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Abstract
Distributed sensor networks are quickly gaining recognition as
viable embedded computing platforms. Current techniques for
programming sensor networks are cumbersome, inflexible, and
low-level. This paper introduces EnviroTrack, an object-based
distributed middleware system that raises the level of program-
ming abstraction by providing a convenient and powerful in-
terface to the application developer geared towards tracking
the physical environment. EnviroTrack is novel in its seamless
integration of objects that live in physical time and space into
the computational environment of the application. The perfor-
mance of an initial implementation of the system is evaluated
on an actual sensor network based on MICA motes. Results
demonstrate the ability of the middleware to track realistic tar-
gets.

Keywords: sensor networks, programming paradigms, track-
ing, QoS, distributed systems

1 Introduction

The work reported in this paper is prompted by the increas-
ing importance of large-scale wireless sensor networks [15] as
a future platform for a growing number of applications such
as habitat monitoring [7, 21], intrusion detection [29], defense,
and scientific exploration. Advances in hardware miniaturiza-
tion [10] have made it economically viable to develop embed-
ded systems of massively distributed disposable sensor nodes,
characterized by coordination of a very large number of tiny
wireless computing elements. A great impediment to rapid de-
ployment of such systems lies in the lack of distributed soft-
ware and programming support for sensor network applica-
tions. A new distributed computing paradigm is needed that
exports appropriate abstractions and implements efficient infor-
mation management protocols in large-scale sensor networks.
EnviroTrack is an attempt to develop such a paradigm.

EnviroTrack is a middleware layer that exports a new ad-
dress space in the sensor network. In this space, physical events
in the external environment are the addressable entities. This
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type of addressing is convenient for applications that need to
monitor environmental events. For example, a surveillance ap-
plication that monitors vehicle movement behind enemy lines
may assign unique labels to individual vehicles. Their state
can then be addressed by reference to these labels. Moreover,
computing or actuation objects can be attached to individual
addresses in much the same way computation is assigned to
IP hosts in an Internet-like environment. Such attached com-
putation or actuation is then performed in the physical neigh-
borhood of the named entity. Hence, for example, a micro-
phone could be turned on at some network address (e.g., one
that names a vehicle in the external environment) to listen-in
on the corresponding environmental object. As the named vehi-
cle moves, the middleware will turn on the appropriate nearby
node microphones such that a non-interrupted audio stream is
delivered to the receiver despite the mobile nature of the source.
Communication can also occur between two mobile endpoints.
For example, a walking soldier with a PDA may track the po-
sition of a suspect vehicle detected elsewhere in the network.
In short, we (i) export a novel logical address space in which
external environmental objects are the labeled entities, and (ii)
allow arbitrary data, computation, or actuation to be attached to
such logical network addresses. These data, computation, and
actuation are encapsulated in an abstraction we call tracking
objects.

The EnviroTrack middleware library implements a set of
protocols that off-load from an application developer the de-
tails of inter-object communication, object mobility, as well as
the maintenance of tracking objects and their state. It abstracts
away the fact that computation associated with the object may
be distributed and performed by all sensor nodes in the vicin-
ity of the tracked physical entity. As the tracked entity moves,
the identity and location of the sensor nodes in its neighbor-
hood change, but the tracking object representing it remains the
same. The programmer thus interacts with a changing group of
sensor nodes through a simple, uniquely addressable, object in-
terface.

EnviroTrack has been implemented and tested on a pop-
ular sensor network platform based on MICA motes [16].
Our initial implementation of this infrastructure uses compiled
NesC [13] programs on TinyOS [15], an operating system for



sensor networks. Recent advances in programming support
for sensor networks, such as the development of a virtual ma-
chine [19], will significantly simplify the code development
and dissemination effort in the future. We present evaluation re-
sults, which illustrate how typical sensor-network applications
that use EnviroTrack will perform on the current hardware plat-
form.

The rest of this paper is organized as follows. Section 2
defines the tracking problem in more detail, describes our pro-
gramming system architecture, and elaborates on the main ab-
stractions provided by EnviroTrack. Section 3 illustrates how
a sample tracking application can be written in EnviroTrack.
Section 4 provides implementation details. Section 5 presents
a performance evaluation. An overview of related work is pre-
sented in Section 6. The paper concludes with Section 7.

2 Programming Model

The programmer’s view of an application written in Enviro-
Track is depicted in Figure 1. Sensors which detect certain
user-defined entities in the physical environment form groups,
one around each entity. A network abstraction layer associates
a context label with each such group to represent the corre-
sponding tracked entity in the computing system. Context la-
bels can be thought of as logical addresses of virtual hosts (con-
texts) which follow the external tracked entity around in the
physical environment. In the following, we use contexts and
context labels interchangeably. Objects can be attached to con-
text labels to perform context-specific computation. These at-
tached objects are called tracking objects. They are executed
on the sensor group of the context label. Since the actual loca-
tion of the tracking object is the nodes in the physical vicinity
of the target, the object can perform local sensing and actuation
to interact directly with the target’s locale. For completeness,
EnviroTrack also supports conventional static objects that are
not attached to context labels.

Context labels have types depending on the entity tracked.
For example, a context label of type CAR is created wherever
a car is observed. To declare a context label of some type e

(named after the tracked event type), the programmer must sup-
ply three pieces of information. First, the programmer supplies
a function sensee�� that describes the sensory signature iden-
tifying the tracked environmental target. For example, if the
context type is to identify moving vehicles, sensee�� might be
a function of magnetometer and motion sensor readings. The
middleware watches for the specified sensory pattern in the en-
vironment and creates a sensor group around the detected target
when the pattern occurs. This function is also used to maintain
the membership of the sensor group around the tracked target
when the target moves. Group membership, in this case, is re-
stricted to those nodes that sense the given target (i.e., for which
sensee�� is true).

Second, the programmer declares what constitutes the envi-
ronmental state to be encapsulated in the context label. This
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Figure 1. Programming Model

state is shared by all tracking objects attached to this label.
State is declared by defining an aggregation function statee��
that acts on the readings of all sensors for which sensee�� is
true or was true within a recent past defined by a freshness
constraint. The aggregation is carried out locally by a sen-
sor node that acts as the group leader of all sensors sensing
the named target. The aggregation function can also include
a critical mass constraint that specifies the minimum number
of sensors that must be involved in the aggregation for the re-
sult to be statistically meaningful. EnviroTrack provides a li-
brary of the most common distributed aggregation functions
to choose from, such as addition, averaging, and median com-
putation. These functions can also be location-aware, for ex-
ample, to compute the center of gravity of the measurements.
The underlying infrastructure includes a data collection proto-
col executed by the leader to collect, timestamp, and log sensor
data (i.e., the arguments for the statee�� function) from sen-
sor group members satisfying sensee��. The statee�� function
is then applied on the collected data in a way that satisfies the
freshness and critical mass conditions. Finally, the program-
mer specifies which objects are to be attached to the context
label. Attached object code can reference the aggregate state
maintained by the leader in this context.

In the following, we describe in more detail the network ab-
straction layer, tracking objects, and aggregate state.

2.1 Network Abstraction Layer

Context labels abstract sensor groups for the programmer. The
programmer is aware that a distributed computation, associ-
ated with the context label, is executed on multiple sensors in
the vicinity of a tracked entity. The programmer, however, is
not involved in managing the membership, leader election, and



leader handoff in the sensor group.
A sensor node joins the sensor group of a particular con-

text when its local sensor readings satisfy the boolean condition
sensee��. It leaves the group when this condition is no longer
satisfied.1 A sensor node can be part of multiple groups at one
time. Programs running for different groups are effectively in-
dependent. The sensor group associated with a context label
maintains two invariants. First, all members of a group at time
t satisfy the condition sensee��. Second, the group is not parti-
tioned. All members of a sensor group can communicate with
each other possibly using multiple hops through other members
of the same group. This physical continuity constraint is intro-
duced to ensure that groups formed around different entities of
the same type remain distinct and do not merge as long as the
tracked entities are physically separated.

2.2 Tracking Objects

The tracking objects attached to a context label consist of
methods that are invoked either by the passage of time (time-
triggered), or by the arrival of messages that carry method in-
vocation requests. Object code is executed on a single node.
In the current implementation, this node is the sensor group
leader of the enclosing context. Object code may make refer-
ences to the aggregate state maintained by the enclosing con-
text, returned by the statee�� function. This state is collected
by a distributed data collection protocol which constitutes the
distributed part of the objects’ computation. Note that the code
is independent of the number and identity of participants of
the distributed data collection protocol. It can assume, how-
ever, that the aggregation results always satisfy the semantics
of aggregate state (i.e., they are in accordance with the specified
freshness and critical mass requirements).

2.3 Aggregate State

The function statee�� is configured by declaring aggregate
state variables for context e. The definition of a state variable
in the enclosing context specifies three important pieces of in-
formation:

� Aggregation function. Aggregation functions produce
scalar values from sets of sensor readings. Several ag-
gregation functions are provided in a library that can be
extended by the programmer.

� Freshness Le. The freshness threshold tells the system
how long sensor readings can be used before they are con-
sidered stale. Only readings taken within the prescribed
freshness time are used to compute the value of an aggre-
gate state variable.

1Alternatively, a separate deactivation condition may be written.

� Critical mass Ne. The critical mass is an integer that de-
notes the minimum number of sensor nodes that should
be involved in the aggregation for the returned value to be
valid. Only readings produced within the freshness thresh-
old can contribute to the critical mass threshold.

Since freshness is decided at configuration time, nodes that join
the group associated with a particular context label periodically
send to the leader their measurements at a period Pe � Le� d,
where d is an estimate of maximum message delay and pro-
cessing time within the group. This ensures that the results of
aggregation are always based on sensor readings that are not
older than Le. The leader maintains approximate aggregate
state by performing the aggregation function periodically on
all the messages received within a sliding window of Pe time
units. The state is tagged valid (using a valid flag) if more
than Ne messages were received within the window. The ap-
plication code running on the leader, can perform asynchronous
read operations on aggregate state variables, which return their
current value and validity status.

Figure 2 shows the overall internal structure of the middle-
ware, illustrating both member and leader code. As seen in
figure, the main function of members is to report their read-
ings periodically to the group leader. The leader computes the
aggregate state and runs the application, which may communi-
cate with remote contexts using a message transport protocol.
A distributed group management protocol keeps track of group
membership and leader election. Observe that each sensor node
has both member and leader code. The role taken by the node
is chosen by the group management protocol.
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Figure 2. Middleware Architecture

3 Language Features and Application Example

To facilitate the use of our middleware, we developed simple
language support for declaring context labels and aggregate



(1) begin context tracker
(2) activation: magnetic sensor reading()
(3) location : avg (position) confidence=2, freshness=1s
(4)
(5) begin object reporter
(6) invocation: TIMER(5s)
(7) report function() f
(8) MySend (pursuer, self�label, location);
(9) g
(10) end
(11) end context

Figure 3. Sample EnviroTrack Code

state variables. A preprocessor uses the stated declaration to
emit appropriate code that initializes the middleware and con-
figures the statee�� and sensee�� functions. The preprocessor
then configures the trigger conditions for membership in par-
ticular contexts, and replaces references to the aggregate state
variables by middleware function calls that evaluate and return
them at runtime.

An EnviroTrack program consists of a list of context decla-
rations such as the one shown in Figure 3. Each context decla-
ration includes an activation statement specifying the sensee��
condition for creating new instances of the declared context
type. The activation statement is followed by aggregate state
declaration for the created context. This declaration consists of
a list of variables, each with its own freshness and critical mass
constraints. The declared aggregate state variables are com-
puted for the context at run-time as described in Section 2.3.
This computation is performed independently of application
code. Finally a list of objects is attached. Each object may
have NesC functions with optional invocation conditions. In-
vocation conditions may be written in terms of aggregate state
variables defined in the enclosing context. They state when the
particular method is to be invoked. All static objects are de-
clared separately within the default context type.

We illustrate our programming syntax by an application ex-
ample. A typical sensor network application is one in which
a dense network of motes is deployed to track the location of
moving vehicles. For simplicity of illustration, we assume that
the presence of the vehicle is determined using a magnetic sen-
sor. In our application, sensors that detect magnetic distortion
caused by the vehicle form a group abstracted by a context la-
bel. Note that several context labels may be instantiated, de-
pending on the number of vehicles sensed. In each context la-
bel, the attached object periodically reports the vehicle’s loca-
tion to a preselected mote interfaced to a mobile pursuer. The
pursuer (a laptop) monitors all vehicles at all times and records
their tracks. The program in Figure 3 shows how the vehicle-
tracking context is defined. Pursuer code is not shown.

The example in the figure defines a context of type tracker.
Line 2 specifies that the activation condition, sensee��, for

this context type is encoded by the boolean function mag-
netic sensor reading(). This function is written in NesC. It re-
turns a true value when a vehicle is detected. Line 3 defines
one aggregate variable, namely, the average position location.
It specifies that the value of location returned upon a reference
must represent the average of at least 2 sensor node readings
measured no earlier than 1 second ago. Hence, Ne � � and
Le � �.

Lines 5-10 describe the attached computation. Line 6 speci-
fies when the computation is invoked. It dictates that the report
function be invoked periodically with a period of 5 seconds.
This is followed by the code of the function. This code simply
makes a call to MySend() which in turn calls the routing layer to
send the message to the pursuer. Two parameters are passed in
the message, a handle of the originating context label obtained
using self�label and the aggregate state variable location in-
dicating the average position of all sensors currently detecting
the reported vehicle (i.e., the estimated position of the vehicle).

The above code will generate multiple instances of the
tracker if multiple vehicles are present. Further, even though
the vehicles move and the sensor nodes comprising their corre-
sponding contexts will change, the context labels will not. This
significantly simplifies the programmer’s interaction with the
varying sensor group tracking each vehicle.

4 Implementation

In this section, we describe implementation issues in Enviro-
Track. Our implementation is built on TinyOS [15], an op-
erating system kernel developed exclusively for sensor nodes.
TinyOS provides support for communication, multitasking, and
code modularity. Geared towards communication-intensive ap-
plications, it exports the abstraction of components, which can
be integrated into structures similar to a protocol graph. Each
component consists of command handlers, event handlers and
simple tasks. Communication protocols can be constructed eas-
ily in a modular manner by developing the appropriate han-
dlers independently of others. The implementation of the En-
viroTrack programming system consists of the following main
modules:

� The EnviroTrack preprocessor: This preprocessor trans-
lates EnviroTrack declarations such as the one shown in
Section 3 into NesC code which calls run-time libraries
implementing group management, data aggregation and
communication.

� The group management protocol: This protocol maintains
the membership of the sensor group associated with a sin-
gle context label.

� Routing services: These services implement a communi-
cation protocol between different context labels.

These modules are described next.



4.1 The EnviroTrack Preprocessor

The input to the EnviroTrack preprocessor is the context de-
scription file, such as the one shown in Section 3. The pre-
processor patches a set of NesC program templates using the
information gathered from the context description file to pro-
duce the target NesC modules such as those implementing the
sensee�� and statee�� functions. The programs are then com-
piled using the provided TinyOS development tools.

The outer loop of our TinyOS program template code is im-
plemented as a timer handler. This handler is invoked on the
sensor group leader periodically and executes one iteration per
invocation. The handler maintains an array of contexts. Each
entry represents one context and provides access (via function
pointers) to that context’s activation condition, sensee��, and
object code, as well as its status. The generic handler in the
template simply goes through this array checking if any con-
text satisfies the activation condition. The compiler emits an
initContextStructures() function that sets up this ar-
ray based on the context description file. At run-time, sensor
devices remain in this time-triggered mode until an appropriate
condition is sensed. Activation conditions of different contexts
are expressed in terms of boolean NesC functions which access
local sensory measurements. These functions are sensor depen-
dent. They can be written by the developer or chosen from a
common library.

When an activation condition, sensee�� is satisfied for a
context of type e, group management services are activated
on the motes sensing that condition. The execution of these
services creates a context label (of type e) and maintains its
approximate aggregate state, statee��, on the current group
leader. Subsequent invocations of the timer handler check for
method invocation conditions defined in terms of this aggre-
gate state, and post TinyOS tasks to execute methods whose
invocation conditions are satisfied.

In the current implementation, objects are permanently at-
tached to contexts. Each of the methods attached to a context
is emitted with their names mangled (by adding the context
name). The contents of each function are also parsed to replace
references to aggregate variables with function calls that re-
turn the aggregate variable’s value in accordance with its spec-
ified tracking QoS. Every possible aggregation for every sen-
sor value is available as a function call. The naming of these
functions is done based on a known scheme so as to allow the
compiler to generate the correct call. Each aggregate variable
is associated with attributes of freshness and critical mass. The
functions (that return aggregate values) themselves are patched
with the right value of freshness and confidence to produce the
specified QoS.

4.2 Group Management Services

Group management services, shown at the bottom of Figure 2
maintain coherence of context labels. That is, they ensure that

a group of sensors identifying the same entity in the environ-
ment produce a single context label. This label must persist
and remain unique even as the membership of this sensor group
changes. Ideally, to maintain context label coherence, at any
point in time, nodes sensing the same external entity maintain
a single “majority” leader.

Contexts are created when a node first senses condition
sensee��. The node immediately starts a leader election pro-
cess in which it randomly chooses a small timeout value. A
node which times out first sends a message informing its neigh-
bors that it is leader. Upon receipt of this message, other nodes
sensing the same sensee�� condition become members. We re-
quire that a node’s communication radius be larger than twice
its sensing radius such that all nodes sensing the same target
are within each other’s communication range.

An elected group leader sends periodic heartbeats, which
are received by all group members. Leader heartbeats have
three purposes. First, they inform current members that the
leader is alive. Should the leader die, a new leader election
is started after a timeout. Second, they carry application state
that must persist across leader handoffs. This state is recorded
by all member nodes. This mechanism allows new leaders to
continue computations of failed leaders from the last state re-
ceived. An application can explicitly create persistent state us-
ing a setState�� primitive and read it using getState��. Fi-
nally, heartbeats are overheard past the group’s perimeter thus
informing neighboring nodes of the existence of context label
e. Nodes that cannot sense the target themselves but know of
its existence from nearby leader heartbeats are called group
followers. If these nodes subsequently sense the condition
sensee��, they join the present group instead of forming a new
context label. The mechanism ensures that multiple spurious
context labels do not emerge around the same target. When
the leader gets out of sensory range from the target, it sends a
leader handoff message which initiates a new leader election.
The resulting behavior is that a group with a unique leader is
created around each target. Membership changes and leader
(and state) handoffs occur automatically as the target moves.

A detailed simulation study of the above protocol appeared
in [4] in which particular attention was paid to various failure
and message loss scenarios that result in election of spurious
leaders. It was shown that while spurious leaders do emerge,
very simple techniques can substantially reduce their effect on
system behavior. For example, in the presence of message loss,
a leader handoff may produce two nodes both of whom claim
to be leaders of the same context label. However, since these
nodes are within each other’s communication range, the one
with the higher node identifier can eventually force the other
to relinquish leadership. The same applies if a node elects it-
self as leader of a new context label for a target that is already
being tracked by another. The effect of such spurious context
labels is reduced by letting nodes that hear two nearby leaders
ignore the one with the smaller weight. Each new context la-



bel is initially created with a leader weight of zero. Leaders of
existing context labels accrue a weight equal to the number of
messages received by the leader from members to date. This
weight is passed during leadership handoffs. Hence, leaders
of spurious context labels will generally be ignored. Conse-
quently, the abstraction of a single context label per target is
adequately maintained.

The mechanism described above opens several important
questions for future research. One is what do when multiple
targets cross paths. In the present scheme a violation of con-
text label coherence may occur. For example, the “younger”
context label may disintegrate (be absorbed in the group of the
“older”) and later emerge as a different label when the targets
separate. Such anomalies should be dealt with at the appli-
cation layer. It may be impossible to solve them in middle-
ware without complex signal processing as it may be impossi-
ble, say, for a magnetic sensor to identify which of two nearby
targets is responsible for its magnetic reading. From the appli-
cation’s perspective, the sensor network has a notion of granu-
larity which defines the resolution of target detection and is re-
lated to the communication radius of nodes. If multiple targets
fall within the same granule, they become indistinguishable.
When they separate, they again become distinct targets.

4.3 Routing Services

To route among different context labels, we use an algorithm
similar to landmark routing [22]. Nodes are assumed to know
their location such that geographic routing can be used. Lead-
ers of established context labels who wish to communicate
broadcast their existence and report their location to a land-
mark. Other nodes route packets to the landmark, which in turn
forwards them to the leader of the context label. Upon leader
handoffs (the location of) the new leader is reported to the land-
mark. In addition, a forwarding pointer is inserted at the previ-
ous leader to forward packets that are in transit. On top of the
routing layer a simple demultiplexor is implemented that di-
multiplexes incoming messages at the destination and forwards
them to one of several application modules. This allows imple-
menting remote method invocation. The destination address of
the remove method contains the name of the context label and
the method identifier. The latter is used by the demultiplexor to
identify the module implementing the needed method.

5 Performance

In this section, we evaluate the performance of an actual imple-
mentation of the presented tracking middleware service. The
implementation is on MICA motes running TinyOS. While
some simulation studies have been performed on the group
management protocol [4] as mentioned in Section 4.2, this is
the first detailed report on the performance of an actual imple-
mented prototype of the complete service. In the context of

performance evaluation, it is interesting to node that the pro-
gramming interface imposed on top of our middleware does
not interfere with its run-time performance. In fact, this inter-
face was written by the authors after the tracking middleware
was developed. It simply automates the process of configuring
the middleware for tracking. Once the preprocessor has parsed
the user’s context declarations and emitted the configured code,
the middleware looks the same as if it was hand-coded. No
performance penalty is associated with the improved level of
abstraction.

With the above observation in mind, we now present the ex-
perimental performance of tracking. We first establish a case
for the viability of our middleware for tracking in practice. We
then proceed with stress-testing EnviroTrack to explore the lim-
itations of the current implemented prototype.

5.1 A Case for Tracking

Our case-study target is the T-72 tank (made in Russia), moving
in an off-road sensor field. This particular tank weighs 44 tons
and has a maximum off-road speed of around 45 km/hr [12].
Sensors in the field are equipped with magnetometers. Honey-
well advertises magnetic traffic monitoring sensors which can
detect moving vehicles from a range of up to 30 meters [20].
These sensors operate by detecting slight disturbances to the
Earth magnetic field caused by ferrous objects. The magnitude
of this disturbance depends on the amount of the ferrous mate-
rial in the tracked object. Since the T-72 tank weights about 40
times the average vehicle in ferrous matter, its presence could
be detected at a much larger distance than 30 meters. Magnetic
effects are attenuated with the cube of the distance. Hence, we
set the magnetic detection radius for the tank to approximately
�� � ����� which amounts to about 100 meters. It is easy to
show geometrically that if the tank can be detected 100 meters
away, it is guaranteed that it is always within range from at least
one sensor as long as sensors are put on a grid about 140 meters
apart. We thus assume a rectangular grid of sensors with a per-
hop distance of 140 meters. Note that covering a border area of
say 70 km x 5 km at this spacing would require roughly 18,000
sensor devices, which is about the right size for the envisioned
sensor networks. Moving at its maximum speed, a T-72 tank
will cover one hop every 11.2 seconds.

We developed a testbed which provides a scaled down,
1000:1, model of this scenario. To experiment with variable
sensor range more readily, we replaced magnetic sensors with
light sensors installed on MICA motes. The magnetic field of
the target was emulated by moving a round object of a corre-
sponding radius above the sensor field to block a strong light
source from the appropriate sensors. The field was arranged
into a rectangular grid. In our first experiment, the tracked
object was moved at a speed of 10 seconds/hop and 15 sec-
onds/hop, which corresponds to an emulated speed of 50 km/hr
and 33 km/hr, respectively. A single context type was defined,



whose declaration is similar to Figure 3. At run-time a context
label was generated. Group management maintained a leader
for the context label. The leader sent to a base station the aver-
age position reported by nodes sensing the target at the current
time. After each run, logs on individual motes were inspected
to produce message loss and total throughput statistics. Mes-
sage loss was computed by counting the number of messages
sent but never received on any other mote.

Figure 4 shows the real and tracked object trajectory (re-
ported to the base station) in a representative run. The motes
were put at integer (x� y) coordinates. The horizontal line at
y � ��	 is the real target trajectory. The tracking error oc-
curs because our sensors have no notion of proximity to the
target. Moreover, direction anomalies occur due to message
loss which causes sensor position aggregation to use a subset
of reporting sensors only. An application receiving this trajec-
tory can presumably improve the results by applying filtering
to the reported raw data. Results could be further improved if
sensor nodes could perform ranging to estimate target proxim-
ity.
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Figure 4. Tracked Tank Trajectory

Figure 5 shows the percentage of successful context label
handovers for two target speeds and two settings of group man-
agement parameters. A successful handover means that the
context label successfully follows tank location by virtue of
leadership handoff from one member node to another along the
target’s path. An unsuccessful handover means a different con-
text label is spawned at the new tank’s location, not realizing
that it refers to the same tank as the current context label. This
case violates context label coherence.

In the first group management parameter setting, leader
heartbeats are not propagated past the sensing radius. As ex-
pected, in this case it is more likely that multiple context labels
are generated for the same target since nodes which sense the
target for the first time might not be aware of the existing con-
text label. Figure 5 shows that a fraction of handovers will fail
in this case unless target speed is slow. In the second setting, the
sensing and communication ranges are such that leader heart-
beats are propagated beyond the sensing radius. In this case,
all handovers are successful at both emulated tank speeds. This
is in agreement with expectations since the group management
algorithm in Section 4.2 requires that the communication range
be larger than the sensing range. The experiment demonstrates
the importance of setting these ranges correctly not to violate

the group management assumptions.
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Finally, Table 1 shows sample communication data collected
during our experiments for the second (correct) case above.
Each point is averaged over three independent runs. In particu-
lar, we show the measured percentage of lost leader heartbeats
(HB loss), lost sensor messages incurred during data aggrega-
tion (Msg loss), and the average useful link utilization (Link
Util). To compute the latter, we divided the total number of
bits sent per second by the total link capacity (50kbs for MICA
motes). Hence, this is a worst case estimate, since it assumes a
broadcast model in which no two messages could be sent con-
currently.

The table demonstrates four important points. First, our sys-
tem operates correctly in the presence of message loss, which
is necessary in sensor network applications. Second, message
loss is not caused by link utilization, but rather by the unreli-
ability of the wireless medium (no reliability is implemented
in the MAC layer of the MICA motes). Note that the effect
of collisions increases with target speed. Third, our communi-
cation requirements constitute only a tiny fraction of available
link capacity. Hence, we have not yet stressed the limits of
the system’s capabilities. Fourth, link utilization increases only
slightly with tank speed. Hence, the bandwidth requirements
of the algorithm have potential to scale well with tracking dif-
ficulty.

Speed % HB loss % Msg loss % Link Util
33 km/hr 7.08 3.05 2.54
50 km/hr 22.69 17.05 2.88

Table 1. Communication Performance Data

The aforementioned proof-of-concept results show that the
severe limitations on the memory, CPU, and network band-
width of the MICA motes do not prevent them from perform-
ing communication protocol stack processing, group manage-
ment, leader handoff, and aggregate state computation associ-
ated with maintaining our context label abstraction. Moreover,
with appropriate sensor selection and parameter settings, realis-
tic targets can be successfully tracked. Next, we stress-test the



architecture to determine the maximum trackable target speed
as a function of various parameter settings of the middleware.

5.2 Testing the Maximum Trackable Speed

The maximum trackable speed refers to the maximum speed a
target can have without causing violations of context label co-
herence. If a target moves too fast it can be detected by nodes
who have not yet heard of it, which results in creation of spuri-
ous context labels. The most important parameter which affects
the maximum trackable target speed in our architecture is the
heartbeat period of the group leader. In the experiments con-
ducted, the timeout associated with failed leader detection (due
to absence of heartbeats) is set to 2.1 the heartbeat period. In
other words, we wait for two consecutive missing heartbeats
before initializing leader re-election.

The maximum trackable speed is computed for the worst-
case scenario, which is the case when the current leader fails
causing leadership takeover to take place. In this case, a slow
heartbeat period will allow the target to escape tracking during
the leadership takeover. Consequently, several disconnected
groups will be formed (as the target is rediscovered indepen-
dently at different points along its track). The maximum track-
able speed (the highest target speed at which the single group
abstraction is maintained) observed in the experiment is shown
in Figure 6 as a function of heartbeat period for two events: a
narrow siganture event (outer bars), and a wide signature event
(inner bars). The figure also shows the trackable speed during
normal operation in which each leader willingly relinquishes
leadership to another as the target moves out of its sensor range.
This case is labeled “relinquish” in the figure and shows a max-
imum trackable speed that is independent of the heartbeat pe-
riod.

Figure 6. Effect of Timers on Maximum Trackable
Speed

Several points can be made from this graph. First, for a large
range of parameter settings, the maximum trackable speed is 1-
3 hops/s, which is 10-30 times faster than the speed of the tank
presented in the previous section. Thus, very fast targets can be
tracked, or alternatively, sensors with a much smaller sensing
radius can be successfully used to track realistic targets.

Second, we see that events with a larger sensory signature
(expressed in figure in terms of multiples of average node sep-
aration, or grids) can be tracked at higher speeds. This may
seem intuitive, as larger targets should be easier to track.

Third, we see that as the heartbeat period is reduced (send-
ing out more frequent heartbeats) faster targets can be tracked.
This is intuitive as faster heartbeat makes the group manage-
ment mechanism more responsive. Realizing that heartbeats
are bandwidth-consuming messages and that both CPU and
communication bandwidth are limited in our experiments, we
stress tested the heartbeat period to determine where overload
occurs.

To determine the identity of the bottleneck resource that
causes the decline in the maximum trackable speed at small
heartbeat periods, we repeated the above experiment in the
presence of a substantial amount of cross traffic. The cross traf-
fic was exchanged between motes that do not participate in the
EnviroTrack protocol but rather generate “background noise”.
The shape of Figure 6 in the presence of this cross traffic re-
mained largely unaffected. We therefore conclude that com-
munication bandwidth is not the bottleneck. The bottleneck
appears to lie in CPU processing.

In our next experiment, we test the effect of varying the ra-
tio between the communication radius (CR) and the sensing
radius (SR) on the trackable target speed. We use explicit lead-
ership handoffs in this experiment (as opposed to handoffs due
to leader failures). The results are shown in Figure 7. From
this figure, the most important point to note is that for a given
CR:SR ratio (which may or may not be a controllable param-
eter by system designers), larger events are trackable at faster
speeds. The direct cause of this is the number of leadership
handovers that occur. For a constant speed, when an event is
larger, the average time between handovers decreases (as a sin-
gle leader can sense the target longer) requiring fewer messages
to be processed. The lower communication overhead results
in a higher trackable speeds. The other point to note is that
our tracking architecture breaks down when the CR:SR ratio
falls below 1. This occurs because nodes outside of communi-
cation range from the leader also sense the event and concur-
rently form spurious groups thus violating context label coher-
ence. The performance improves as the ratio increases as two
nodes that sense the same target are less likely to be outside
each other’s range.

6 Related Work

A growing challenge facing the distributed systems commu-
nity is to develop programming paradigms and run-time sup-



Figure 7. Effect of Sensory Radius on Maximum
Trackable Speed

port for the operation of large-scale embedded sensor networks.
Classical distributed programming paradigms and middleware
such as CORBA [28], group communication [8], remote pro-
cedure calls [3], and distributed shared memory [6, 25] share
in common the fact that their programming abstractions exist
in a logical space that does not represent or interact with ob-
jects and activities in the physical world. Their main goal is
to abstract distributed communication rather than facilitate dis-
tributed sensory interactions with an external physical environ-
ment. In contrast, a new paradigm tailored for sensor should be
centered around environmentally-driven abstractions aimed at
simplifying the coding of interactions with the physical world
that arise in distributed deeply embedded systems.

The work reported in this paper is related to several re-
cent projects, such as Cricket [23], Sentient Computing [1] and
Cooltown [9], that propose high-level paradigms in which an
embedded distributed computing system is able to share per-
ceptions of the physical world. These systems allow the loca-
tion of entities in the external environment to be tracked. One
major difference of these systems from EnviroTrack is that they
assume cooperative users who, for example, can wear beacon-
ing devices that interact with location services in the infrastruc-
ture for the purposes of localization and tracking [23, 1]. Our
interest, in contrast, is in situations where no cooperation is as-
sumed from the tracked entity.

In the absence of cooperation, several research efforts pro-
posed alternative addressing schemes that do not rely on hav-
ing destinations with specific identities, but rather contact sen-
sor nodes in the vicinity of a phenomenon of interest based on
the attributes of data they sense. For example, DataSpace [17]
exports abstractions of physical volumes addressable by their
locations. Similarly, directed diffusion [18, 14] and the inten-
tional naming system [2] provide addressing and routing based
on data interests [18, 14]. Attributed-based naming is also re-

lated to the notion of content-addressable networks [24] pro-
posed for an Internet environment, which allows queries to be
routed depending on the requested content rather than on the
identity of the target machine. We adopt a form of attribute-
based naming we call context labels. In our architecture, how-
ever, context labels are active elements. Not only do they pro-
vide a mechanism for addressing nodes that sense specific en-
vironmental conditions, but also they can host context-specific
computation that tracks the target entity in the environment.

Recent research on system software for sensor networks
has seen the introduction of distributed virtual machines de-
signed to provide convenient high-level abstractions to appli-
cation programmers, while implementing low-level distributed
protocols transparently in an efficient manner [27]. This ap-
proach is taken in MagnetOS [11], which exports the illusion
of a single Java virtual machine on top of a distributed sensor
network. The application programmer writes a single Java pro-
gram. The run-time system is responsible for code partition-
ing, placement, and automatic migration such that total energy
consumption is minimized. Maté [19] is another example of a
virtual machine developed for sensor networks. It implements
its own bytecode interpreter, built on top of TinyOS. The inter-
preter provides high-level instructions (such as an atomic mes-
sage send) which the machine can interpret and execute. Each
virtual machine instruction executes in its own TinyOS task.

A somewhat different approach of providing high-level pro-
gramming abstractions is to view the sensor network as a
distributed database, in which sensors produce series of data
values and signal processing functions generate abstract data
types. The database management engine replaces the virtual
machine in that it accepts a query language that allows appli-
cations to perform arbitrarily complex monitoring functions.
This approach is implemented in the COUGAR sensor network
database [5]. A middleware implementation of the same gen-
eral abstraction is also found in SINA [26], a sensor informa-
tion networking architecture that abstracts the sensor network
into a collection of distributed objects.

Our system is different in that it is geared for environmen-
tal tracking applications. To the authors’ knowledge, Enviro-
Track is the first programming support for sensor networks that
explicitly facilitates the coding of tracking applications. Its
novel abstractions and underlying mechanisms are well-suited
for monitoring targets that move in the physical world. Enviro-
Track therefore can have a major impact on application devel-
opment for sensor networks.

7 Conclusions

This paper introduced the design, implementation, and experi-
mental evaluation of a new distributed programming paradigm
and experimental prototype for sensor network applications.
The paradigm differs from existing distributed computing mod-
els in its central focus on abstracting interactions with a phys-
ical environment produced by a large array of distributed sen-



sors and actuators. The key advantage of this paradigm lies
in its considerable potential to reduce development costs of
deeply embedded systems. This reduction comes from off-
loading from the application developer the details of managing
low-level communication, mobility, and group management is-
sues in groups of redundant sensor nodes in tracking applica-
tions. Performance results show that in addition to convenient
abstractions, efficient implementation is possible in our archi-
tecture, in that target tracking is successful at practical target
speeds.

This paper might be a first step towards a predictable sen-
sor network “virtual machine” for writing distributed deeply-
embedded applications. Such a layer should export reliable
behavior and well-defined semantics, implemented on an un-
reliable, unpredictable, and resource constrained hardware and
communication infrastructure. The virtual machine would hide
the complexity of sensor network programming from the appli-
cation developer, making a new more robust and more dynamic
realm of sensor network applications attainable to impact future
defense, surveillance, habitat monitoring, and disaster manage-
ment systems.
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