
 Elsevier Editorial System(tm) for Ad Hoc Networks
 Manuscript Draft

Manuscript Number: ADHOC-D-11-205R2

Title: On Combining Duty-Cycling with Network Coding in Flood-based Sensor Networks

Article Type: Regular Paper

Keywords: wireless sensor networks, energy efficiency, duty cycling, network coding

Corresponding Author: Dr. Radu Stoleru, Ph.D.

Corresponding Author's Institution: Texas A&M University

First Author: Roja Chandanala, MS

Order of Authors: Roja Chandanala, MS; Wei Zhang, M.S.; Radu Stoleru, Ph.D.; Myounggyu Won

Abstract: Network coding and duty-cycling are two major techniques for saving energy in wireless
sensor networks. To the best of our knowledge, the idea to combine these two techniques for even
more aggressive energy savings, has not been explored. This is not unusual, since these two techniques
achieve energy efficiency through conflicting means, e.g., network coding saves energy by exploiting
overhearing (i.e., nodes are awake), whereas duty-cycling saves energy by reducing idle listening (i.e.,
nodes sleep). In this article, we thoroughly investigate if network coding and duty cycling can be used
together for more aggressive energy savings in flood-based wireless sensor networks.

Our main idea is to exploit the redundancy sometimes present in flooding applications that use
network coding, and put a node to sleep (i.e., duty cycle) when a redundant transmission takes place
(i.e., the node has already received and successfully decoded a sequence of network-coded packets).
We propose a scheme, called DutyCode, in which a multiple access control (MAC) protocol implements
packet streaming and allows the network coding-aware application to decide when a node can sleep.
We also present an algorithm for deciding the optimal coding scheme for a node to further reduce
energy consumption by minimizing redundant packet transmissions. Finally, we propose an adaptive
switching technique between DutyCode and an existing duty-cycling MAC protocol. We investigate our
proposed solutions analytically and implement them on mote hardware. Our performance evaluation
results, obtained from a 42-node indoor testbed, show that our scheme saves 30-46% more energy
than network coding-based solutions.

On Combining Network Coding with Duty-Cycling in Flood-based Wireless
Sensor Networks

Roja Chandanalaa, Wei Zhanga, Radu Stolerua,∗, Myounggyu Wona

aDepartment of Computer Science and Engineering, Texas A&M University

Abstract

Network coding and duty-cycling are two major techniques for saving energy in wireless sensor networks. To the best
of our knowledge, the idea to combine these two techniques for even more aggressive energy savings, has not been
explored. This is not unusual, since these two techniques achieve energy efficiency through conflicting means, e.g.,
network coding saves energy by exploiting overhearing (i.e., nodes are awake), whereas duty-cycling saves energy by
reducing idle listening (i.e., nodes sleep). In this article, we thoroughly investigate if network coding and duty cycling
can be used together for more aggressive energy savings in flood-based wireless sensor networks.

Our main idea is to exploit the redundancy sometimes presentin flooding applications that use network coding, and
put a node to sleep (i.e., duty cycle) when a redundant transmission takes place (i.e., the node has already received
and successfully decoded a sequence of network-coded packets). We propose a scheme, called DutyCode, in which a
multiple access control (MAC) protocol implements packet streaming and allows the network coding-aware applica-
tion to decide when a node can sleep. We also present an algorithm for deciding the optimal coding scheme for a node
to further reduce energy consumption by minimizing redundant packet transmissions. Finally, we propose an adaptive
switching technique between DutyCode and an existing duty-cycling MAC protocol. We investigate our proposed
solutions analytically and implement them on mote hardware. Our performance evaluation results, obtained from a
42-node indoor testbed, show that our scheme saves 30-46% more energy than network coding-based solutions.

Keywords: wireless sensor networks, energy efficiency, duty cycling, network coding

1. Introduction

Energy is a scarce resource in wireless sensor net-
works (WSN) and its conservation has been the subject
of extensive research. While a variety of solutions have
been proposed for saving energy in WSN, duty cycling
and network coding have proven to be two of the most
successful techniques.

Network coding is a technique that increases energy
efficiency and reduces network congestion by combin-
ing packets destined for distinct users. Since the ini-
tial proposal by Ahlswede [2], many applications have
incorporated this technique. Network coding is particu-
larly well-suited for WSN due to the broadcast nature of

∗Corresponding author
∗∗A preliminary version of this article was presented at the IEEE

International Conference on Networked Sensing Systems (INSS),
2010 [1].

Email addresses:roja@cse.tamu.edu (Roja Chandanala),
wzhang@cse.tamu.edu (Wei Zhang),stoleru@cse.tamu.edu
(Radu Stoleru),mgwon@cse.tamu.edu (Myounggyu Won)

their communications. Overhearing is effortless, prop-
agation is usually symmetric, and energy efficiency is
a priority. Network coding can also be found in appli-
cations including multi-cast, content distribution, delay
tolerant networks, underwater sensing suites, code dis-
semination, storage, and security. As diverse as these
applications are, they all share a common assumption:
nodes in a network are always awake.

Duty cycling is a technique that increases energy ef-
ficiency by allowinga node to turn off part or all of
its systemsfor periods of time. Encompassing a range
of techniques from peripheral device management to al-
most complete system shutdown, duty cycling extends
node lifetime and reduces maintenance. It has been
shown that duty cycling can extend battery life by an or-
der of magnitude or more. In WSN duty cycling is per-
vasive, and almost all deployed systems use it. Given
the importance of duty cycling to WSN, the assump-
tion that nodes will be awake cannot be made.Since
nodes will be asleep at least part of the time, i.e., the

Preprint submitted to Elsevier AdHoc Networks July 16, 2012

*Manuscript

time available for overhearing is reduced, network cod-
ing becomes more difficult.

In this article, we address the challenge faced when
aggressive energy savings (i.e., both duty-cycling and
network coding) are needed in flooding-based WSN
applications. To the best of our knowledge, this is
the first work that considers the simultaneous use of
duty cycling and network coding. We particularly tar-
get code/program dissemination (i.e., distributing a new
program/executable image to all sensor nodes), a flood-
based application that needs a non-negligible amount of
time for execution, e.g., tens to hundreds of minutes for
large scale WSN.

Our main idea is derived from the intuition that, due
to redundancy in network coding for flooding applica-
tions, there areperiods of timewhen a node does not
benefit from overhearing packets. We seek to precisely
determine these periods of time and let nodes that do
not benefit from overhearing, to be put to sleep, i.e., to
duty-cycle.

Our solution to the aforementioned challenge isDu-
tyCode, a cross layer scheme in which Random Low
Power Listening (RLPL) – a new MAC protocol – facil-
itates streaming, elastic random sleeping and transmis-
sion arbitration, while the Network Coding-aware Ap-
plication determines the time to sleep and the sleep du-
ration. We also propose anEnhanced Coding Scheme
(ECS) algorithm, which eliminates redundant packet
transmissions by selecting appropriate network coding
schemes for nodes. Finally, a novel technique, called
LPL/RLPL Mode Transition, ensures the smooth transi-
tion between our RLPL protocol and Low Power Listen-
ing (LPL), a typical duty-cycling MAC protocol which
is more energy efficient for non-flooding WSN applica-
tions. The contributions of this article are as follows:

• DutyCode – a cross layer scheme that supports
packet streaming and a mechanism for randomiz-
ing sleep cycles using elastic intervals. These al-
low nodes to intelligently select sleep periods.

• ECS – an algorithm for deciding an efficient cod-
ing scheme in static networks. ECS assigns coding
schemes to minimize the number of transmissions,
thus allowing for more energy savings.

• LPL/RLPL Mode Transition - a completely adap-
tive solution allowing the application to smoothly
switch between LPL and RLPL, without packet
loss.

• Theoretical analysis of our proposed DutyCode
and ECS schemes and extensive simulations

S

r1 r2

d1 d2

x1,x2x1,x2

x1,x2x1,x2

x1,x2x1,x2

(a)

S

r1 r2

d1 d2

x1+x2

x1+x2 x1+2x2

x1+2x2

x1,x2x1,x2

(b)

Figure 1: A flood-based application in which nodes floods
packetsx1 andx2 in the entire network: a) transmissions when
network coding is not used (a total of 6 packet transmissions);
b) transmissions when network coding is used (4 packet trans-
missions).

demonstrating their energy efficiency and high
throughput.

• An implementation of our schemes on mote hard-
ware, and performance evaluation in a 42-node
testbed where actual energy consumption is mea-
sured.

This article is organized as follows. Section 2 pro-
vides background on network coding and duty cycling,
and the motivation for our work. Sections 3, 4 and 5
present the design of our DutyCode protocol, ECS algo-
rithm and LPL/RLPL transition technique, respectively.
Section 6 presents theoretical analysis of DutyCode and
ECS algorithm. Section 7 describes the implementation
of our solutions, and Section 8 presents performance
evaluation results. We review the state of art in Sec-
tion 9 and conclude in Section 10.

2. Background and Motivation

Network coding enhances energy efficiency by re-
ducing the number of packet transmissions. The basic
concept of network coding, as applied to a flood-based
application, can be explained using a simple scenario
shown in Figure 1. Senderswants to flood two packets
x1 andx2. As shown in Figure 1(a), when network cod-
ing is not used, six packet transmissions are required
to deliver the two packets to all nodes in the network,
i.e., r1, r2, d1, d2. As shown in Figure 1(b), however,
when network coding is used, only 4 transmissions are
needed. This is because each of the two relays transmits
only one coded packet. For network coding to work, re-
ceiversd1, d2 must be able to receive both coded pack-
ets, i.e. (x1+ x2) and (x1+ 2x2). Otherwise, they will be
unable to decode the other packet received.

2

n 1 2 3 4

IP

NACK

4

BOi,c BOi,c BOi,c

BT BT BTTRBT

1 2

ReNACK

NT

BT

Figure 2: The AdapCode protocol: Ci are coded packets, N is
a NACK packet, due to missing packet C4, R4 is the reply to
the NACK packet, sent when a ReNACK timer fires, IP is the
Inter-Page Interval, BOi,c is the backoff interval - initial and
congestion, NACK is a timer.

It is important to note that, unlike normal broad-
cast/flooding packets, one missing coded packet can
render a sequence of coded packets “useless” (i.e., they
do not convey any information). Consider a scenario
where a node receives the independent coded packets
(a1x1+ a2x2+ a3x3+ a4x4), (b1x1+ b2x2+ b3x3+ b4x4),
and (c1x1+c2x2+c3x3+c4x4). For decoding these pack-
ets, it becomes critical to receive another coded packet,
say (d1x1 + d2x2 + d3x3 + d4x4). Otherwise all 3 re-
ceived packets are useless. As the coding scheme in-
creases (i.e.,coding scheme is defined as the number of
different packets coded into a single packet) the penalty
for losing a single packet increases linearly.

2.1. AdapCode Design
In this subsection we present AdapCode [3], a flood-

ing application which uses network coding and employs
CSMA as its MAC protocol. Figure 2 describes the
protocol. In this figure, a sender nodes transmits a
sequence of packets (i.e., labeledC1, ..., C4, andR4),
which are received by noder. Noder transmits packet
N. The transmission and reception of packets are indi-
cated by vertical gray arrows.As will become apparent
later, we depict both the transmission and reception of
a packet because these are the time instances when a
node needs to be awake.

We are now ready to describe the AdapCode protocol
in detail. When a source node, e.g., a base station, wants
to flood a set of packets to all nodes in the network, it
broadcasts the data as pages. Each page consists of a
number of packets. The arrival of a transmission request
at the MAC layer is depicted in Figure 2 as the verti-
cal arrow “TR” (i.e., transmission request). In Figure 2,
the TR only for the coded packetC1 is shown to keep
the figure simple. After transmitting a page, the source
node waits for a short period of time, called “Inter-Page
Interval” and labeled IP in Figure 2, for code propaga-
tion, and then transmits the next page. After receiving

s

r2

time

r1

x1 + x2P

x1 + 2x2P

x1P x2P

x1

x1

x2

x2

d1

d2

x1 + 2x2x1 + x2

x1 + x2 x1 + 2x2

Figure 3: Network coding integrated Low Power Listening
based on long preambles (P represents a Preamble), for the
example shown in Figure 1(b). Source nodessends two pack-
etsx1 andx2. Receiver nodesr1 andr2 sends a coded packet.
Destination nodesd1 andd2 are able to decode the coded pack-
ets, to retrieve the original packetsx1 andx2.

packets, a node adaptively chooses a “coding scheme”
(i.e. coding scheme is defined above), based on the
number of neighbors. If a node does not receive any
packets for a fixed period of time (called “NACK” delay
in Figure 2), it broadcasts a NACK packet (labeledN in
Figure 2), which indicates the packets it missed. Upon
receiving a NACK, all nodes having the page that con-
tains the requested packets, set a random backoff timer
(called “ReNACK” delay). The node with the smallest
ReNACK delay interval wins and transmits all the re-
quested packets (packet R4 in Figure 2). As with exist-
ing CSMA protocols, AdapCode uses a “BackoffTimer”
(labeled BT in Figure 2) for accessing the medium be-
fore transmitting any packet. This backoff timer has two
values: an initial value, and a congestion value, selected
randomly from BOi and BOc, respectively.

2.2. Motivation

Most existing duty-cycling protocols achieve energy
savings through Low Power Listening (LPL) [4]. How-
ever, simply integrating LPL with network coding is
not energy efficient since overhearing, the fundamental
building block of network coding, is difficult to achieve
when nodes aim to sleep as much as possible. Fig-
ure 3 shows how network coding and LPL can be em-
ployed together in the network topology depicted in Fig-
ure 1(b). As shown, because LPL uses long preambles
before sending the actual packets, the total transmission
time and energy consumption (required for preamble
transmission and reception) are expected to increase.

To validate this, we performed experiments in an in-
door testbed of 42 Epic motes. We integrated AdapCode
with LPL [4], a frequently used duty cycling MAC pro-
tocol. In our experiments we varied the LPL Sleep In-
terval. The Sleep Interval is the time interval that a node
is asleep between two consecutive wake-ups - in LPL,

3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 40 80 120 160 200
 0

 70

 140

 210

 280

 350

 420

E
n
e
rg

y
 [
m

J
]

T
im

e
 [
s
e
c
]

Sleep Interval [msec]

AdapCode Energy
AdapCode Time

Figure 4: Impact of LPL sleep interval on energy consumption
and total execution time (i.e., for flooding a new executable
image to all nodes in the network) of AdapCode, an applica-
tion which uses network coding. Results are obtained from a
42 mote testbed.

nodes wake up briefly, to identify if a preamble is trans-
mitted. If a preamble is detected, the node stays awake
to receive the packet transmitted immediately following
the preamble. If no preamble is detected, a node goes
immediately to sleep. As an example, if a node needs to
be awake for 2ms to detect a preamble (this value is de-
pendent on hardware), then a sleep intervalS I of 200ms
is equivalent to a duty cycle of 1% for the node.

The results of our experiments are depicted in Fig-
ure 4. As shown, even very short sleep intervals (i.e.,
80msec) nearly doubled the delay and energy consump-
tion. This is in contradiction to the general belief that,
for LPL, longer sleep intervals result in higher energy
efficiency. From these results, it was clear that: i) a
node should select sleep intervals intelligently at non-
static intervals (in contrast with LPL which has fixed
sleep intervals); and ii) long preamble-based MAC so-
lutions are not suitable for network coding applications.

During our experiments, a significant number of re-
dundant packet transmissions was detected. This re-
dundancy in AdapCode is attributed to its simplified as-
sumption that the network is uniform, where the num-
ber of neighbors is assumed to be the same for all nodes.
This assumption, however, is not practical and results in
inefficient coding scheme assignments. Network topol-
ogy, e.g., the number of parents or children, should be
carefully taken into account when coding schemes are
determined to avoid unnecessary packet transmissions.
Those considerations motivated us to devise a new tech-
nique to assign efficient coding schemes for any net-
work topology such that all nodes can decode all packets
with the minimum number of packet transmissions.

It is important to remark that LPL is more energy

efficient than DutyCode for non-flooding applications
(i.e., when the network traffic is low, there are more op-
portunities for nodes to sleep). In Section 5 we will
present a technique that ensures an adaptive transition
between LPL and RLPL, based on network traffic. Such
technique also needs to avoid packet loss during the
LPL/RLPL transitions.

3. DutyCode Protocol Design

Combining duty-cycling with network coding in
flood-based applications is inefficient because nodes use
long preambles for communicating with neighbors, and
stay awake whenever there is a transmission (i.e., even
if the node has received the transmitted packet). Our
solution tackles this problem by providing a framework
in which nodes are informed of future packet transmis-
sions, without using control packets. This framework
allows sensor nodes that run network coded applications
to employ timely, smart duty-cycling.

3.1. Main Ideas
Similar to AdapCode, our proposed solution Duty-

Code groups packets in pages and transmits all packets
in a page as a stream using CSMA. The stream sent by
a node isusefulfor neighboring nodes lacking the data
contained in the page, anduselessfor neighboring nodes
that have already received the data in the page. Upon
receiving the first packet of a page, a node decides if it
should stay awake and receive the remaining packets in
the page, or it should sleep while the remaining pack-
ets in the page are streamed. The computation of the
time to be asleep is based on a control field present in
each packet, which indicates the number of remaining
packets of the stream.

DutyCode integrates Random Low Power Listen-
ing (RLPL), a novel MAC protocol, with the Network
Coded Application (NC App). RLPL facilitatesstream-
ing, elastic random sleepingand transmission arbitra-
tion, while the NC App determines when a node can
sleep and for how long (i.e., sleep duration). When re-
quested by the NC App, RLPL turns off the radio for
the requested duration if there is no pending transmis-
sion. The NC App specifies the sleep duration when it
requests the node to sleep. Importantly, RLPL does not
put the node to sleep periodically. Unlike other duty-
cycling protocols RLPL does not perform Clear Chan-
nel Assessment (CCA) before turning off the radio. This
is because the CCA would not have any meaning, since
requests for sleep come from the NC App when there is,
typically, ongoing radio communication (e.g., streaming
of useless packets).

4

n 1 2 3

IP

BO1i,1c

BOri,rc

BT BT BTTRBT

1 2 3

8

BT

8

BO2i,2c

Figure 5: DutyCode streaming: after the backoff intervals
BO1i,1c, coded packetsC2, through C8 are streamed, with
backoff intervals BOri ,rc. BT indicates when a Backoff Timer
fired, TR indicates when a Transmit Request has been received
by RLPL, and IP represents Inter-Page time Interval. Vertical
gray arrows depict the direction of packet transmission.

In the remaining part of this section we describe the
main components of RLPL and illustrate DutyCode’s
execution with an example.

3.2. Packet Streaming

The streaming operation of RLPL is depicted in Fig-
ure 5. The meaning of “Page”, “IP”, “BT” and “Ci”
is the same as for AdapCode, shown in Figure 2. As
shown, nodes receives a request for transmission (i.e.,
an arrow pointing down, and labeled TR, in Figure 5)
and transmits a page (i.e., coded packetsC1 throughC8)
to receiver noder. Following the notation used for de-
scribing AdapCode, the sender and receiver of a packet
transmission can be identified by the gray arrow point-
ing down and by the BT timer. As shown, the BT timer
fires only for nodes, the sender of the packets.

When streaming coded packets, the penalty for col-
lision is high. To reduce collisions, in DutyCode, the
first two packets of a stream are sent with large ran-
dom backoff intervals (i.e., BO1i,1c and BO2i,2c). The
rest of the stream is sent with very small backoff interval
BOri ,rc. The subscripts “i” and “c” stand for the “initial”
and “congestion” backoff, respectively. Thus, BO1i and
BOri are initial backoff intervals, and BO1c and BOrc are
congestion backoff intervals. It is important to mention
again that the first packet in a page contains the page ID,
and that each packet contains a counter indicating how
many packets in the stream remain to be sent.

3.3. Elastic Random Sleeping

In this subsection we describeYielding, the main fea-
ture of RLPL that enables the elastic random sleeping
of nodes, andtransmission defer. We use Figure 6 to
explain these important concepts in RLPL.

Upon receiving the first packet of a stream, a node
yields. As shown in Figure 6(a) upon receiving the first

1 2 3

BTTR

1

8

1 2 3 8

YL

TR

TR

1

2

H
P

H
P

YL

BO1i,1c BO2i,2c

(a)

1 2 3

1

BTTR

1

8

1 2 3 8

TR

TR

YL

YL

BT

BT

2

H
D

H
D

BO1i,1c BO2i,2c

(b)

Figure 6: (a) Yielding and Transmission Defer in DutyCode.
(a) The packet transmit requests TR arrive at nodesr1 andr2

after they yield. This is handled by nodesr1 andr2 as a pend-
ing request, labeled HP - Handle Pending, after the stream
from nodes finishes. Since noder1 has the data in the page,
it sleeps; (b) The packet transmit requests TR arrive at nodes
r1 andr2 beforethey yield. This is handled by nodesr1 andr2

as a packet defer, labeled HD - Handle Defer. Similarly with
(a) noder1 sleeps, because it has the data, while noder2 stays
awake to receive the page.

packet of a stream from nodes, nodesr1 andr2 decide to
yield (i.e., the vertical double arrow labeled YL). While
yielding, nodesr1 andr2 do not process any transmit re-
quests from the NC App, for the duration of the stream
from s. Since noder1 has the page being transmitted by
s, it sleeps for the duration of the stream. This is the
elastic random sleeping. In Figure 6(a), the NC App at
noder1 intends to send a packet (i.e., the vertical arrow
labeled TR) while the node’s radio is turned off (i.e., it
sleeps). Afterr1 wakes up, it tries to transmit pending
packets (i.e., dotted vertical arrow labeled HP - Handle
Pending). Because noder2 does not have the page be-
ing transmitted, it stays awake and receives all streamed
packets. Similar to noder1, noder2 yields (i.e., the ver-
tical double arrow labeled YL in Figure 6(a)). Noder2

5

1 2 3

BTTR

1 2 3

8

8

1

2

BTTR
YL

BT

H
D

BO1i,1c BO2i,2c

(a)

1 2

BTTR

1 2 2 3

8

8

1

2

BTTR
YL

BT

3

H
D

BOrcBO2i,2c

BT

BO1i,1c

(b)

Figure 7: Transmission arbitration: ID(s1) > ID(s2) and (a)
s2 learns about the stream froms1 and successfully defers its
transmission (i.e., vertical double arrow labeled YL). (b)s2

learns about the stream froms1 and fails to defer its transmis-
sion (i.e., vertical double arrow labeled YL).

handles its packet transmission request (the receipt of
the request is marked as a vertical TR arrow pointing
down) after it receives the last stream packet from node
s (i.e., vertical dotted arrow labeled HP in Figure 6(a)).

A transmission deferis a decision made by RLPL to
postpone a scheduled packet transmission for a future
time. As shown in Figure 6(b), nodesr1 and r2 yield
(i.e., the vertical double arrow labeled YL) because of
the stream initiated by nodes. When they yield, they al-
ready have transmission requests from the NC App (to
be noted, this scenario is different then the one shown in
Figure 6(a) when the transmit request TR reaches RLPL
after yielding). The backoff timers for these transmis-
sion requests fire (i.e., depicted by vertical dotted ar-
rows labeled BT) after the yield operation. When the
BT timer fires, the nodes decide to defer their transmis-
sions, until after the stream from nodes finishes (i.e.,
the vertical dotted arrow labeled HD - Handle Defer).
Similar with Figure 6(a), noder1 decides to sleep after
yielding (because it has the data in the page), and node
r2 decides to stay awake, to receive the page.

3.4. Transmission Arbitration

Transmission arbitration occurs when two nodes
transmit their packets almost simultaneously. More
specifically, let’s assume that nodes1 receives one

S

r1

r2

r3

r5r4

r6

r7

r9r8

r11r10

r13r12

r14

r15

r17r16

r18

d

Figure 8: Network topology example to illustrate the opera-
tion of DutyCode.

packet from nodes2, and thats1 is awaiting its trans-
mission backoff timer to fire (becauses1 also has pack-
ets to send). Whens1 receives the packet froms2, based
on the contents of the packet (e.g., sender ID),s1 can
decide whether it can defer its transmission or not. In
our scheme, nodes with smaller node IDs will yield to
nodes with higher node IDs.

Figure 7 illustrates two transmission arbitration sce-
narios where nodess1 ands2 (ID(s1) > ID(s2)) compete
for a channel. In Figure 7(a), the transmissions of pack-
etsC1 andD1 are simultaneous, and will result in a col-
lision (represented as the grey double arrow). Because
the backoff timers are random, in Figure 7(a) nodes2

learns about the stream from nodes1 first, i.e., packet
C2 is transmitted well before the packetD2 is attempted
to be transmitted by nodes2 (as represented by the dot-
ted vertical arrow labeled BT for nodes2). Since ID(s1)
> ID(s2), nodes2 decides to yield to nodes1. In this
case, the transmission timer of nodes2 (as mentioned,
the dotted vertical arrow labeled BT) fires after it makes
the defer decision. Therefore it successfully defers its
transmission.

Figure 7(b) presents a scenario where the transmis-
sion timer of nodes2 fires before it makes the defer de-
cision. As in Figure 7(a) packetsC1 and D1 collide,
but packetD2 is sent very shortly after packetC2 is
received, without enough time to yield. Consequently,
nodes2 cannot prevent packetD2 from being sent. After
D2, however, nodes2 defers the transmission of its fol-
lowing packets. This scenario shows that nodes2 trans-
mits almost immediately after receiving the packetC2

from nodes1, which implies that nodes1 has likely re-
ceived packetD2 from nodes2. Consequently, nodes1

will need to decide if it should defer its transmission or
not. Now, nodes1 will obviously not decide to defer its
transmission because ID(s1) > ID(s2). Consequently,
the remaining packetsC3 throughC8 will be sent suc-
cessfully.

6

3.5. DutyCode Example
In this subsection we explain how DutyCode works

through an example, depicted in Figure 8. As shown,
there is a source nodes that floods packets in a 5 hop
WSN. We assume that each page consists of 8 packets.
For ease of explanation, we assume that 2 nodes are 1
hop away froms, 4 nodes are 2 hops away froms, 8
nodes are 3 hops away froms and lastly, 4 nodes are 4
hops away froms. Using the AdapCode algorithm to
decide the coding scheme (which is based on the num-
ber of neighbors), nodesr1 and r2 havecs = 2. This
means that the number of packets each node sends is
pp/cs = 4, if the number of packets per pagepp is
8. Similarly, for nodes 2 hops away froms the coding
schemecs is 4 (i.e., each node will send 8/4 = 2 coded
packets), and for nodes 3 hops away froms the coding
schemecs is 8 (i.e., each node sends 8/8 = 1 coded
packet). After the nodes decide their coding schemes
(again, the technique we use here is the same as of
AdapCode’s, based on the number of neighbors), the
flooding operation can start.

The senderssends the packets in a page continuously
(i.e., as a stream). When senders finishes streaming, it
waits for a period of time for potential NACK packets
(which indicate that receivers missed some packet(s)).
In response to a NACK packet, senders resends the
missing packets. After nodesr1 and r2 receive all 8
packets in the page, using their coding scheme, they
code and send 4 packets each. Assuming the backoff

timer of noder1 fires first, the streaming of the 4 pack-
ets from it will start. After receiving the first packet
(of the 4), noder2 realizes that it has already seen the
page, and it will decide to sleep for the remaining time
of the stream (in this example 3 packets). Similarly,
when noder2 streams its 4 coded packets, noder1 will
sleep. When nodesr1 andr2 finish sending their coded
packets, they will wait for NACK packets. NACK pack-
ets might be sent by nodesr3 throughr6 if they missed a
coded packet, and could not decode all packets received.
If a NACK packet is received, eitherr1 or r2 resends the
missing packet. If nodesr3 throughr6 are able to de-
code the 8 packets received, then they have the entire
page. Based on their coding scheme (which iscs= 4),
each node will send 2 coded packets. Whenever one of
nodes streams its packets (let’s assumer3), the nodes
that have received already the page (i.e., nodesr1, r2,
r4, r5 andr6) decide to sleep.

4. An Enhanced Coding Scheme (ECS)

While our proposed solution, presented in the pre-
vious section, saves a considerable amount of energy

p1 p5p4p3p2 p8p7p6

c3c2c1 c4

Figure 9: An example of a network topology that causes re-
dundant packet transmissions.

there is still an opportunity to save more energy by
reducing the number of unnecessary packet transmis-
sions. This is primarily because, thus far, we used the
same algorithm as AdapCode, for deciding the coding
scheme each node uses. The simple algorithm used
by AdapCode uses the number of neighbors. The al-
gorithm, at high node densities, increases the coding
scheme. Hence, each node sends fewer coded packets.
This scheme, however, does not identify unnecessary
packet transmissions, which is the purpose of our En-
hanced Coding Scheme (ECS) algorithm.

In order to analyze the unnecessary transmissions,
we define thePreferred Coding Scheme (PCS)for each
node. PCS is defined as the maximum coding scheme
that a node’s parents can use such that all parent’s chil-
dren can successfully decode all encoded packets.

Consider Figure 9 which shows a hypothetical net-
work with four leaf nodes (c1 − c4) and their parents
(p1 − p8), wherec1 and c4 receive packets from four
parents whereasc2 andc3 receive packets from only two
parents. In our example, consider the PCS forc1. Since
c1 receives 4 coded packets (i.e., each from parentp1

through p4) at most 4 packets can be encoded into a
single packet, yielding a PCS of 4 forc1. Similarly, the
PCS forc2, c3, andc4 are 2, 2, and 4, respectively. Since
the PCS forc2 andc3 is 2, the coding scheme ofp3− p6

must be 2. Consequently, all childrenc1 − c4 can de-
code all packets from the transmissions fromp3 − p6.
The result, and this is how ECS removes unnecessary
transmissions, is that transmissions fromp1, p2, p7, and
p8 are all useless.

In order to avoid such extraneous transmissions and
save energy, we propose an Enhanced Coding Scheme
(ECS) Algorithm, which decides the optimal coding
scheme of each node. Our algorithm is centralized and
uses information about the network topology. We repre-
sent the network as a directed graphG = (N,E), where
N is the set of all nodesni , andE is the set of edges
(ni, n j) such thatni is the one-hop parent ofn j . Each
edge has a Link Quality (LQ) scalar value, which rep-
resents the link’s successful packet delivery ratio. Only
edges with LQ greater than a pre-defined Link Quality
Threshold (LQT) are considered. Different LQTs re-

7

Algorithm 1 Enhanced Coding Scheme (ECS)

1: for eachni ∈ N do
2: nPCS

i, j ← |Pi |, ∀n j ∈ Pi .
3: end for
4: for eachni ∈ N do
5: nCS

i ← min{nPCS
i, j | n j ∈ Ci}

6: end for
7: for eachni ∈ N do
8: nEQNS

i ← 0
9: for eachn j ∈ Pi (in an ascending order ofnCS

j)
do

10: if nEQNS
i ≤ pagesizethen

11: nEQNS
i ← nEQNS

i +
pagesize

nCS
j

12: else
13: nPCS

i, j ← null codingscheme
14: end if
15: end for
16: end for
17: for eachni ∈ N do
18: if ∀n j ∈ Ci , nPCS

j,i = null codingschemethen
19: nCS

i ← null codingscheme
20: else
21: nCS

i ← min{nPCS
j,i | n j ∈ Ci}

22: end if
23: end for

sult in different network topologies, thereby affecting
the performance of ECS. LetPi = {n j | (n j, ni) ∈ E}
be the set of all one-hop parents of nodeni andCi =

{n j | (ni, n j) ∈ E} be the set of all one-hop children of
nodeni . We denote bynPCS

i, j the PCS ofni for its parent

n j ∈ Pi , and bynCS
i the coding scheme ofni .

The pseudocode for the proposed ECS algorithm is
shown in Algorithm 1. ECS runs in 2 phases. In the
first phase, the algorithm computes the PCS valuenPCS

i, j
for all n j ∈ Pi . (Line 1-3).

Then, the initial coding scheme for each nodeni is de-
cided as themin{nPCS

j,i : n j ∈ Ci}, i.e., the minimum PCS
value among all PCS values of its children (Line 4-6).
If |Ci | = 0, then the “null coding scheme” is chosen for
ni (in a “null coding scheme” no coded packets are for-
warded), preventing a leaf node from sending unneces-
sary packets. In the second phase, the algorithm checks
for possible redundant transmissions for each nodeni ,
by examining the initial coding schemes of its parents.
If for nodeni there is a redundant transmission from one
of its parentn j , the algorithm updates the PCS value for
the parent,nPCS

i, j to the null coding scheme (Line 7-16).
In the last step, the algorithm checks the PCS value for

the children of each node. If all children suggest a null
coding scheme, then the algorithm sets the null coding
scheme as the final one for the parent; otherwise the
coding scheme assigned to the parent is the minimum
PCS value among its children (Line 17-23).

Although ECS is a centralized algorithm where cod-
ing schemes are decided at a central entity, it can be
modified to run in a distributed manner through addi-
tional message exchanges between nodes. We leave the
development of a distributed ECS algorithm as future
work.

5. LPL/RPLP MAC Transitioning

Aggressive energy saving can be achieved by Duty-
Code in flood-based WSN (i.e., high network traffic).
For low network traffic, however, LPL is more energy
efficient. Thus, there is a need for an efficient technique
to switch between RLPL and LPL. Such switching tech-
nique needs to be carefully designed to ensure a smooth
and timely transition with no packet loss.

In our solution, each node starts executing LPL.
When a node receives the first packet of the flood, it
attempts to switch to RLPL. To minimize packet loss
during the transition from LPL to RLPL, we use a tran-
sient mode, called NoSleepLPL. In NoSleepLPL, after
receiving the first packet of the flood, a node does not
sleep. This is because the node tries to avoid missing
packets. The received packets are relayed utilizing long
preambles (as LPL does), to ensure that node’s children,
in turn, do not miss any packets. Similarly, the chil-
dren nodes transition to NoSleepRLPL successfully. At
a fixed time interval after receiving the first packet of
the flood, a node switches from NoSleepLPL to RLPL.
The node switches back from RLPL to LPL mode when
it has received all packets in the flood. Switching back
from RLPL to LPL is relatively easier due to low traffic,
thus not incurring packet loss.

6. DutyCode Protocol and ECS Algorithm Analysis

In this section we derive performance bounds for the
DutyCode protocol and ECS algorithm. The aim of our
analysis is to:

• Show that DutyCode does not have any overhead,
when compared with AdapCode. The two metrics
we investigate arethe total number of packets per
pagetransmitted (Section 6.1), andthe total execu-
tion timeof flooding (Section 6.2).

8

• Show that the coding schemes assigned by ECS are
optimal (Section 6.3).

• Compute an upper bound on the energy savings of
DutyCode (Section 6.4).

For our analysis we use the following notations:pp
is number of packets per page;cs is the coding scheme;
cp is the collision probability in AdapCode;cp1 andcp2

are the collision probabilities associated withBO1 and
BO2 backoff intervals in DutyCode, respectively;BOc

is the CSMA congestion backoff interval (as it will be
noted belowBOi is not of interest for AdapCode); and
ttr is the transmission time per packet.

We assume that the sleep interval per pageS I is cho-
sen such that there is no time overhead due to sleeping
(i.e., stream duration is much longer than the sleep in-
terval):

S I ≤ (BO1i/2+ pp/cs· ttr) (1)

For the analysis in this section it is paramount to ob-
serve the following: i) because AdapCode is message
intense, there is always a node waiting to transmit a
packet. Consequently, the congestion backoff interval
for AdapCode will be chosen randomly between 0 and
BOc. Because the backoff is uniformly distributed, the
average backoff interval isBOc/2 and the average col-
lision probability iscp; ii) in DutyCode the first packet
of a stream is always transmitted with a backoff interval
randomly chosen between 0 andBO1i. Hence, the aver-
age backoff interval for the first packet isBO1i/2. Since
the average collision probability for the first packet of
the stream iscp1, the collision probability for the sec-
ond packet of the stream iscp1 · cp2 (i.e., a collision
will occur during the transmission of second packet if
and only if there was a collision during the first packet
transmission).

6.1. Total Number of Packets per Page Transmitted

In this section we investigate the relationship between
Pd

p andPa
p, the total number of packets per pagetrans-

mitted by DutyCode and AdapCode, respectively (we
note here thatPd

p andPa
p are different thanpp, which is

a constant describing how large a page is). Our result is
expressed by the following theorem.

Theorem 6.1. If BO1i ≥ BOc then Pd
p ≤ Pa

p .

Proof. In both DutyCode and AdapCode, three types
of packets contribute to the total number of packets per
page: a) coded packets; b) NACK packets; and c) Re-
NACK packets. We now derive the number of packets
of each type.

6.1.1. Coded Packets
Coded packets are packets transmitted by a node as a

result of network coding. The number of coded packets
per page isCp = pp/cs. Assuming the coding scheme
is identical for DutyCode and AdapCode (i.e., we do not
consider here the Enhanced Coding Scheme (ECS)), we
have:

Ca
p = Cd

p (2)

whereCa
p andCd

p are the number of coded packets for
AdapCode and DutyCode, respectively.

6.1.2. NACK Packets
A node sends a NACK packet when it is unable to

decode a page. This can happen because of two factors:
i) the node does not receive enough independent coded
packets needed for decoding a page; and ii) collisions
cause loss of coded packets.

Since DutyCode uses the same coding scheme as
AdapCode, the first factor, i.e., not enough independent
coded packets received, has no impact on the total num-
ber of packets. Hence, we do not consider it.

We now analyze how collisions impact the number of
NACK packets in AdapCode and DutyCode.

In AdapCode, the maximum number of NACKs per
packet is (cp+ 2cp2 + ...). This is because with colli-
sion probabilitycp a coded packet will be lost, hence 1
NACK will need to be sent. Additionally, if the trans-
mission of the NACK packet causes a collision with a
regular packet (this will occur with probabilitycp2) then
two NACK packets will need to be sent. Consequently,
the total number of NACKs per page for AdapCode is:

Na
p = (pp/cs)(cp+ 2cp2 + ...). (3)

For DutyCode, NACK packets can be sent as a result
of: i) collision of the first packet transmission, which
occurs with probability (cp1); ii) collision of the sec-
ond packet transmission, which occurs with probability
(cp1 · cp2). Thus, the total number of packets per page
for DutyCode is:

Nd
p = (cp1 + cp1 · cp2) + 2cp1 · (cp1 +

cp1 · cp2) + 3cp2
1(cp1 + cp1 · cp2) + ...

= (1+ cp2) · (cp1 + 2cp2
1 + ...). (4)

One can remark that collision probabilities are in-
versely proportional with backoff intervals. Thus, we
can expresscp = k/BOc andcp1 = k/BO1i, wherek is

9

a proportionality constant (assumed the same for Duty-
Code and AdapCode). Consequently, the ratio of colli-
sion probabilitiescpandcp1 is:

cp1

cp
=

BOc

BO1i
.

Consequently, if backoff intervals are chosen such
thatBO1i ≥ BOc, then:

cp1 ≤ cp. (5)

Considering Equation 5, ifpp/cs ≥ (1 + cp2) then
the relation betweenNd

p and Na
p (given by Equation 3

and Equation 4) is:

Nd
p ≤ Na

p. (6)

It is important to reemphasize the required condition
pp/cs ≥ (1 + cp2). This condition basically says that
pp needs to be different thancs. If this condition is not
true, i.e.,pp = cs, then there is only one packet in the
stream, and there is no opportunity for sleeping.

6.1.3. ReNACK Packets
ReNACK packets are uncoded packets, sent in re-

sponse to NACK requests. We now analyze the number
of ReNACK packets for AdapCode and DutyCode.

In AdapCode, if there is a collision while transmit-
ting a coded packet (i.e., with probability of collision
cp) all packets in the page need to be resent, without
being coded. Consequently, for each coded packet (and
there arepp/cs coded packets in each page), the node
needs to retransmitcs packets. Similar to scenario de-
scribed for NACKs, the node needs to transmit these
packets twice with probabilitycp2. Hence, the number
of ReNACKs per page for AdapCode is:

Ra
p = cs· pp/cs· (cp+ 2cp2 +). (7)

For DutyCode, a collision during a stream transmis-
sion can occur: i) during the transmission of the first
packet (with probabilitycp1). In this scenariocspack-
ets will be retransmitted; and ii) during the transmission
of the second packet (with probabilitycp1 · cp2). In this
scenario the entire page will be retransmitted. Conse-
quently, the number of ReNACK packets sent by Duty-
Code isRd

p = cs · cp1 + cp2 · cp1 · pp. Assuming the
worst case, in whichpp packets need to be retransmit-
ted in case of collision during the transmission of first
packet, the total number of ReNACKs per page per node
is:

Rd
p = cp1 · pp+ 2cp2

1 · pp+ ...

= pp · (cp1 + 2cp2
1 + ...). (8)

From Equations 7, 8 and 5 the relation between the
number of ReNACK packets sent by AdapCode and Du-
tyCode is:

Rd
p ≤ Ra

p. (9)

From Equations 2, 6 and 9, thenPd
p ≤ Pa

p, where
Pa

p = Ca
p + Na

p + Ra
p is the total number of packets per

page of AdapCode, andPd
p = Cd

p + Nd
p + Rd

p is the total
number of packets per page of DutyCode.

If we denote bys the total number of streams in the
network, the total number of packets per node for Adap-
Code can be written, in terms ofs, as:

Pa = s · pp/cs+ Na
p (10)

whereNa
p is the number of NACK packets for Adap-

Code.
In DutyCode, coded packets and ReNACKs (note:

not NACK packets) are transmitted as streams. Con-
sequently, the total number of packets transmitted per
node is:

Pd = s · pp/cs+ Nd
p (11)

where the first term represents the number of coded and
ReNACK packets a node transmits, andNd

p is the num-
ber of NACK packets for DutyCode.

6.2. Total Execution Time

In this subsection we investigate the relation between
Td

n and Ta
n, the total execution time of flooding, per

node, for DutyCode and AdapCode, respectively. Our
analysis omits the delay that a packet defer causes. Our
result is expressed by the following theorem.

Theorem 6.2. If pp/cs· BOc ≥ BO1i and BOc = BO1c,
then Td

n ≤ Ta
n.

Proof. As mentioned earlier, the average backoff time
per packet in AdapCode isBOc/2. Hence, the total exe-
cution time, per node, for the flooding operation is:

Ta
n = Pa(BOc/2+ ttr)

which, after the substitution ofPa with Equation 10, be-
comes:

10

S

thth th

Figure 10: A multihop network topology for a flood-based
WSN application. Large dotted circles represent communica-
tion range. Groups of nodes are (i −1), i and (i +1) hops away
from s.

Ta
n = s · pp/cs· BOc/2+ Na

p · BOc/2+ Pa · ttr (12)

For DutyCode, the average backoff interval for a
stream isBO1i/2 except for the stream which is trans-
mitted after a NACK packet (for a NACK packet, yield-
ing is not done because it is not a stream). Hence, the
wait time of the stream transmitted right after the NACK
is BO1c/2. In DutyCode, based on Equation 1, the total
time for flooding is the total time required for all packet
transmissions. Consequently the total time per node is:

Td
n = (s− Nd

p) · BO1i/2+ Nd
p · BO1c/2+

+Nd
p · BO1i/2+ Pd · ttr

= s · BO1i/2+ Nd
p · BOc/2+ Pd · ttr

sinceBO1c = BOc.
From Equation 6 and Theorem 6.1, whenpp/cs ·

BOc ≥ BO1i, then:

Td
n ≤ Ta

n .

6.3. Total Energy Saving

This section presents an analytical upper bound on
the total energy saving of a node in DutyCode. To
prove the upper bound, we consider a particular network
topology depicted in Figure 10, where nodes inith hop
are within the interference range of nodes in (i+1)th hop
and (i −1)th hop. We assume that the Inter-Page interval
(IP) is minimal, i.e., the source node sends one page af-
ter the previous page has been successfully flooded by
the nodes that are 3 hops away from it, thus preventing

the hidden terminal problem. We denote bySi the set
of nodes that arei hops away from the source. The total
energy saving for a node is defined as follows:

Esave= Tsleep/Ttotal (13)

whereTtotal is the total flooding time, andTsleep is the
total time that a node is in sleep mode.

Since flooding is a pipelined process, given the mini-
mal IP interval,Ttotal can be estimated as the total time
taken for any node inSi−1, Si , orSi+1 to finish the flood.
Consider a nodeni ∈ Si . In this topology,ni can-
not transmit a packet if any node inSi−1 (parents),Si

(peers), orSi+1 (children) transmits. Thus, the expected
total flooding timeE(Ttotal) is given by:

E(Ttotal) =

(

|Si−1| + |Si − 1| + |Si+1|

2

)

· Tpage · P

=
3n
2
· Tpage· P (14)

whereTpage is the time taken for one page, i.e.,Tpage=

(BO1i/2+pp/cs· ttr), andP is the total number of pages.
The first term is divided by 2, to account for senders and
receivers. Essentially, at most|Si−1|+|Si−1|+|Si+1|

2 transmis-
sions take place.

If we assume a coding scheme with no redundant
transmissions, only packets transmitted by the nodes in
Si−1 are useful. Consequently,ni can sleep while the
nodes inSi andSi+1 are transmitting their packets. The
expected total sleep timeE(Tsleep) is thus:

E(Tsleep) =

(

|Si − 1| + |Si+1|

2

)

· T′page · P

= n · T′page· P (15)

whereT′page is the sleep time per page, i.e.,T′page= S I.
Considering Equations 1, 14 and 15, the expected to-

tal saving in energy is:

E(Esave) = E

(

Tsleep

Ttotal

)

=
n · S I

3n
2 (BO1i/2+ pp/cs· ttr)

≤
2
3
. (16)

6.4. Enhanced Coding Scheme Analysis
In this section we prove the optimality of the coding

scheme assigned by our proposed ECS algorithm.

Theorem 6.3. ECS produces the optimal coding
schemes for all nodes, such that all packets can be de-
coded successfully.

11

Algorithm 2 Streaming a Packet Received

1: if (# of remaining pkts> 0) then
2: if (any yield cond. is true)then
3: if (# pkts awaiting transmit> 0) then
4: attempt to DEFER pkt transmission
5: RLPL saves DEFER result
6: end if
7: RLPL startsNoSendtimer
8: end if
9: else

10: RLPL stopsNoSendtimer and handles packet
11: end if

Proof. Assume by contradiction that there exists a bet-
ter coding schemeBCS. This implies that inBCS, there
exists a node that transmits fewer packets than ECS. Let
this node beni . Note that, in ECS, each parent chooses
the minimum coding scheme among those proposed by
its children (as explained in Algorithm 1 (Line 21)).
Thus, if ni transmits fewer packets, then at least one
child would not be able to decode all packets success-
fully, which is a contradiction. Consequently,BCSdoes
not exist.

7. Implementation

We implemented DutyCode and LPL/RLPL Tran-
sition in nesC for TinyOS 2.1. We modified sev-
eral existing TinyOS modules: CC2420ReceiveC,
CC2420TransmitC and CC2420CsmaC - from now on,
we will refer to these modules asReceive, Transmit
andCsma, respectively. We also added DutyCode spe-
cific modules: RandomLPL and RPowerCycleC. The
ECS algorithm was implemented in Java, on a central
server. It uses network topology information collected
from the nodes to decide the coding scheme for each
node.

7.1. Packet Streaming

We modified theTransmit and Receive modules
and implemented theRandomLPL module for packet
streaming. When streaming is achieved, an application
sends packets one after another, without any significant
delay (i.e., as soon assendDone() event is signaled).
Each packet header contains the number of remaining
packets in the stream, computed based on the coding
scheme used.

The Receive module notifies theTransmit mod-
ule when the node receives a stream packet from an-
other node. Upon receiving a signal fromReceive,

Transmit runs Algorithm 2. First,Transmit checks
if it has pending packets or the end of the stream has
been reached (Line 1). If there are remaining packets
in the stream,Transmit checks if the stream satisfies
the yielding conditions discussed in Section 3 (Line 2).
If the stream does not satisfy the yielding conditions,
no action is taken. Otherwise, if it is in the middle of
transmission, the node tries to defer the packet trans-
mission and it informs theRandomLPL module about
two things: i) details of the stream transmission; and
ii) the defer status, if there was a need for packet defer
(Line 4-5). TheRandomLPLmodule then sets a NoSend
timer (Line 7) and keeps future transmit requests pend-
ing until the stream duration is over or it is informed
by Transmit that the stream it is yielding to, has com-
pleted.Transmit informsRandomLPL about the com-
pletion of stream upon receiving a signal fromReceive
about the last packet of the stream (Line 10). We imple-
mented the packet defer in theTransmit module be-
cause it is the only module that maintains the transmis-
sion internal state.

Upon receiving a transmit request from the applica-
tion with the result of clear channel assessment (CCA),
theTransmit module copies the message to the radio
chip and waits for the backoff interval corresponding to
the CCA result.Transmit can defer a packet transmis-
sion until the actual transmission has been started. The
application would not be aware about this packet defer
and RLPL handles the deferred packet as soon as possi-
ble.

7.2. Elastic and Random Sleeping
We implemented/modified the RandomLPL and

RPowerCycleC modules so that sleep requests are no
longer handled periodically, as done for LPL. Instead,
the requests to put the radio in low power mode (i.e.,
requests to sleep) are treated as one time requests. The
RPowerCycleCmodule is also modified not to perform
clear channel assessment (CCA) before turning off the
radio. This is because the network coding application
decides to put a node to sleep, based on the knowl-
edge it has about the currently transmitted stream. This
stream is useless to the node. Hence, performing CCA
is unnecessary - we know that a transmission is ongo-
ing, but it is useless. We also modified theCsma module
to turn off the radio only ifTransmit decides to defer
the transmission.

7.3. The ECS Algorithm
We implemented the ECS algorithm in JAVA. We ex-

ecute the algorithm on a central server, after we col-
lect connectivity information from the entire network.

12

We leave the development of a distributed ECS algo-
rithm as future work. When the algorithm starts, the
network topology is constructed by receiving neighbor
tables from the motes, via serial ports. Based on the
network topology, ECS computes the optimal coding
scheme for each node as described in Section 4. The
new coding schemes are transmitted back to the nodes
via serial ports. When the flooding starts, each node
uses the new coding scheme.

7.4. LPL to RLPL Mode Transition

In order to achieve a smooth transition between LPL
and RLPL (as described in Section 5), we built two in-
dependent modules, one containing the LPL protocol,
and the other RLPL. We also created a wrapper module
that provides a common interface both MAC protocols.
The wrapper handles the LPL to RLPL mode transition
smoothly: if the current MAC protocol is in the middle
of transmission, the transition happens after receiving
thesendDone() event. Switching is accomplished by
stopping the current MAC protocol and then starting the
other MAC protocol. Especially for the transition from
LPL to RLPL, the transient state noSleepLPL is intro-
duced to minimize the packet loss, as explained in Sec-
tion 5. The noSleepLPL is implemented such that the
DefaultLPL andRPowerCycleC modules do not turn
off the radio when requested by an application through
the wrapper module.

8. Performance Evaluation

We evaluated the performance of DutyCode, ECS al-
gorithm and LPL/RLPL mode transition in a testbed
consisting of 42 Epic motes [5] deployed in an indoor
environment of approximately 500ft2. Among the 42
nodes, 14 are instrumented for power consumption mea-
surements. The map of our testbed is shown in Fig-
ure 11. The testbed has a diameter of at most 5 hops.
We varied the network density (and implicitly the diam-
eter of the network) by changing the radio TX Power
(i.e., the TXCTRL.PALEVEL register of the CC2420
transceiver [6]). The TX Power can be varied from 2 to
31, the lowest and the highest transmit power levels, re-
spectively. Each experimental point represents the mean
of 5 executions of the protocol. Standard deviation is
depicted in all performance evaluation results.

As state of art for our performance evaluation we
chose AdapCode [3], a flooding protocol that uses net-
work coding. The metrics we used for performance
evaluation are theper node energy consumptionand

Figure 11: The map of our testbed. For each node, (x, y) rep-
resents its relative coordinate with respect to the origin (0,0),
in the lower left corner. The origin is where the source node,
initiating the flood operation, was located. The network is at
most 5 hops (when the radio transmit power is the lowest). The
central server is where measurements for power consumption,
neighborhood are collected.

total flooding time. While we are interested in en-
ergy consumption, we also aim not to increase the to-
tal flooding time. The parameters that we vary are
the sleep interval (S I), node density (ND), the size of
packet (S P), the number of packets (NP), the length of
the NACK timer, i.e., NACK delay (NACKD), and the
Inter-Page Interval (II). From Theorems 6.1 and 6.2,
the BO1i should satisfy the condition:pp/cs · BOc ≥

BO1i ≥ BOc. In order to decrease the collision proba-
bility of DutyCode and reduce the penalty for retrans-
mission, the greater bound for BO1i is used for the
experiments. In our experiments, the default back-
off intervals were chosen as follows: BO1i and BO2i

are chosen randomly in the interval [0.3msec, 8msec],
BO1c and BO2c are chosen randomly in the inter-
val [0.3msec, 2msec], BOri=(2+nodeid)/32msec, and
BOrc=(5+ nodeid)/32msec.

The default values for the parameters are:S I =
17msec,ND = 4, S P= 28bytes,NP = 256, NACKD
= 640msec,II = 300msec. The effects of these param-
eters on the performance of DutyCode are investigated
in the remaining part of this section.

8.1. Preliminary Evaluation

We verified the correct operation of DutyCode proto-
col using three regular nodes and a source node, forming
a single hop network. An oscilloscope was used to mea-
sure the actual power consumption and sleep intervals.
Figure 12 depicts the oscilloscope view of coded packet

13

Figure 12: Packet streaming captured on oscilloscope shows
the current consumption during sleeping and during packet
transmission. The current consumptions increases from top
to bottom. The sleeping interval is indicated by a solid arrow
and the packet streaming is denoted by a dotted arrow (i.e.,
sleeping interval is low current consumption, packet stream-
ing requires high current consumption).

 0

 1400

 2800

 4200

 5600

 7000

 8400

 0 15 30 45
 40

 60

 80

 100

 120

 140

 160

E
n
e
rg

y
 [
m

J
]

T
im

e
 [
s
e
c
]

Sleep Interval [msec]

AdapCode Energy
AdapCode Time

DutyCode Energy
DutyCode Time

MAX Energy Saving

Figure 13: The effect of the sleep intervalS I on energy con-
sumption and execution time of flooding. The bound on the
energy efficiency of DutyCode is also plotted.

transmissions of the 3 nodes after receiving a page from
the source. As shown, two small spikes under the dotted
arrow indicate a packet transmission. A cluster of such
spikes represents a “stream”. In our experiment, a page
consisted of 4 packets, hence the 4 sets of spikes. The
solid arrow indicates the sleep duration of a node. As
the figure shows, during a stream transmission, other
nodes are in the sleep state. As soon as the transmis-
sion is finished, one of the remaining nodes starts its
stream transmission, while the remaining nodes sleep
(since they already have the page).

8.2. Sleep Interval

In this experiment we investigate how sleep inter-
val S I affects energy consumption and total flooding
time. It is important to remark that AdapCode and Du-

tyCode should consume the same amount of energy if
S I is 0msec. This is because both AdapCode and Du-
tyCode use the same network coding scheme, and at
S I = 0msec, neither scheme allows nodes to sleep.

Before presenting the experimental results, we would
like to build the intuition that although energy savings in
DutyCode are expected to increase with higher sleep in-
terval, this can only occur until a certain point/threshold
(i.e., a certain sleep interval). Below this threshold,
nodes sleep very little, and are still awake while useless
packet transmissions are taking place. Longer sleep in-
tervals (i.e., duty-cycling) will allow them to save more
energy. After the threshold point, however, nodes lose
opportunities for network coding, i.e., there are pack-
ets being transmitted, but because nodes sleep, they do
not receive the packets. Consequently, nodes will not
be able to decode coded packets, and more NACKs and
ReNACKs will be transmitted. At this point the en-
ergy efficiency of duty-cycling is much less than the en-
ergy lost because of retransmissions caused by sleeping
when network coding is taking place.

We measured energy consumption and total flood-
ing time by varyingS I in the [4msec, 60msec] range,
while keeping other parameters constant. Figure 13 de-
picts our results, which confirm our intuition. AsS I
increased, the energy consumption of DutyCode gradu-
ally decreased untilS I was 45ms, after which it started
to increase. Following our analysis in Section 6, the
maximum energy saving is achieved when the sleep du-
ration matches the stream duration. The explanation for
the 45ms optimal sleep interval is as follows. In these
set of experiments, we do not employ ECS - we sim-
ply use the default coding scheme that AdapCode uses
(i.e., based on neighbor density). In our testbed, due to
a relatively uniform deployment, all nodes have a cod-
ing scheme of 2. This means that the 8 packet page is
coded in 4 packets. Since a stream has 4 packets, the
opportunity for sleeping is only for the last 3 packets in
the page. Transmitting a single packet in TinyOS takes
about 8ms. Hence transmitting 3 packets, coupled with
the additional small backoffs between streaming packets
(i.e., BOr) will total around 45ms.

The experimental results follow the analytical result,
as the maximum energy saving for our testbed was
achieved whenS I = 45msec. The theoretical upper
bound of energy saving is also shown in the figure for
comparison. The maximum energy savings achieved
for our testbed was 42%, while the theoretical bound
is 66%.

We also compare the energy consumption of Duty-
Code with that of NoCode, a modified version of Adap-
Code which does not use network coding, but uses duty

14

 0

 1500

 3000

 4500

 6000

 7500

 0 15 30 45

E
n
e
rg

y
 [
m

J
]

Sleep Interval [msec]

AdapCode Energy
DutyCode Energy

NoCode Energy

Figure 14: Energy consumption of DutyCode, AdapCode and
NoCode.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 3 4 5 6 7

 40

 60

 80

 100

 120

 140

 160

E
n
e
rg

y
 [
m

J
]

T
im

e
 [
s
e
c
]

Tx Power

Energy
Time

Figure 15: The effect of node density on energy consumption
and total flooding time for DutyCode.

cycling. The results are presented in Figure 14. As
shown, DutyCode consumes less energy than NoCode.
Interestingly, NoCode consumes less energy than Adap-
Code, revealing that, for our scenario, duty-cycling can
be more energy efficient than network coding. Nev-
ertheless, by combining network coding with duty cy-
cling, DutyCode can achieve more aggressive energy
savings.

8.3. Node Density

In this experiment we explore the impact of node
density on energy efficiency and total time for flood-
ing in DutyCode. We are interested in the effects of
node density because a higher node density causes more
collisions, thus increasing energy consumption and total
time for flooding. At the same time, however, a higher
node density might also decrease network diameter, as-
suming that the network size is fixed, like our testbed.
This decrease in the network diameter would result in
lower energy consumption and shorter time for flood

 0

 2000

 4000

 6000

 8000

 10000

 12000

 60 160 260 360 460
 10

 70

 130

 190

 250

 310

 370

E
n
e
rg

y
 [
m

J
]

T
im

e
 [
s
e
c
]

Packets

AdapCode Energy
AdapCode Time

DutyCode Energy
DutyCode Time

Figure 16: The effect of total number of packets on energy
consumption and total flooding time.

propagation.
In our experiments we varied the TX Power from 3

to 7. For TX Power levels above 7, the network be-
comes a single hop network. We keep all other param-
eters constant. Our experimental results are shown in
Figure 15. The aforementioned effects can be observed
from Figure 15. As TX Power increased from 3 to 4
and from 5 to 6, the energy consumption and time for
flooding decreased, due to a reduced network diame-
ter (i.e., fewer hopes were needed to reach all nodes in
the network from the source), despite the higher num-
ber of collisions. However, for increases of TX Power
from 4 to 5 and from 6 to 7, the network diameter re-
mained constant. Consequently, only the higher num-
ber of collisions influenced the performance, increasing
energy consumption and time for flooding to complete.

8.4. Total Number of Packets

In this experiment we evaluate the impact the total
number of packets has on energy efficiency and flood-
ing time. We expect that flooding more packets in the
network will result in higher energy consumption and
longer time for flooding.

Our performance evaluation results are depicted in
Figure 16. We can observe that, as the total num-
ber of packets increased, both energy consumption and
flooding time increased. This is because more packets
being transmitted increase total transmission time and
also the probability of collisions. Interestingly, as the
number of packets increased from 64 to 512 (700%),
power consumption increased by 600%. This incre-
ment is not strictly linear because, as the number of
packets increases, nodes find more appropriate cod-
ing schemes, thus decreasing the likelihood of redun-
dant/useless transmissions. As a reminder, we note here

15

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

 20 40 60 80 100
 25

 35

 45

 55

 65

 75
E

n
e
rg

y
 [
m

J
]

T
im

e
 [
s
e
c
]

Packet Size [bytes]

Energy
Time

Figure 17: The effect of packet size on energy consumption
and total time for flooding.

that in these sets of experiments we employ the same al-
gorithm for deciding the coding scheme, as AdapCode.
We investigate the performance of our ECS algorithm in
Section 8.8.

It is also interesting to note that in this experiment, al-
though energy savings increase from 866mJ to 5,021mJ,
when compared to AdapCode, our solution’s savings re-
duced from 55% to 48%. We attribute this reduction in
power savings to reduced redundant/useless transmis-
sions.

8.5. Packet Size

In this experiment we investigate the effect of packet
size on energy efficiency and total time for flooding.
We obtained performance results for packet sizes in the
range [28bytes, 108bytes]. We keep all other parame-
ters constant.

The results are depicted in Figure 17. As shown, as
the packet size increased, both energy consumption and
total time for flooding decreased. One can observe that
when the packet size increases 3-fold, the energy con-
sumption decreases by 33%. This emphasizes that in
a packet transmission, the backoff intervals are signifi-
cantly longer than the time taken for actual packet trans-
mission. From our experiments, it appears that more en-
ergy can be saved by sending a few large packets instead
of many small ones. A possible explanation is the good
link quality in our testbed.

8.6. NACK Interval

In this experiment we investigate the effect NACK in-
terval has on energy efficiency and total time of flood-
ing. As mentioned before, a node waits for “NACK In-
terval” to receive a useful packet without transmitting a
NACK). An increase in NACK Interval time is expected

 0

 1200

 2400

 3600

 4800

 6000

 7200

 300 400 500 600 700

 45

 60

 75

 90

 105

 120

 135

E
n
e
rg

y
 [
m

J
]

T
im

e
 [
s
e
c
]

NACK Interval [msec]

Adapcode Energy
Adapcode Time

DutyCode Energy
DutyCode Time

Figure 18: The effect of NACK interval on energy consump-
tion and total time for flooding.

 0

 2000

 4000

 6000

 8000

 10000

 180 280 380 480 580 680
 15

 35

 55

 75

 95

E
n
e
rg

y
 [
m

W
h
]

T
im

e
 [
s
e
c
]

Inter-Page Interval [msec]

AdapCode Energy
AdapCode Time

DutyCode Energy
DutyCode Time

Figure 19: The effect of Inter-Page Interval on energy con-
sumption and total time for flooding.

to generate additional delays and potential energy ineffi-
ciencies. The NACK intervals we chose are in the range
[340msec, 740msec].

The results are depicted in Figure 18. As shown, the
increase in the NACK Interval results in an increased
energy consumption and total time for flooding, for both
DutyCode and AdapCode. One can also observe that
DutyCode is slightly less affected by longer NACK In-
tervals, i.e. the slopes of curves depicting DutyCode
energy consumption and total time for download are
smaller than for AdapCode.

8.7. Inter-Page Interval

In AdapCode and DutyCode, the source node main-
tains a time gap, called Inter-Page Interval, between
subsequent page transmissions. In this section we in-
vestigate the effect this interval has on the energy con-
sumption and total time for flooding. For this evalua-
tion, we use Inter-Page Intervals in the range [180msec,
700msec] while keeping all other parameters constant.

16

 0

 600

 1200

 1800

 2400

 3000

 3600

 4200

 0 10 20 30 40 50
 40

 60

 80

 100

 120

 140

 160

E
n
e
rg

y
 [
m

J
]

T
im

e
 [
s
e
c
]

Sleep Interval [msec]

DutyCode w/o ECS Energy
DutyCode w/o ECS Time

DutyCode w/ ECS Energy
DutyCode w/ ECS Time

Figure 20: The effect of sleep interval in DutyCode with and
without ECS.

The results of our evaluation are depicted in Fig-
ure 19. We observe that the Inter-Page Interval, over
the rage we considered, does not have a noticeable in-
fluence on the energy consumption or the total time for
flooding of DutyCode and AdapCode. Consequently,
we infer that as long as the increase in Inter-Page Inter-
val does not increase the idle time of nodes (i.e., time
when nodes do not have anything to transmit) in the
network, the Inter-Page Interval does not significantly
affect energy efficiency and total time for flooding of
DutyCode and AdapCode.

8.8. DutyCode with ECS

.
In this section, we investigate the performance gain

from integrating ECS with DutyCode. We also examine
the impact of Link Quality Threshold (LQT) on ECS.
As presented in Section 4, LQT is a design parameter
of ECS. Different LQT values result in different topolo-
gies, thereby affecting the performance of ECS.

We measured energy consumption and total flooding
time for both DutyCode with ECS and DutyCode with-
out ECS by varying sleep interval. For these experi-
ments, LQT= 0.95. We chose this high value (i.e., in-
dicating we only used highly symmetric links) to ob-
tain accurate coding schemes (i.e., children and parent
nodes can communicate symmetrically) and ensure suf-
ficient redundancy for packet decoding. The results are
depicted in Figure 20. The patterns for energy consump-
tion and flooding time of DutyCode with ECS was sim-
ilar to that of DutyCode. The graph also shows that Du-
tyCode with ECS outperforms DutyCode without ECS,
by approximately 10%.

We also measured the total number of packet trans-
missions for both DutyCode with ECS and DutyCode
without ECS, by varying LQT. The results are shown

 0

 1500

 3000

 4500

 6000

 7500

 9000

0.8 0.9 0.95

N
u

m
b

e
r

o
f

P
a

c
k
e

ts

Link Quality Threshold (LQT)

DutyCode w/ ECS
DutyCode w/o ECS

Figure 21: The effect of LQT on the total number of packets
transmitted in the network.

 0

 1500

 3000

 4500

 6000

 7500

 9000

LPL RLPL LPL/RLPL

E
n
e
rg

y
 [
m

J
]

Mode

Figure 22: The effect of MAC protocol on the energy con-
sumption of DutyCode.

in Figure 21. As expected, DutyCode with ECS out-
performs DutyCode without ECS, in terms of the to-
tal packet transmissions, regardless of LQT. As LQT
increases from 0.8 to 0.9, the total number of packet
transmissions for DutyCode with ECS decreased. This
is because at higher LQT (i.e., higher symmetry in com-
munication), the coding schemes derived are more ac-
curate. Interestingly, the increase of LQT from 0.9 to
0.95 actually increased the total number of transmis-
sions. This is because the total number of valid links
(i.e., links above the threshold) tends to decrease with
extremely high LQT, thereby allowing only very few re-
dundant transmissions.

8.9. LPL/RLPL Mode Transition

To assess the effects of LPL/RLPL Mode Transition,
we evaluate DutyCode is LPL mode, in RLPL mode
and in the LPL/RLPL “protocol transition” mode. The
Sleep Interval value we chose is 45msec for these ex-
periments. This is because DutyCode in RLPL mode
achieves higher energy savings, when compared to Du-
tyCode in LPL mode, at this value for the Sleep Inter-

17

val. We measure the energy consumption over a time
period of 150sec. To be noted is the fact that the execu-
tion of the flooding application is less than 150sec. The
longer time interval allows us to illustrate inefficiencies
in RLPL, when network flooding is not present.

The results are shown in Figure 22. As expected, the
energy consumption of RLPL mode is high as the nodes
are awake most of the time, even when the flooding ap-
plication does not execute. As shown, the LPL/RLPL
“protocol transition” mode is 20% more energy efficient
than the LPL mode.

9. Related Work

In the area of duty cycling, research has often ex-
amined low power listening (LPL) and scheduling. B-
MAC [4] is a simple LPL protocol with periodic listen-
ing that requires no synchronization. However, in high
traffic networks, throughput is impacted. X-MAC [7]
improves B-MAC by using ACKs, but suffers similar in-
efficiencies in networks using broadcast. Wise-MAC [8]
enhances efficiency by creating opportunities for syn-
chronization, but is designed for low traffic networks.
In SPAN [9], average sleep time is lengthened but com-
mon network configurations cause power exhaustion in
nodes on high traffic routes. S-MAC [10] uses adaptive,
periodic sleep, and clustering. Although it is efficient
at low bandwidth, performance degrades at higher net-
work loads. T-MAC [11] enhances S-MAC by reducing
the awake period even more. However, nodes frequently
miss useful packets while asleep. SCP [12] saves power
by scheduling coordinated transmission and listen pe-
riods. However, high network loads reduce sleep op-
portunities. DW-MAC [13] is another scheduling pro-
tocol that allows nodes to wake up on demand. AS-
MAC [14] achieves scheduling through periodic hello
packets but fails to optimize efficiency because the hello
packet has to be transmitted at the wake up intervals
of each neighbor. RI-MAC [15] is a receiver initiated
MAC protocol with an aim to reduce the idle-listening.
But, scheduling algorithms do not apply for broadcast
applications. The sleep and awake durations (i.e., duty
cycle) for each node are computed as an optimization
problem for unicast transmissions [16]. Opportunistic
flooding [17] and Schm-Dist [18] save energy in a low
duty-cycling networks by treating broadcast transmis-
sions as unicasts. ADB [19] achieves efficient broadcast
in asynchronous duty-cycling networks, through collab-
oration among nodes achieved by additional informa-
tion in the packet footer. These technique may not scale
to large scale and message intense networks because

each transmission is handled as a transmission to each
neighbor individually.

A variety of network coding approaches have also
been proposed. With COPR [20], Cui, et.al. maximize
throughput by combining several unicast packets into
a single broadcast packet. BEND, Zhang, et.al. [21]
improves packet delivery rates, reducing retransmis-
sions, but negates much of the energy savings by for-
warding multiple copies of the same packet. Energy-
efficiency at intermediate nodes was examined in [22]
where Markov chains were used to determine bounds on
energy consumption. Inspired by Reed-Solomon codes,
network coding based on raptor codes is proposed for
video streaming on lossy packet networks in [23]. De-
creased errors contribute to higher throughput and re-
duced power consumption in [24]. Multimedia through-
put and energy-efficiency in wireless networks is exam-
ined in [25]. However, existing coding schemes did not
take duty cycling into consideration. CODEB [26] uses
Reed-Solomon based coding algorithm for achieving
optimal coding. Cluster based network coding scheme
is proposed in [27], to minimize the redundancy in mes-
sages transmitted. But these schemes are done for uni-
cast message patterns. Similarly, TEEM [28], Max-
MAC [29] and BEAM [30] are traffic aware MAC pro-
tocols that deal with unicast messages. P-MAC [31]
may not scale to a large, message-intense network, as
it requires periodic traffic pattern update to achieve traf-
fic aware duty-cycling.

In [1], we investigated the integration of network cod-
ing with duty-cycling in flood-based WSN. This article
improves the energy efficiency of [1] by proposing ECS,
a coding decision algorithm that minimizes the redun-
dant packet transmissions, thereby saving more energy.
Furthermore, an adaptive transition technique accom-
plishes a smooth and timely transition between LPL and
RLPL without packet loss.

10. Conclusions

Network coding and duty-cycling are two popular
techniques for saving energy in wireless sensor net-
works. In this article, we demonstrate that although they
achieve energy efficiency by conflicting means, they
can be combined for more aggressive energy savings
in flood-based sensor network applications. To achieve
aggressive energy savings we propose DutyCode, a net-
work coding friendly MAC protocol which implements
packet streaming and allows the application to decide
when a node can sleep. Through analysis and real
system implementation we demonstrate that DutyCode

18

does not incur higher overhead than state of art solu-
tions, and that it achieves up to 46% more energy sav-
ings when compared with network coding-based solu-
tions that do not use duty-cycling. The proposed scheme
requires minimal changes to existing network coding
applications. We also present ECS, a technique that op-
timizes the network coding scheme of each node. We
develop an integrated network coding with duty cycling
solution, which allows smooth MAC protocol transition
between LPL (i.e., more energy efficient when flooding
is not taking place) and RLPL, which is more energy ef-
ficient when network flooding occurs. We demonstrate
the effectiveness and practically of our proposed solu-
tions analytically and through real system implementa-
tion and evaluations.

Acknowledgements

The authors would like to thank Manish Kumar
Singh, who participated in the initial discussions of the
project. This work was supported in part by NSF grants
#0923203, #1127449, #1145858.

References

[1] R. Chandanala, R. Stoleru, Network coding in duty cycledsen-
sor networks, in: International Conference on Networked Sens-
ing Systems (INSS), 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, R. W. Yeung, Network infor-
mation flow, IEEE Trans. Inf. Theory 46 (2000) 1204–1216.

[3] I.-H. Hou, Y.-E. Tsai, T. F. Abdelzaher, I. Gupta, AdapCode:
Adaptive network coding for code updates in wireless sensor
networks, in: Proceedings of INFOCOM, 2008.

[4] J. Polastre, J. Hill, D. Culler, Versatile low power media access
for wireless sensor networks, in: Proceedings of SenSys, 2004.

[5] P. Dutta, J. Taneja, J. Jeong, X. Jiang, D. Culler, A building
block approach to sensornet systems, in: Proceedings of SenSys,
2008.

[6] Texas Instruments Inc., CC2420 Data Sheet.
[7] M. Buettner, G. V. Yee, E. Anderson, R. Han, X-MAC: a short

preamble MAC protocol for duty-cycled wireless sensor net-
works, in: Proceedings of SenSys, 2006.

[8] A. El-Hoiydi, J.-D. Decotignie, WiseMAC: An ultra low power
MAC protocol for the downlink of infrastructure wireless sensor
networks, in: Proceedings of ISCC, 2004.

[9] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, SPAN:
an energy-efficient coordination algorithm for topology main-
tenance in ad hoc wireless networks, Wirel. Netw. 8 (5) (2002)
481–494.

[10] W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC proto-
col for wireless sensor networks, in: Proceedings of INFOCOM,
2002.

[11] T. V. Dam, K. Langendoen, An adaptive energy-efficient MAC
protocol for wireless sensor networks, in: Proceedings of Sen-
Sys, 2003.

[12] W. Ye, F. Silva, J. Heidemann, Ultra-low duty cycle MAC with
scheduled channel polling, in: Proceedings of SenSys, 2006.

[13] Y. Sun, S. Du, O. Gurewitz, D. B. Johnson, DW-MAC: a low la-
tency, energy efficient demand-wakeup MAC protocol for wire-
less sensor networks, in: Proceedings of MobiHoc, 2008.

[14] B. Jang, J. B. Lim, M. Sichitiu, AS-MAC: An asynchronous
scheduled MAC protocol for wireless sensor networks, in: Pro-
ceedings of MASS, 2008.

[15] Y. Sun, O. Gurewitz, D. B. Johnson, RI-MAC: a receiver-
initiated asynchronous duty cycle MAC protocol for dynamic
traffic loads in wireless sensor networks, in: Proceedings of Sen-
Sys, 2008.

[16] S. C. Ergen, C. Fischione, D. Marandin, A. L. Sangiovanni-
Vincentelli, Duty-cycle optimization in unslotted 802.15.4 wire-
less sensor networks, in: Proceedings of GLOBECOM, 2008.

[17] S. Guo, Y. Gu, B. Jiang, T. He, Opportunistic flooding in low-
duty-cycle wireless sensor networks with unreliable links, in:
Proceedings of Mobicom, 2009.

[18] J. Hong, J. Cao, W. Li, S. Lu, D. Chen, Sleeping schedule-
aware minimum latency broadcast in wireless ad hoc networks,
in: Proceedings of IEEE International Conference on Commu-
nications (ICC), 2009.

[19] Y. Sun, O. Gurewitz, S. Du, L. Tang, D. B. Johnson, ADB:
an efficient multihop broadcast protocol based on asynchronous
duty-cycling in wireless sensor networks, in: Proceedingsof
SenSys, 2009.

[20] T. Cui, L. Chen, T. Ho, Energy efficient opportunistic network
coding for wireless networks, in: Proceedings of INFOCOM,
2008.

[21] J. Zhang, Y. Chen, I. Marsic, Network coding via opportunis-
tic forwarding in wireless mesh networks, in: Proceedings of
WCNC, 2008.

[22] J. Goseling, R. Boucherie, J.-K. van Ommeren, Energy con-
sumption in coded queues for wireless information exchange,
in: Proceedings of Network Coding, Theory, and Applications,
2009.

[23] N. Thomos, P. Frossard, Raptor network video coding, in: MV
’07: Proceedings of the international workshop on Workshopon
mobile video, 2007.

[24] Y. Xiao, L. Ma, K. Khorasani, A. Ikuta, A new robust narrow-
band active noise control system in the presence of frequency
mismatch, IEEE Transactions on Audio, Speech & Language
Processing 14 (6) (2006) 2189–2200.

[25] X. Tao, C. Zhang, J. Lu, Network coding for energy efficient
wireless multimedia transmission in ad hoc network, in: Pro-
ceedings of International Conference on Communication Tech-
nology (ICCT), 2006.

[26] L. Li, R. Ramjee, M. Buddhikot, S. Miller, Network coding-
based broadcast in mobile ad hoc networks (2007).

[27] T.-G. Li, C.-C. Hsu, C.-F. Chou, On reliable transmission by
adaptive network coding in wireless sensor networks, in: Pro-
ceedings of ICC, 2009.

[28] H. Gong, J. Cao, M. Liu, L. Chen, L. Xie, A traffic aware, energy
efficient MAC protocol for wireless sensor networks, Int. J. Ad
Hoc Ubiquitous Comput. 4 (3/4) (2009) 148–156.

[29] P. Hurni, T. Braun, MaxMAC: A maximally traffic-adaptive
MAC protocol for wireless sensor networks, in: Proceedingsof
EWSN, 2010.

[30] M. Anwander, G. Wagenknecht, T. Braun, K. Dolfus, Beam:A
burst-aware energy-efficient adaptive mac protocol for wireless
sensor networks, in: International Conference on Networked
Sensing Systems (INSS), 2010.

[31] T. Zheng, S. Radhakrishnan, V. Sarangan, PMAC: An adaptive
energy-efficient MAC protocol for wireless sensor networks, in:
Proceedings of IPDPS, 2005.

19

