution. With known data distribution, the
parametric approach detects outliers with very high precision. However, in many
cases, finding a matching distribution is very hard. Probabilistic models that
infer distribution based on sample data compensate for this difficulty but often
show high false positive rates [2]. Non-parametric approaches using distance-
based and density-based methods attempt to overcome this limitation. Knorr and
Ng [3] proposed the first distance-based algorithm, where a point is regarded as
an outlier if its distance to a kth nearest neighbor point is greater than a certain
threshold. One disadvantage is that the threshold must be defined. Ramaswamy
et al. [4] studied distance-based detection, where a point is said to be an outlier
if the distance to kth nearest neighbor is greater than that of n− 1 other points.
Recently, Zhang et al [5] introduced an algorithm for finding an outlier based on
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the sum of distances to the point’s k nearest neighbors. However, all distance-
based solutions fail to detect outliers in clustered data. Density-based outlier
detection schemes [6][7] gracefully solve this problem. Each data point is given
a score called Local Outlier Factor (LOF) based on its local density, which is
bounded by a specific value MinPts. In [6], an outlier is determined by score.
In [7], the bounding value MinPts is determined autonomously using statistical
values such as inter-cluster distances and cluster diameters.

Research in the area of cut detection has emphasized the importance of the
network partition monitoring problem [8]. For example, Chong et al [9] men-
tioned the problem from a security perspective arguing that nodes deployed in
a hostile environment must be able to detect tampering. In [10], Cerpa and
Estrin stressed the importance of the network cut detection problem in their
self-configuring topology scheme but left it as a future work. However, little
progress has been made to resolve the problem. An early paper by Kleinberg,
et al. [11] considered the problem in a wired network. Their main argument is to
select good “agents” to monitor the partition and accurately detect separation
events. Much like the “agent” node, Ritter et al. [12] defined “border” nodes
responsible for the detection of network partition. Recently, Shrivasta et al. [13]
proposed a deterministic algorithm to detect network separation using a set of
sentinel nodes to monitor the linear-cut of a network. The most recent cut de-
tection algorithm is proposed by Barooah, et. al. [1]. Their algorithm can not
only detect an arbitrary shape of cut, but also enables every node in the network
to autonomously detect a cut by maintaining state.

3 Robust and Energy Efficient Cut Detection

In this section, we present the theoretical foundations of cut detection and pro-
pose algorithms to enhance robustness and improve energy efficiency.

3.1 Preliminaries

We model our network as an undirected, connected graph G = (V, E), where the
set of vertices V = {v1, v2, ..., vm} is the set of m nodes in the network and the
set of edges E = {(vi, vj)|vi, vj ∈ V } represents radio connectivity among nodes
in the network. We denote by Ni = {vj |(vi, vj) ∈ E} the set of neighbors of a
node vi, and by |Ni| the degree of node vi.

Time is denoted as a discrete counter k = 0, 1, 2, .... Each node vi maintains a
positive real value xi(k) which is called the state. The state is initialized to zero,
i.e., xi(0) = 0 at time k = 0. One node in the network is designated as the source
node. Although the source node may be selected arbitrarily, by convention we
select the sink to be the source in WSN. For simplicity, we assume that v1 is the
source node.

At every iteration k, each node vi updates its state xi(k) and broadcasts it. All
nodes except the source node update their states using the following equation:
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Fig. 1. (a) A cut occurs in a connected network of six nodes. The graph depicts the
scalar states of two nodes, one in Gsource and one /∈ Gsource. (b) The distribution of
node states in a 20 grid network, with a source node at (0,0).

xi(k + 1) =
1

|Ni| + 1

∑

j∈Ni(k)

xj(k) (1)

The source node v1 uses a slightly different state update equation:

x1(k + 1) =
1

|N1| + 1

⎛

⎝
∑

j∈N1(k)

xj(k) + s

⎞

⎠ , (2)

where s, called the source strength, is a user specified scalar. Previously it was
proved that the state of each node converges, after a number of iterations, to a
positive value [1].

We define a “cut” as a network partition, in which the graph G is sepa-
rated into n disjoint connected components Gsource, G2, ..., Gn, where Gsource =
(Vsource, Esource) is a graph which contains the source node. When a “cut” oc-
curs, the state of each node v /∈ Vsource converges to 0 [1].

The convergence of a node’s state is illustrated in Figure 1(a). Around itera-
tion 40, the scalar state of nodes in the network converges. Shortly after iteration
60, a cut occurs in the network when the two nodes in the middle fail. After the
cut, the state of a node on the right side rapidly decays to 0 while the state of
a node on the left side converges to a new higher state. A critical observation
is that the states of all nodes converge to new values, hence all nodes have the
ability to detect a cut in the network.

One troublesome aspect of cut detection using this distributed algorithm is
that it is susceptible to attacks. A malicious node located in the disconnected
part of the network can imitate a source node, and hence affect the state value
that each node computes. In the following section we analyze the impact of such
malicious nodes and propose an algorithm to detect and recover from malicious
behavior.
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3.2 Robust Cut Detection Algorithm

Temporary variations of a node’s state, often caused by packet loss, can be
tolerated by a system implementing cut detection as described above. The states
of nodes in the network will eventually converge. However, this is not true when
a non-source node continuously injects a constant state to the system. This
malicious source node is formally defined as:

Definition 1. A node vi ∈ G is a malicious node Mi if it acts as a source node
in the network, i.e., it updates its state according to equation 2 with an arbitrary
strength s′, as given by:

xi(k + 1) =
1

|Ni| + 1

⎛

⎝
∑

j∈Ni(k)

xj(k) + s′

⎞

⎠ . (3)

In the following theorem, we prove the damaging impact of a malicious source
node in the source-disconnected segment of the network:

Theorem 1. If there exists a malicious node Mi in the disconnected region of
the network, the nodes in that region cannot detect a cut using the state update
equation (1).

Proof. We can rewrite equations 1 and 2 together in a matrix representation, as
follows:

X(k + 1) = (D(k) + I)−1(A(k)X(k) + se1), (4)

where D is the diagonal matrix of node degrees and A is the adjacency matrix
of G. Note that equation 4 is an iteration based on the Jacobi method to solve:

LX = se1, where L = D − A + I. (5)

Now assume that a cut partitions the network G into Gsource, G2, . . . , Gn and
that there is a malicious source Mk with strength s′ in a partitioned network
Gj . It is clear that A, D, and I can also be partitioned such that A = A1 +A2 +
. . . + An, D = D1 + D2 + . . . + Dn, and I = I1 + I2 + . . . + In. Thus:

L =
n∑

i=1

Di −
n∑

i=1

Ai +
n∑

i=1

Ii

=
n∑

i=1

(Di − Ai + Ii)

= L1 + L2 + . . . + L3,

which gives (L1 + L2 + . . . + Ln)X = se1 + s′ek. Accordingly, the disconnected
part of the network, which has a malicious node, is actually another system with
Mk such that:

LjX = s′ek (6)
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Note that Lj = Dj − Aj + Ij is the Dirichlet Laplacian and it is invertible if its
graph is connected. Therefore, there exists a unique solution X where each node
in the disconnected region Gj will converge to some positive value. ��
Corollary 1. If there exists more than one malicious node in the source-
disconnected region of the network, nodes in that region cannot detect a cut.

Proof. Assume that there is more than one malicious node M1, M2, . . . , Mn with
corresponding source strength s′1, s′2, . . . , s′n in the disconnected region Gj of the
network. From (6) we have,

LjX =
n∑

i=1

s′iei (7)

It is clear that a unique solution of X still exists as the right side of the equation
does not affect the invertibility of Lj. ��
Our proposed robust cut detection algorithm is based on the observation that
the states of nodes in close proximity are similar. As shown in Figure 1(b), which
depicts the distribution of state values for a sample 10×20 network, state values
are inversely related to distance from the source node. One might observe that
there is no significant state difference between nearby nodes and be tempted to
directly use the states of neighbor nodes as samples to construct a distribution
for outlier detection. However, this naive approach is insufficient. In fact, it is
hard to assume a certain distribution based on samples of received states from
neighbors, because: i) the sample size of states is irregular and small for some
nodes; ii) states in close proximity are not always similar, i.e., regional variations
exist for some nodes, especially nodes close to the source; iii) the range of the
state value is relatively large. Hence, a straightforward outlier rejection algorithm
might fail.

Our main idea is to derive new samples from the states of neighbor nodes in the
way that the new samples are not susceptible to the aforementioned problems.
We denote the set of received states of a node v as S ={s1, s2, . . . , sn} and also
denote the newly derived set of samples as SN . The algorithm for converting S
to SN and finding a distribution of SN is presented in Algorithm 1. For each
neighbor state of a node v, i.e., si ∈ S, the algorithm selects p nearest neighbor
states sl ∈ S, and computes the distances: dil = |si − sl|, for i �= l. We denote
these distances as {di1, di2, . . . , di(p−1)}. Then SN is the set described by:

SN =

⎧
⎨

⎩

p−1∑

j=1

d1j ,

p−1∑

j=1

d2j , . . .

p−1∑

j=1

dnj

⎫
⎬

⎭ (8)

Once the mean μ and variance σ to approximate the distribution of SN are
computed, the node v invokes, as shown in Algorithm 2, the extreme studentized
deviate test (ESD) which performs well in detecting outliers in a random normal
sample. In the ESD test, maximum deviation from the mean is calculated and
compared with a tabled value. If the maximum deviation is greater than the
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Algorithm 1. Compute Distribution
Input: S, p
Output: μ, σ

SN
i ← ∅, min dist← 0, min idx← 0

for i = 0 to |S| do
for k = 0 to p do

for j = 0 to |S| do
if i �= j and sj �= −1 then

dist← |si − sj |
if dist < min dist then

min dist← dist
min idx← j

end if
end if

end for
smin idx ← −1
sN

i ← sN
i + min dist

end for
end for
μ←

∑
i sN

i
|S|

σ ←
√ ∑

i(s
N
i −μ)2

|S|−1

Algorithm 2. Outlier Detection
Input: sN

i

Output: True, or False

if
|sN

i −μ|
σ

> t table[|S|] then
return True

end if
return False

tabled value, then an outlier is identified. Since our algorithm is based on taking
a difference between closest states, we can not only cancel out the regional vari-
ations in states, but also make the range of sample much smaller, which leads
us to get a better sampling even for small data set.

3.3 Energy Efficient Cut Detection

The proposed robust cut detection algorithm (section 3.1), as well as other state
of art algorithms [1], suffers from relatively high energy consumption, since all
nodes participate in the execution of the algorithm. To address this problem, we
propose to execute the robust cut detection algorithm on a small subset of nodes.
The main idea is to partition the network into a grid of clusters as depicted in
Figure 2(a). The nodes in each cluster elect a leader who executes the robust
cut detection algorithm by exchanging state values only with leaders in adjacent
clusters.
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An interesting byproduct of clustering is that the grid topology formed by
leaders in the network allows leaders to easily compute the expected convergence
value of their states. This is possible because the grid structure bounds degree
of each leader; therefore by knowing its position within the grid of leaders, an
individual leader can easily compute the adjacency matrix and diagonal matrix
of node degrees without additional message overheads. An additional benefit is
that the degree of leaders in our clustered environment is much smaller, normally
no larger than 4, than would be typical of a network where all nodes partici-
pate. Since the convergence is determined by the spectral gap (i.e., the smallest
non-trivial eigenvalue of the graph Laplacian), convergence speed rapidly grows
with increasing spectral gap [1]. Therefore, maintaining a small spectral gap is
important for energy constrained WSN.

More formally, if the system parameters a and b are known to leaders (see
upper left corner of Figure 2(a)), they can easily construct the adjacency matrix
A and the diagonal matrix D of node degrees. The equations 1 and 2 can be
rewritten in matrix representation:

X(k + 1) = (D(k) + I)−1(A(k)X(k) + se1) (9)

Consequently, by simple matrix multiplication, each leader can exactly compute
the next state of itself and its neighbors (note that since D + I is a diagonal
matrix, its inverse is simply a diagonal matrix containing the inverse of each
element of D + I). When a cut occurs, a leader can accurately detect it by
checking if its state is different from the expected value. Similarly, a leader can
detect a malicious source node in the network by comparing the received state
from the malicious node to the expected state.

Details of the energy efficient cut detection protocol are further described
below.

Network Initialization. The sensor network starts as a set of localized nodes
distributed uniformly in a rectangular area of size A×B. Nodes obtain their lo-
cations using any existing node localization protocol [14]. The network is divided
into a set of rectangular clusters of size a × b (a and b are system parameters),
as shown in Figure 2(a). Based on location, a node becomes a member of a
particular cluster, e.g., a node located at (x, y) will become a member of cluster
G(i, j) if x ∈ [i · a, (i + 1) · a] and y ∈ [j · b, (j + 1) · b], where 0 ≤ i ≤ �A

a � and
0 ≤ j ≤ �B

b �.
Next, in each cluster G(i, j) a leader L(i, j) is elected [15]. At the end of

the leader election phase, all nodes in a cluster know the ID and location of
their leader. As a byproduct, the leader also knows the total numbers of nodes
participating in the election. Elected leaders in the network form a the Virtual
Grid Network, denoted by Ggrid = (Vgrid, Egrid), where Vgrid is a set of all
L(i, j)’s and Egrid is a set of all undirected virtual links connecting L(i, j) and
L(i ± 1, j ± 1), where 0 ≤ i − 1, i + 1 ≤ �A

a �, 0 ≤ j − 1, j + 1 ≤ �B
b �.

Cut Detection in the Virtual Grid Network. Once the network initializa-
tion phase is complete, the robust cut detection algorithm begins to execute on



88 M. Won, S.M. George, and R. Stoleru

leader Virtual link

a

b

node

(a)

CUT

(b)

Fig. 2. (a) A Virtual Grid Network obtained from leaders elected in their respective
clusters. (b) The occurrence of a “local cut” that does not trigger a network partition.

Ggrid. Each leader sends a “STATE UPDATE” message containing the leader’s
current state value and location to leaders of adjacent clusters. Routing between
leaders is handled with a variant of GPSR [16]. Since a leader, e.g., L(i, j) does
not know the ID or location of adjacent leaders, e.g., L(i+1, j) it initially sends
messages to a fictitious destination in the middle of cluster G(i+1, j). When the
messages reaches cluster G(i+1, j), the first node that sees a “STATE UPDATE”
packet destined for a non-leader location updates the destination with the correct
location and ID of the cluster’s leader.

The execution of the cut detection in the virtual grid is complicated by a sce-
nario in which a “local cut” does not include any leaders, as shown in Figure 2(b).
This problem is overcome during a periodic leader rotation phase. Due to space
constraints, we limit our description of the solution to the fact that, as part of
leader rotation, the current leader node queries other nodes in the cluster about
their energy level. If the leader detects that fewer than expected nodes responded,
it may infer that a local cut has occurred. While leader rotation still occurs, the
new leader is informed that a local cut may have occurred. The new leader executes
a local cut detection algorithm in coordination with adjacent cluster leaders.

Since the cut detection algorithm iteratively executes in the the entire net-
work, it is easy to observe that our proposed cluster-based cut detection algo-
rithm consumes much less energy (since it performs only on the nodes in Ggrid,
which are significantly fewer). In addition, each leader in the virtual grid can
detect erroneous state from a malicious attacker because it knows the expected
states from its neighbors. Simple arithmetic comparison suffices as a defense
algorithm against a malicious node.

4 Implementation

The proposed algorithms for robust and energy efficient cut detection were im-
plemented in nesC for the TinyOS operating system [17] and executed in the
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TOSSIM simulator. We assume that nodes in the network obtain their locations
through other means and that a loose time synchronization protocol is present.

The complete system executes in two phases. In the “Network Initialization”
phase, each node in the network broadcasts a beacon message every 5 sec. Using
the beacon messages from neighbors, nodes build neighbor tables and measure
link quality by computing the Packet Reception Ratio (PRR), defined as the
ratio of successfully received beacons to the total number of beacons sent by a
neighbor. The neighbor table and the link measurement is used to find a GPSR
routing path [16]. Each node joins a cluster and the cluster elects a leader in a
multihop, distributed manner [15]. At the end of this phase, each node knows
the locations of its neighbors and the cluster’s leader.

In the second phase, the RE2-CD algorithm executes. Source strength is speci-
fied as s = 100 and the iteration period is set to 5 seconds. Each leader transmits
its state to leaders in adjacent clusters using GPSR routing and the leader lo-
cation discovery mechanism explained previously. After receiving state from an
adjacent leader, a leader checks the sanity of the state by running the outlier de-
tection algorithm. If the state is not an outlier, it is saved in the state table. The
state is also stored in flash memory for future post-deployment analysis. When
the iteration period expires, each node updates its state according to equation 1
and repeats the above procedure.

To ensure a lock-step execution of the algorithm, all motes are instructed to
begin the first phase at roughly the same time via a “system start” message
initiated by a designated node and forwarded by each node at most once.

5 Performance Evaluation

In order to evaluate the performance, we conducted simulations using TOSSIM
[18] on a set of 264 uniformly deployed nodes in networks of sizes 320× 320 m2,
560× 560 m2 and 640× 640 m2. The radio communication radius of a node was
set to 50m.

5.1 Convergence Speed

Convergence occurs when nodes participating in the cut detection algorithm
achieve a steady state. This may be measured in iterations of the algorithm or
in the amount of time required.

Cut-detection convergence latency measured in iterations is depicted in
Figure 3(a). The number of iterations required for convergence depends on the
average degree of a node [1]. Since the degree of a node is at most 4 in our virtual
grid scheme, convergence is guaranteed to occur in a bounded number of itera-
tions. Simulations show that convergence is obtained in RE2-CD in an average
of 34 iterations regardless of the number of clusters. In contrast, DSSD shows
the number of iterations that rapidly increases as the degree of the network
increases.

Figure 3(b) shows convergence latency measured in time, specifically in a
“time unit” of packet transmission delay. To measure the convergence latency
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(a) (b)

Fig. 3. (a) Convergence speed measured in number of iterations (b) Convergence speed
measured in amount of time

(a) (b)

Fig. 4. (a) Number of packets transmitted per single iteration (b) Number of packets
required to converge

in time unit, average hop count between leaders are considered. In DSSD, since
a node communicates only with the neighbors within one hop distance, the hop
count at each iteration is always 1, which means that convergence time depends
only on the number of iterations. In RE2-CD, however, increased density leads
to decreased average hop count between leaders, because packets can be routed
more directly. Since the number of iterations for convergence is almost constant
in RE2-CD, the convergence time depends on the average hop count; therefore,
as the network density increases, the convergence latency in time unit decreases.

5.2 Protocol Overhead

Protocol overhead was calculated by measuring the number of algorithm-related
packet transmissions in the entire network for single iteration of both DSSD and
RE2-CD cut detection algorithms using varied network density and cluster size.
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(a) (b)

Fig. 5. (a) Number of iterations required to detect a malicious source (b) False alarm
rate

The first step of this experiment was to randomly select a leader from each cluster.
This was followed by the execution of one iteration of the cut detection algorithm
on the virtual grid network of leaders (RE2-CD) and, separately, on the entire net-
work (DSSD). Each data point represents 50 iterations of this experiment.

Figure 4(a) depicts the results. As network density increased, the number of
packet transmissions decreased when using RE2-CD. This is primarily due to
a reduction in the average number of hops in the GPSR routing path between
pairs of leaders as the number of neighbors increased. For DSSD, the number of
transmitted packets for each iteration remained constant at 264 because every
node broadcasts once per iteration regardless of network density. Also note that
larger cluster sizes yield lower packet overhead because leaders in larger clusters
have more neighbors that can route packets more efficiently.

Figure 4(b) shows the total number of packet transmissions required for con-
vergence. This is based on multiplication of total iterations to convergence by
the number of packet transmissions for a single iteration. The two algorithms
display significant differences in message overhead.

5.3 Robustness

Detection latency describes the number of iterations required to detect a mali-
cious source. For this experiment, a cut was made by turning off some nodes at
iteration k, after the network had converged, e.g., k = 34 for RE2-CD. At itera-
tion k + 1, a malicious source node began to inject false state into the network
from a location in the disconnected segment. Elapsed time between malicious
source injection and detection by a leader node was measured. For different
thresholds, the experiment was repeated using different Ψ values, a representa-
tion of how much the state of a malicious source deviates from the average state
of its neighbors in percentage.

Fig. 5(a) plots the result. In terms of detection accuracy, RE2-CD detects
a malicious source that deviates only 1% from the average state of neighbors.
Higher thresholds allow faster detection but, as Fig 5(b) notes, they cause false
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alarms and cause correct states to be dropped. Although high false alarm rates
cause unstable convergence with some fluctuations, rates less than 30% still allow
the system to converge [19].

Figure 5(b) explores the problem of selecting p parameter. This parameter
indicates the number of nearest neighbor states used in the outlier detection
algorithm and its selection represents a tradeoff. Larger values of p tend to
increase the false alarm rate but enhance detection of malicious source node
clusters, which collaborate to inject similar malicious states. On the other hand,
smaller p-values yield lower false alarm rates but may impact the algorithm’s
ability to detect the cluster of malicious sources injecting similar states.

6 Conclusions

We proposed a robust, energy-efficient algorithm to enhance the detection of
disrupted network connectivity in harsh, unattended low-security environments
using network of resource-constrained nodes. Our algorithm enhances security
by enabling detection of malicious source nodes, even at very low thresholds.
Simultaneously, through adoption of a clustered, leader-based convergence al-
gorithm, we greatly reduced the energy required to detect a cut. Parameters
including cluster size, node density, and deviation thresholds offer opportunities
to trade off energy use and malicious source detection speed for optimal results
in arbitrary networks.

Current work in progress includes deployment of a cut-detection enabled sen-
sor network in an outdoor setting. Future work will address tradeoffs between
security and energy efficiency and investigate the impact of modifying iteration
length in response to changes in the local threat level. Longer breaks between
iterations are likely to improve energy efficiency. Independent leader elections
are another enhancement that promises to increase network lifespan. Instead of
having leaders rotate in lock step, clusters internally determine when to elect a
new leader based on local network activity and conditions. Other open questions
include finding out other types of possible malicious behaviors critical to the op-
eration of our cut detection algorithm and developing mechanisms to defend
against the attacks.
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