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Abstract: Network coding and duty-cycling are two major techniques for saving energy in wireless
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We propose a scheme, called DutyCode, in which a multiple access control (MAC) protocol implements
packet streaming and allows the network coding-aware application to decide when a node can sleep.
We also present an algorithm for deciding the optimal coding scheme for a node to further reduce
energy consumption by minimizing redundant packet transmissions. Finally, we propose an adaptive
switching technique between DutyCode and an existing duty-cycling MAC protocol. We investigate our
proposed solutions analytically and implement them on mote hardware. Our performance evaluation
results, obtained from a 42-node indoor testbed, show that our scheme saves 30-46% more energy
than network coding-based solutions.
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Abstract

Network coding and duty-cycling are two major techniquestving energy in wireless sensor networks. To the best
of our knowledge, the idea to combine these two techniquesvien more aggressive energy savings, has not been
explored. This is not unusual, since these two techniqueisee energy &iciency through conflicting means, e.g.,
network coding saves energy by exploiting overhearing (i@des are awake), whereas duty-cycling saves energy by
reducing idle listening (i.e., nodes sleep). In this agtigbe thoroughly investigate if network coding and duty tygl

can be used together for more aggressive energy saving®diiflased wireless sensor networks.

Our main idea is to exploit the redundancy sometimes présdéiobding applications that use network coding, and
put a node to sleep (i.e., duty cycle) when a redundant tressgon takes place (i.e., the node has already received
and successfully decoded a sequence of network-codedtppcdkée propose a scheme, called DutyCode, in which a
multiple access control (MAC) protocol implements packstaming and allows the network coding-aware applica-
tion to decide when a node can sleep. We also present anthlpddr deciding the optimal coding scheme for a node
to further reduce energy consumption by minimizing redumg@acket transmissions. Finally, we propose an adaptive
switching technique between DutyCode and an existing dutying MAC protocol. We investigate our proposed
solutions analytically and implement them on mote hardw&rer performance evaluation results, obtained from a
42-node indoor testbed, show that our scheme saves 30-48&temergy than network coding-based solutions.

Keywords: wireless sensor networks, enerdgfi@ency, duty cycling, network coding

1. Introduction their communications. Overhearing ifa@tless, prop-
agation is usually symmetric, and energii@ency is

Energy is a scarce resource in wireless sensor net-y priority. Network coding can also be found in appli-
works (WSN) and its conservation has been the subject .ations including multi-cast, content distribution, dela

of extensive research. While a variety of solutions have (5arant networks. underwater sensing suites, code dis-
been proposed for saving energy in WSN, duty cycling semination, storage, and security. As diverse as these
and network coding have proven to be two of the most o jications are, they all share a common assumption:

successful techniques. , _ nodes in a network are always awake
Network coding is a technique that increases energy

efficiency and reduces network congestion by combin-  puty cycling is a technique that increases energy ef-
ing paCketS destined for distinct users. Since the ini- ﬁciency by a”owinga node to turn ﬁ' part or all of

tial proposal by Ahlswede [2], many applications have
incorporated this technique. Network coding is particu-
larly well-suited for WSN due to the broadcast nature of
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its systemsgor periods of time. Encompassing a range
of techniques from peripheral device managementto al-
most complete system shutdown, duty cycling extends
node lifetime and reduces maintenance. It has been
shown that duty cycling can extend battery life by an or-
der of magnitude or more. In WSN duty cycling is per-
vasive, and almost all deployed systems use it. Given
the importance of duty cycling to WSN, the assump-
tion that nodes will be awake cannot be madince
nodes will be asleep at least part of the time, i.e., the
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time available for overhearing is reduced, network cod-
ing becomes more flicult.

In this article, we address the challenge faced when
aggressive energy savings (i.e., both duty-cycling and
network coding) are needed in flooding-based WSN
applications. To the best of our knowledge, this is
the first work that considers the simultaneous use of
duty cycling and network coding. We particularly tar-
get codgprogram dissemination (i.e., distributing a new
progranjexecutable image to all sensor nodes), a flood-
based application that needs a non-negligible amount of

time for execution, e.g., tens to hundreds of minutes for packetsq; andx; in the entire network: a) transmissions when

large scale WSN. network coding is not used (a total of 6 packet transmis$jons

Our main ideg is derived fro.m the i”tUiti(_’” that, QUe b) transmissions when network coding is used (4 packet-trans
to redundancy in network coding for flooding applica- missions).

tions, there argeriods of timewhen a node does not

benefit from overhearing packets. We seek to precisely ) ) . )
determine these periods of time and let nodes that do ~ demonstrating their energyffeeiency and high
not benefit from overhearing, to be put to sleep, i.e., to throughput.

duty-cycle.

Our solution to the aforementioned challeng®is-
tyCode a cross layer scheme in which Random Low
Power Listening (RLPL) —a new MAC protocol — facil-
itates streaming, elastic random sleeping and transmis-
sion arbitration, while the Network Coding-aware Ap- This article is organized as follows. Section 2 pro-
plication determines the time to sleep and the sleep du-vides background on network coding and duty cycling,
ration. We also propose a@nhanced Coding Scheme and the motivation for our work. Sections 3, 4 and 5
(ECS) algorithm, which eliminates redundant packet presentthe design of our DutyCode protocol, ECS algo-
transmissions by selecting appropriate network coding rithm and LPL/RLPL transition technique, respectively.
schemes for nodes. Finally, a novel technique, called Section 6 presents theoretical analysis of DutyCode and
LPL/RLPL Mode Transitionensures the smooth transi- ECS algorithm. Section 7 describes the implementation
tion between our RLPL protocol and Low Power Listen- of our solutions, and Section 8 presents performance
ing (LPL), a typical duty-cycling MAC protocol which  evaluation results. We review the state of art in Sec-
is more energyfécient for non-flooding WSN applica-  tion 9 and conclude in Section 10.
tions. The contributions of this article are as follows:

(b)

Figure 1. A flood-based application in which noddloods

¢ An implementation of our schemes on mote hard-
ware, and performance evaluation in a 42-node
testbed where actual energy consumption is mea-
sured.

e DutyCode — a cross layer scheme that supports 2. Background and Motivation

packet streaming and a mechanism for randomiz-  Network coding enhances energffieiency by re-

ing sleep cycles using elastic intervals. These al- ducing the number of packet transmissions. The basic

low nodes to intelligently select sleep periods. concept of network coding, as applied to a flood-based

application, can be explained using a simple scenario

shown in Figure 1. Sendarwants to flood two packets

X1 andx,. As shown in Figure 1(a), when network cod-

' ing is not used, six packet transmissions are required
to deliver the two packets to all nodes in the network,

e LPL/RLPL Mode Transition - a completely adap- "€ 1 T2, di, d2. As shown in Figure 1(b), however,
tive solution allowing the application to smoothly ~When network coding is used, only 4 transmissions are
switch between LPL and RLPL, without packet needed. This is because each of the two relays transmits

loss. only one coded packet. For network coding to work, re-
ceiversd;, d, must be able to receive both coded pack-
e Theoretical analysis of our proposed DutyCode ets, i.e. & + X2) and §; + 2x;). Otherwise, they will be
and ECS schemes and extensive simulations unable to decode the other packet received.

2

e ECS - an algorithm for deciding arfieient cod-
ing scheme in static networks. ECS assigns coding
schemes to minimize the number of transmissions
thus allowing for more energy savings.
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Figure 2: The AdapCode protocol; @re coded packets, N is
a NACK packet, due to missing packej, @, is the reply to
the NACK packet, sent when a ReNACK timer fires, IP is the
Inter-Page Interval, BQ is the back€f interval - initial and
congestion, NACK is a timer.

Figure 3: Network coding integrated Low Power Listening
based on long preambles (P represents a Preamble), for the
example shown in Figure 1(b). Source nad#nds two pack-
etsx; andx,. Receiver nodes, andr, sends a coded packet.
Destination noded; andd, are able to decode the coded pack-
ets, to retrieve the original packetsandx,.

It is important to note that, unlike normal broad-
castflooding packets, one missing coded packet can ]
render a sequence of coded packets “useless” (i.e., theyPackets, a node adaptively choosesading schenie
do not convey any information). Consider a scenario (i-8- coding scheme is defined above), based on the
where a node receives the independent coded packet§lumber of neighbors. If a node does not receive any

(a1xy + azXz + A3X3 + auXs), (b1X1 + DaXo + baXz + bsxys),
and €1X; +CoXo +C3X3+C4Xq). FOr decoding these pack-

packets for a fixed period of time (calleNNJACK’ delay
in Figure 2), it broadcasts a NACK packet (labeMih

ets, it becomes critical to receive another coded packet, Figure 2), which indicates the packets it missed. Upon

say Oixs + Xz + d3Xs + daXs). Otherwise all 3 re-

receiving a NACK, all nodes having the page that con-

ceived packets are useless. As the coding scheme inains the requested packets, set a random atkeer
creases (i.ecoding scheme is defined as the number of (called ‘ReNACK delay). The node with the smallest

different packets coded into a single pagkbe penalty
for losing a single packet increases linearly.

2.1. AdapCode Design

In this subsection we present AdapCode [3], a flood-
ing application which uses network coding and employs
CSMA as its MAC protocol. Figure 2 describes the
protocol. In this figure, a sender nodetransmits a
sequence of packets (i.e., labelgg ..., C4, andRy),
which are received by node Noder transmits packet

N. The transmission and reception of packets are indi-

cated by vertical gray arrow#\s will become apparent
later, we depict both the transmission and reception of

ReNACK delay interval wins and transmits all the re-
quested packets (packej R Figure 2). As with exist-

ing CSMA protocols, AdapCode usesBdckgf Timer’
(labeled BT in Figure 2) for accessing the medium be-
fore transmitting any packet. This bad¢ktmer has two
values: an initial value, and a congestion value, selected
randomly from BQand BQ, respectively.

2.2. Motivation

Most existing duty-cycling protocols achieve energy
savings through Low Power Listening (LPL) [4]. How-
ever, simply integrating LPL with network coding is
not energy #icient since overhearing, the fundamental

a packet because these are the time instances when &uilding block of network coding, is éicult to achieve

node needs to be awake.

when nodes aim to sleep as much as possible. Fig-

We are now ready to describe the AdapCode protocol ure 3 shows how network coding and LPL can be em-

in detail. When a source node, e.g., a base station, wantgployed together in the network topology depicted in Fig-
to flood a set of packets to all nodes in the network, it ure 1(b). As shown, because LPL uses long preambles
broadcasts the data as pages. Each page consists of before sending the actual packets, the total transmission
number of packets. The arrival of a transmission requesttime and energy consumption (required for preamble
at the MAC layer is depicted in Figure 2 as the verti- transmission and reception) are expected to increase.
cal arrow “TR” (i.e., transmission request). In Figure 2, To validate this, we performed experiments in an in-
the TR only for the coded packe is shown to keep  doortestbed of 42 Epic motes. We integrated AdapCode
the figure simple. After transmitting a page, the source with LPL [4], a frequently used duty cycling MAC pro-
node waits for a short period of time, callelditer-Page tocol. In our experiments we varied the LPL Sleep In-
Interval’ and labeled IP in Figure 2, for code propaga- terval. The Sleep Intervalis the time interval that a node
tion, and then transmits the next page. After receiving is asleep between two consecutive wake-ups - in LPL,

3
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Sleep Interval [msec] Combining duty-cycling with network coding in
flood-based applications is ifigient because nodes use
long preambles for communicating with neighbors, and

image to all nodes in the network) of AdapCode, an applica- stay awake whenever there is a transmission (i.e., even

tion which uses network coding. Results are obtained from a if thg node has rgcelved the transmltt_ed packet). Our
42 mote testbed. solution tackles this problem by providing a framework

in which nodes are informed of future packet transmis-
sions, without using control packets. This framework
allows sensor nodes that run network coded applications
to employ timely, smart duty-cycling.

Figure 4: Impact of LPL sleep interval on energy consumption
and total execution time (i.e., for flooding a new executable

nodes wake up briefly, to identify if a preamble is trans-
mitted. If a preamble is detected, the node stays awake
to receive the packet transmitted immediately following 3.1. Main Ideas

th le. If lei tect - .
e preamble. If no preamble is detected, a node goes Similar to AdapCode, our proposed solution Duty-

immediately to sleep. As an example, if a node needs to Code arouns packets in pages and transmits all packets
be awake for 2ms to detect a preamble (this value is de-. groups p pag P

pendent on hardware), then a sleep inte/gof 200ms in a page as a stream using CSMA. The stream sent by

: . o a node isusefulfor neighboring nodes lacking the data
's equivalent to a duty cycle of 1% for the node. contained in the page, angeles$or neighboring nodes

The results of our experiments are depicted in Fig- 5t have already received the data in the page. Upon
ure 4. As shown, even very short sleep intervals (i.e., receiving the first packet of a page, a node decides if it
30”‘5“? n_equy double_d the delay and energy CONSUMP-ghoy|d stay awake and receive the remaining packets in
tion. This is in contradiction to the general belief that, the page, or it should sleep while the remaining pack-
for LPL, longer sleep intervals result in higher energy s i the page are streamed. The computation of the
efficiency. From these results, it was clear that: i) @ {ime 1o pe asleep is based on a control field present in

node should Iselgct sleep mtejrr]/als '”te'r'l'_gf]”ﬂy a;trnon- each packet, which indicates the number of remaining
static intervals (in contrast with LPL which has fixed packets of the stream.

sleep intervals); and ii) long preamble-based MAC so- DutyCode integrates Random Low Power Listen-
lutions are not suitable for network coding applications. ing (RLPL), a novel MAC protocol, with the Network
During our experiments, a significant number of re- Coded Application (NC App). RLPL facilitatestream-
dundant packet transmissions was detected. This I'e-ing, elastic random S|eepingndtransmission arbitra-
dundancyin AdapCode is attributed to its SImp'IfIEd as- tion, while the NC App determines when a node can
Sumption that the network is Uniform, where the num- S|eep and for how |ong (i_e_' S|eep dura‘[ion)_ When re-
ber of neighbors is assumed to be the same for all nodes.quested by the NC App, RLPL turnsfdhe radio for
This assumption, hOWGVEI’, is not practical and results in the requested duration if there is no pending transmis-
inefficient coding scheme assignments. Network topol- sion. The NC App specifies the sleep duration when it
ogy, e.g., the number of parents or children, should be requests the node to sleep. Importantly, RLPL does not
carefully taken into account when coding schemes are pyt the node to sleep periodically. Unlike other duty-
determined to avoid unnecessary paCket transmiSSionSCycﬁng protoco|s RLPL does not perform Clear Chan-
Those considerations motivated us to devise a new tech-ne| Assessment (CCA) before turningj the radio. This
nique to assign fécient coding schemes for any net- s pecause the CCA would not have any meaning, since
work topology such that all nodes can decode all packets requests for sleep come from the NC App when there is,
with the minimum number of packet transmissions. typically, ongoing radio communication (e.g., streaming
It is important to remark that LPL is more energy of useless packets).

4
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backdf intervals BG, ;.. BT indicates when a BacKoTimer

fired, TR indicates when a Transmit Request has been received

by RLPL, and IP represents Inter-Page time Interval. Vattic
gray arrows depict the direction of packet transmission.

In the remaining part of this section we describe the
main components of RLPL and illustrate DutyCode’s
execution with an example.

3.2. Packet Streaming

The streaming operation of RLPL is depicted in Fig-
ure 5. The meaning of “Page”, “IP”, “BT” andC;”
is the same as for AdapCode, shown in Figure 2. As
shown, nodes receives a request for transmission (i.e.,
an arrow pointing down, and labeled TR, in Figure 5)
and transmits a page (i.e., coded packitthroughCg)
to receiver node. Following the notation used for de-
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R BT .
BO4iic [ BOazizc
Cq Ei% Cs| - Cs
s
T L L 0T T
TR LI
Cq v
M \ l sleep -
YL TR .
ro y
time
(@)
Page
TR BT i :
BOsitc F—— BOaix
s
® v o1l i ]
1 e Pz
\ G| 1
1 | i sleep :
TR YL BT
ra 1 ¥

time
(b)

Figure 6: (a) Yielding and Transmission Defer in DutyCode.
(a) The packet transmit requests TR arrive at nadesdr;

scribing AdapCode, the sender and receiver of a packetafter they yield. This is handled by nodesandr as a pend-

transmission can be identified by the gray arrow point-
ing down and by the BT timer. As shown, the BT timer
fires only for nodes, the sender of the packets.

When streaming coded packets, the penalty for col-
lision is high. To reduce collisions, in DutyCode, the
first two packets of a stream are sent with large ran-
dom backd intervals (i.e., BQ@ i and BQj ). The
rest of the stream is sent with very small bagkaterval
BO:ii rc. The subscripts “i” and “c” stand for the “initial”
and “congestion” back®, respectively. Thus, BQand
BO,i are initial backdr intervals, and B@Q and BQ. are
congestion backdintervals. It is important to mention

again that the first packet in a page contains the page ID,

ing request, labeled HP - Handle Pending, after the stream
from nodes finishes. Since node has the data in the page,

it sleeps; (b) The packet transmit requests TR arrive atsiode
r; andr, beforethey yield. This is handled by nodesandr,

as a packet defer, labeled HD - Handle Defer. Similarly with
(a) noder; sleeps, because it has the data, while modstays
awake to receive the page.

packet of a stream from nodenodes; andr, decide to
yield (i.e., the vertical double arrow labeled YL). While
yielding, nodes; andr, do not process any transmit re-
guests from the NC App, for the duration of the stream
from s. Since node; has the page being transmitted by

and that each packet contains a counter indicating how s, it sleeps for the duration of the stream. This is the

many packets in the stream remain to be sent.

3.3. Elastic Random Sleeping

In this subsection we describéelding the main fea-
ture of RLPL that enables the elastic random sleeping
of nodes, andransmission defer We use Figure 6 to
explain these important concepts in RLPL.

Upon receiving the first packet of a stream, a node
yields As shown in Figure 6(a) upon receiving the first

5

elastic random sleeping. In Figure 6(a), the NC App at
noder; intends to send a packet (i.e., the vertical arrow
labeled TR) while the node’s radio is turneff G.e., it
sleeps). After; wakes up, it tries to transmit pending
packets (i.e., dotted vertical arrow labeled HP - Handle
Pending). Because nodg does not have the page be-
ing transmitted, it stays awake and receives all streamed
packets. Similar to noda, noder; yields (i.e., the ver-
tical double arrow labeled YL in Figure 6(a)). Nodge
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ets to send). Wheg, receives the packet fros, based
(b) on the contents of the packet (e.g., sender E)can
decide whether it can defer its transmission or not. In
Figure 7: Transmission arbitration: 1B > ID(s,) and (a) our scheme, nodes with smaller node IDs will yield to
s, learns about the stream frosp and successfully defers its  nodes with higher node IDs.

transmission (i.e., vertical double arrow labeled YL). &) ) . - o
learns about the stream frospnand fails to defer its transmis- Figure 7 illustrates two transmission arbitration sce-

sion (i.e., vertical double arrow labeled YL). narios where nodes ands; (ID(sy) > ID(s;)) compete
for a channel. In Figure 7(a), the transmissions of pack-
etsC; andD; are simultaneous, and will result in a col-
handles its packet transmission request (the receipt oflision (represented as the grey double arrow). Because
the request is marked as a vertical TR arrow pointing the back& timers are random, in Figure 7(a) node
down) after it receives the last stream packet from node learns about the stream from nosefirst, i.e., packet
s (i.e., vertical dotted arrow labeled HP in Figure 6(a)). Czis transmitted well before the pack® is attempted
A transmission defeis a decision made by RLPL to  to be transmitted by nod (as represented by the dot-
postpone a scheduled packet transmission for a futureted vertical arrow labeled BT for nodg). Since ID§;)
time. As shown in Figure 6(b), nodes andr, yield > ID(s2), nodes, decides to yield to node,. In this
(i.e., the vertical double arrow labeled YL) because of case, the transmission timer of nose(as mentioned,
the stream initiated by node When they yield, they al- the dotted vertical arrow labeled BT) fires after it makes
ready have transmission requests from the NC App (to the defer decision. Therefore it successfully defers its
be noted, this scenario isftérent then the one shownin ~ transmission.

Figure 6(a) when the transmit request TR reaches RLPL  Figure 7(b) presents a scenario where the transmis-
after yielding). The backf timers for these transmis-  sjon timer of nodes, fires before it makes the defer de-
sion requests fire (i.e., depicted by vertical dotted ar- gision. As in Figure 7(a) packe; and D; collide,
rows labeled BT) after the yield operation. When the pyt packetD, is sent very shortly after packe; is

BT timer fires, the nodes decide to defer their transmis- received, without enough time to yield. Consequently,

sions, until after the stream from noddinishes (i.e., nodes, cannot prevent packé, from being sent. After
the Vertical dOtted arrow Iabeled HD - Handle Defer). D21 however, nods2 defers the transmission of |ts fo|_
Similar with Figure 6(a), node, decides to sleep after |oying packets. This scenario shows that negirans-
yielding (because it has the data in the page), and nodenmits almost immediately after receiving the packet

r, decides to stay awake, to receive the page. from nodes;, which implies that nods; has likely re-
ceived packeD, from nodes,. Consequently, nods
3.4. Transmission Arbitration will need to decide if it should defer its transmission or

not. Now, nodes; will obviously not decide to defer its

Transmission arbitration occurs when two nodes transmission because IR} > ID(s;). Consequently,

transmit their packets almost simultaneously. More the remaining packetSz throughCg will be sent suc-
specifically, let's assume that nodg receives one  cessfully.

6



3.5. DutyCode Example
In this subsection we explain how DutyCode works

through an example, depicted in Figure 8. As shown,

there is a source nodethat floods packets in a 5 hop

WSN. We assume that each page consists of 8 packets.

For ease of explanation, we assume that 2 nodes are Irigure 9: An example of a network topology that causes re-

hop away froms, 4 nodes are 2 hops away frog 8
nodes are 3 hops away frosand lastly, 4 nodes are 4
hops away froms. Using the AdapCode algorithm to

dundant packet transmissions.

decide the coding scheme (which is based on the num-there is still an opportunity to save more energy by

ber of neighbors), nodas andr, havecs = 2. This

reducing the number of unnecessary packet transmis-

means that the number of packets each node sends isions. This is primarily because, thus far, we used the

pp/cs = 4, if the number of packets per page is
8. Similarly, for nodes 2 hops away frosthe coding
schemeesis 4 (i.e., each node will send 8= 2 coded
packets), and for nodes 3 hops away frethe coding
schemecsis 8 (i.e., each node sendg&8= 1 coded

same algorithm as AdapCode, for deciding the coding
scheme each node uses. The simple algorithm used
by AdapCode uses the number of neighbors. The al-
gorithm, at high node densities, increases the coding
scheme. Hence, each node sends fewer coded packets.

packet). After the nodes decide their coding schemes This scheme, however, does not identify unnecessary
(again, the technique we use here is the same as ofpacket tran§m|35|ons, which is the purpose of our En-
AdapCode’s, based on the number of neighbors), the hanced Coding Scheme (ECS) algorithm.

flooding operation can start.

In order to analyze the unnecessary transmissions,

The sendes sends the packets in a page continuously we define théPreferred Coding Scheme (PCig) each

(i.e., as a stream). When senddmishes streaming, it
waits for a period of time for potential NACK packets

node. PCS is defined as the maximum coding scheme
that a node’s parents can use such that all parent’s chil-

(which indicate that receivers missed some packet(s)). dren can successfully decode all encoded packets.

In response to a NACK packet, senderesends the
missing packets. After nodeg andr; receive all 8

Consider Figure 9 which shows a hypothetical net-
work with four leaf nodesdq; — c,;) and their parents

packets in the page, using their coding scheme, they (p1 — ps), Wherec; andc, receive packets from four
code and send 4 packets each. Assuming the Ificko parents whereas andcs receive packets from only two

timer of noder; fires first, the streaming of the 4 pack-
ets from it will start. After receiving the first packet
(of the 4), node, realizes that it has already seen the
page, and it will decide to sleep for the remaining time
of the stream (in this example 3 packets). Similarly,
when node;, streams its 4 coded packets, nadevill
sleep. When nodeag andr; finish sending their coded
packets, they will wait for NACK packets. NACK pack-
ets might be sent by nodesthroughrg if they missed a

parents. In our example, consider the PCSciorSince

i receives 4 coded packets (i.e., each from papent
through p;) at most 4 packets can be encoded into a
single packet, yielding a PCS of 4 for. Similarly, the
PCS forc,, c3, andc, are 2, 2, and 4, respectively. Since
the PCS forc; andcz is 2, the coding scheme @§ — ps
must be 2. Consequently, all childrep— c4 can de-
code all packets from the transmissions frpg— pe.

The result, and this is how ECS removes unnecessary

coded packet, and could not decode all packets received fransmissions, is that transmissions frpmp,, p7, and

If a NACK packet is received, eitheg orr, resends the
missing packet. If nodes; throughrg are able to de-

ps are all useless.
In order to avoid such extraneous transmissions and

code the 8 packets received, then they have the entiresave energy, we propose an Enhanced Coding Scheme

page. Based on their coding scheme (whicbss: 4),

(ECS) Algorithm, which decides the optimal coding

each node will send 2 coded packets. Whenever one ofscheme of each node. Our algorithm is centralized and

nodes streams its packets (let's assum)e the nodes
that have received already the page (i.e., nades;,
r4, s andrg) decide to sleep.

4. An Enhanced Coding Scheme (ECS)

While our proposed solution, presented in the pre-

uses information about the network topology. We repre-
sent the network as a directed graphi= (N, E), where

N is the set of all nodes;, andE is the set of edges
(ni, n;) such that; is the one-hop parent af;. Each
edge has a Link Quality (LQ) scalar value, which rep-
resents the link's successful packet delivery ratio. Only
edges with LQ greater than a pre-defined Link Quality

vious section, saves a considerable amount of energyThreshold (LQT) are considered. fBirent LQTSs re-

7



Algorithm 1 Enhanced Coding Scheme (ECS)

1: for eachn; € N do

2: nf.CS<—|Pi|,an e P.

3: end for

4: for eachn; € N do

5. n°S min{nfjCS | nj € Cj}

6: end for

7. for eachn; € N do

8: niEQNS «0

9. for eachn; € Pi (in an ascending order of*°)
do

10: if n=9N° < pagesizethen

1 nfoNS._ pEovs,, pagesize

12: else J

13: nfjcs « null_codingscheme

14: end if

15;  end for

16: end for

17: for eachn; € N do

18:  if ¥nj € C;,n"® = null_coding schemethen
19: n=S « null_codingscheme

20. else

21: nes min{niicsl n; € Ci}

22:  endif

23: end for

sult in different network topologies, therebyfecting
the performance of ECS. L& = {n; | (n;,n) € E)
be the set of all one-hop parents of nageand C;
{n; | (ni,n;) € E} be the set of all one-hop children of
noden;. We denote by""® the PCS ofy; for its parent

nj € P;, and byn®* the coding scheme of.

The pseudocode for the proposed ECS algorithm is
shown in Algorithm 1. ECS runs in 2 phases. In the
first phase, the algorithm computes the PCS vafife
for all n; € P;. (Line 1-3).

Then, the initial coding scheme for each nogis de-
cided as thexenin{n';icS : nj € G}, i.e., the minimum PCS
value among all PCS values of its children (Line 4-6).
If |Ci| = 0, then the “null coding scheme” is chosen for
n; (in a “null coding scheme” no coded packets are for-

warded), preventing a leaf node from sending unneces-

the children of each node. If all children suggest a null
coding scheme, then the algorithm sets the null coding
scheme as the final one for the parent; otherwise the
coding scheme assigned to the parent is the minimum
PCS value among its children (Line 17-23).

Although ECS is a centralized algorithm where cod-
ing schemes are decided at a central entity, it can be
modified to run in a distributed manner through addi-
tional message exchanges between nodes. We leave the
development of a distributed ECS algorithm as future
work.

5. LPL/RPLP MAC Transitioning

Aggressive energy saving can be achieved by Duty-
Code in flood-based WSN (i.e., high networkfli@).

For low network tréfic, however, LPL is more energy
efficient. Thus, there is a need for affiegient technique

to switch between RLPL and LPL. Such switching tech-
nigue needs to be carefully designed to ensure a smooth
and timely transition with no packet loss.

In our solution, each node starts executing LPL.
When a node receives the first packet of the flood, it
attempts to switch to RLPL. To minimize packet loss
during the transition from LPL to RLPL, we use a tran-
sient mode, called NoSleepLPL. In NoSleepLPL, after
receiving the first packet of the flood, a node does not
sleep. This is because the node tries to avoid missing
packets. The received packets are relayed utilizing long
preambles (as LPL does), to ensure that node’s children,
in turn, do not miss any packets. Similarly, the chil-
dren nodes transition to NoSleepRLPL successfully. At
a fixed time interval after receiving the first packet of
the flood, a node switches from NoSleepLPL to RLPL.
The node switches back from RLPL to LPL mode when
it has received all packets in the flood. Switching back
from RLPL to LPL is relatively easier due to low ffe,
thus not incurring packet loss.

6. DutyCode Protocol and ECS Algorithm Analysis

In this section we derive performance bounds for the
DutyCode protocol and ECS algorithm. The aim of our

sary packets. In the second phase, the algorithm checksanalysis is to:

for possible redundant transmissions for each nade
by examining the initial coding schemes of its parents.
If for noden; there is a redundant transmission from one
of its parenny;, the algorithm updates the PCS value for
the parentn{’>® to the null coding scheme (Line 7-16).
In the last step, the algorithm checks the PCS value for
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e Show that DutyCode does not have any overhead,
when compared with AdapCode. The two metrics
we investigate aréhe total number of packets per
pagetransmitted (Section 6.1), atide total execu-
tion timeof flooding (Section 6.2).



e Show that the coding schemes assigned by ECS are6.1.1. Coded Packets

optimal (Section 6.3).

e Compute an upper bound on the energy savings of
DutyCode (Section 6.4).

For our analysis we use the following notations
is number of packets per pagssis the coding scheme;
cpis the collision probability in AdapCodep; andcp;
are the collision probabilities associated wigkd; and
BO, backdf intervals in DutyCode, respectivel 3O
is the CSMA congestion bacKanterval (as it will be
noted belowBG is not of interest for AdapCode); and
ty is the transmission time per packet.

We assume that the sleep interval per padés cho-

Coded packets are packets transmitted by a node as a
result of network coding. The number of coded packets
per page i, = pp/cs Assuming the coding scheme
is identical for DutyCode and AdapCode (i.e., we do not
consider here the Enhanced Coding Scheme (ECS)), we
have:

C3=C} )
whereC3 andcg are the number of coded packets for
AdapCode and DutyCode, respectively.

6.1.2. NACK Packets

sen such that there is no time overhead due to sleeping A node sends a NACK packet when it is unable to

(i.e., stream duration is much longer than the sleep in-
terval):

S1<(BOu/2+ pp/cs- ty) 1)
For the analysis in this section it is paramount to ob-

serve the following: i) because AdapCode is message

intense, there is always a node waiting to transmit
packet. Consequently, the congestion bagkoterval
for AdapCode will be chosen randomly between 0 and
BO.. Because the bacKais uniformly distributed, the
average backdinterval isBO./2 and the average col-
lision probability iscp; ii) in DutyCode the first packet
of a stream is always transmitted with a bagkoterval
randomly chosen between 0 aB@®y;. Hence, the aver-
age backé interval for the first packet iBOy;/2. Since
the average collision probability for the first packet of
the stream i€ py, the collision probability for the sec-
ond packet of the stream & - cp; (i.e., a collision
will occur during the transmission of second packet if
and only if there was a collision during the first packet
transmission).

a

6.1. Total Number of Packets per Page Transmitted

In this section we investigate the relationship between
P‘g andP?, the total number of packets per pagans-
mitted by DutyCode and AdapCode, respectively (we
note here thang andPyg are diterent tharpp, which is
a constant describing how large a page is). Our result is
expressed by the following theorem.

Theorem 6.1. If BOy > BO: then P < P3 .

Proof. In both DutyCode and AdapCode, three types
of packets contribute to the total number of packets per
page: a) coded packets; b) NACK packets; and c) Re-
NACK packets. We now derive the number of packets
of each type.

decode a page. This can happen because of two factors:
i) the node does not receive enough independent coded
packets needed for decoding a page; and ii) collisions
cause loss of coded packets.

Since DutyCode uses the same coding scheme as
AdapCode, the first factor, i.e., not enough independent
coded packets received, has no impact on the total num-
ber of packets. Hence, we do not consider it.

We now analyze how collisions impact the number of
NACK packets in AdapCode and DutyCode.

In AdapCode, the maximum number of NACKs per
packet is ¢p + 2cp? + ...). This is because with colli-
sion probabilitycp a coded packet will be lost, hence 1
NACK will need to be sent. Additionally, if the trans-
mission of the NACK packet causes a collision with a
regular packet (this will occur with probabiligp?) then
two NACK packets will need to be sent. Consequently,
the total number of NACKs per page for AdapCode is:

N3 = (pp/c9)(cp+ 2cp” + ...). (3)

For DutyCode, NACK packets can be sent as a result
of: i) collision of the first packet transmission, which
occurs with probability ¢py); ii) collision of the sec-
ond packet transmission, which occurs with probability
(cpr - cp2). Thus, the total number of packets per page
for DutyCode is:

\ (cpL+cpr-Cp) + 2cpy - (Cpy +
Cp1 - Cp2) + 3cpPE(Cpy + CPL- CPa) + ...

(1+cp) - (Cp1+ 2¢p% + ... (4)

One can remark that collision probabilities are in-
versely proportional with backbintervals. Thus, we
can expressp = k/BO; andcp, = k/BOqyj, wherek is



a proportionality constant (assumed the same for Duty-
Code and AdapCode). Consequently, the ratio of colli-
sion probabilitiespandcp, is:

cp _ BG
cp BOy’

Consequently, if back® intervals are chosen such
thatBOy; > BQO, then:

(5)

Considering Equation 5, ipp/cs > (1 + cpy) then
the relation betweemg andNJ (given by Equation 3
and Equation 4) is:

cpr < cp.

N < N3 (6)

It is important to reemphasize the required condition
pp/cs > (1 + cp). This condition basically says that
pp needs to be dierent tharcs If this condition is not
true, i.e.,pp = cs then there is only one packet in the
stream, and there is no opportunity for sleeping.

6.1.3. ReNACK Packets
ReNACK packets are uncoded packets, sent in re-

sponse to NACK requests. We now analyze the number

of ReNACK packets for AdapCode and DutyCode.
In AdapCode, if there is a collision while transmit-
ting a coded packet (i.e., with probability of collision

Cp1- pp+2CPE - pp+ ...
pp- (Cpy + 2CE +...).

(8)

From Equations 7, 8 and 5 the relation between the
number of ReNACK packets sent by AdapCode and Du-
tyCode is:

RO < RS, (9)

From Equations 2, 6 and 9, th < P%, where
P5 = CJ + Nj + RS is the total number of packets per
page of AdapCode, arféf) = CJ + N§ + RY is the total
number of packets per page of DutyCode. O

If we denote bys the total number of streams in the
network, the total number of packets per node for Adap-
Code can be written, in terms efas:

P =s- pp/cs+ Np (10)

whereNg is the number of NACK packets for Adap-
Code.

In DutyCode, coded packets and ReNACKs (note:
not NACK packets) are transmitted as streams. Con-
sequently, the total number of packets transmitted per
node is:

d _ d
P®=s-pp/cs+ N (12)

cp) all packets in the page need to be resent, without yhere the first term represents the number of coded and
being coded. Consequently, for each coded packet (andreNACK packets a node transmits, amgj is the num-

there arepp/cscoded packets in each page), the node
needs to retransmds packets. Similar to scenario de-
scribed for NACKs, the node needs to transmit these
packets twice with probabilitgp?. Hence, the number
of ReNACKSs per page for AdapCode is:

RS = cs: pp/cs: (cp+ 2cp” + ....). (7)

For DutyCode, a collision during a stream transmis-
sion can occur: i) during the transmission of the first
packet (with probabilitycp,). In this scenarias pack-
ets will be retransmitted; and ii) during the transmission
of the second packet (with probability; - cpy). In this
scenario the entire page will be retransmitted. Conse-
quently, the number of ReNACK packets sent by Duty-
Code isR‘g = CS-Cpy + Cp2 - Cpy - pp. Assuming the
worst case, in whiclpp packets need to be retransmit-
ted in case of collision during the transmission of first
packet, the total number of ReNACKSs per page per node
is:
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ber of NACK packets for DutyCode.

6.2. Total Execution Time

In this subsection we investigate the relation between
T¢ and T3, the total execution time of flooding, per
node, for DutyCode and AdapCode, respectively. Our
analysis omits the delay that a packet defer causes. Our
result is expressed by the following theorem.

Theorem 6.2. If pp/cs- BO. > BOy;; and BQ = BOq,
then T¢ < T2.

Proof. As mentioned earlier, the average bagkone
per packetin AdapCode BO./2. Hence, the total exe-
cution time, per node, for the flooding operation is:

T2 = PA(BO./2 + ty)

which, after the substitution ¢¥ with Equation 10, be-
comes:



L T T the hidden terminal problem. We denote 8ythe set
h of nodes that arehops away from the source. The total

Cg%) 80 C?Q energy saving for a node is defined as follows:
@ HQO_’OQ*’QQﬁ_’ Esave= Tsleep/TtotaI (13)
\ Q & QQ Q whereTio is the total flooding time, an@gieepis the
O Q Q total time that a node is in sleep mode.

Since flooding is a pipelined process, given the mini-

“‘(m*)m r‘]‘(;p mal IP interval, Tiotal Can be estimated as the total time
taken for any node i;_1, Sj, or Sj,; to finish the flood.

Figure 10: A multihop network topology for a flood-based Consider a nod®;, € S;. In this topology,n; can-

WSN application. Large dotted circles represent communica not transmit a packet if any node 8)_; (parents)S;

tion range. Groups of nodes are-(1),i and {(+1) hopsaway (peers), 0iS;,; (children) transmits. Thus, the expected

(-1)"hop i hop

froms. total flooding timeE(Tiota) is given by:
[Si—1l +1Si = 1 + |Si4al
EToa) = (215 141 ) Toage: P
T3 —s. pp/cs- BO/2+ N2-BO,/2+ P? -ty (12) 3
n e P e tr _ 3n Toage P (14)

For DutyCode, the average badkanterval for a . _2 )
stream isBOy; /2 except for the stream which is trans- WhereTpageis the time taken for one page, i.&page =

mitted after a NACK packet (for a NACK packet, yield-  (BO1i/2+pp/csty), andPis the total number of pages.
ing is not done because it is not a stream). Hence, the The first term is divided by 2, to account for senders and

> 1ot e : : OSEHS 11+t :
wait time of the stream transmitted right after the NACK  receivers. Essentially, at most==5==24 transmis-

is BOyc/2. In DutyCode, based on Equation 1, the total Sions take place. . _
time for flooding is the total time required for all packet ~ If we assume a coding scheme with no redundant

transmissions. Consequently the total time per node is: transmissions, only packets transmitted by the nodes in
Si_1 are useful. Consequently, can sleep while the

nodes inS; andS;,; are transmitting their packets. The

TS = (s—NJ)-BOwu/2+NJ-BOw/2+ expected total sleep timg(Tgjeep IS thus:
+N§ - BOy/2+ PY -ty
Si-1+1S ,
= s-BOu/2+Ng-BO/2+P?-t; E(Teeep = (w) “Thage P
SlnCeBO]_C = BOC- = n- T‘/)age' P (15)
From Equation 6 and Theorem 6.1, whep/cs - ) . )
BO; > BOy;, then: whereT,,..is the sleep time per page, i.&,40= S .
Considering Equations 1, 14 and 15, the expected to-
Td < Ta tal saving in energy is:
n — n:
(I
T
E(Esavd = E(Tsleep)
6.3. Total Energy Saving total S| )
n-
This section presents an analytical upper bound on = < 3. (16)
' Y PP $(BOw/2+ pp/cs-ty) ~ 3

the total energy saving of a node in DutyCode. To
prove the upper bound, we consider a particular network 6.4. Enhanced Coding Scheme Analysis
topology depicted in Figure 10, where nodes'irhop
are within the interference range of nodesiin1)" hop
and (- 1)" hop. We assume that the Inter-Page interval
(IP) is minimal, i.e., the source node sends one page af-Theorem 6.3. ECS produces the optimal coding
ter the previous page has been successfully flooded byschemes for all nodes, such that all packets can be de-
the nodes that are 3 hops away from it, thus preventing coded successfully.
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In this section we prove the optimality of the coding
scheme assigned by our proposed ECS algorithm.



Algorithm 2 Streaming a Packet Received

1: if (# of remaining pkts- 0) then
if (any yield cond. is truedhen
if (# pkts awaiting transmit 0) then
attempt to DEFER pkt transmission
RLPL saves DEFER result
end if
RLPL startsNoSendimer
end if
: else
10: RLPL stopsNoSendimer and handles packet
11: end if

N

©e N ®

Proof. Assume by contradiction that there exists a bet-
ter coding schemBCS. This implies that irBCS, there

Transmit runs Algorithm 2. FirstTransmit checks

if it has pending packets or the end of the stream has
been reached (Line 1). If there are remaining packets
in the streamTransmit checks if the stream satisfies
the yielding conditions discussed in Section 3 (Line 2).
If the stream does not satisfy the yielding conditions,
no action is taken. Otherwise, if it is in the middle of
transmission, the node tries to defer the packet trans-
mission and it informs th@&andomLPL module about
two things: i) details of the stream transmission; and
ii) the defer status, if there was a need for packet defer
(Line 4-5). TheRandomLPL module then sets a NoSend
timer (Line 7) and keeps future transmit requests pend-
ing until the stream duration is over or it is informed
by Transmit that the stream it is yielding to, has com-
pleted. Transmit informsRandomLPL about the com-

exists a node that transmits fewer packets than ECS. Letpletion of stream upon receiving a signal fréeceive

this node ben;. Note that, in ECS, each parent chooses

about the last packet of the stream (Line 10). We imple-

the minimum coding scheme among those proposed bymented the packet defer in tiTeansmit module be-

its children (as explained in Algorithm 1 (Line 21)).
Thus, if nj transmits fewer packets, then at least one

child would not be able to decode all packets success-

fully, which is a contradiction. ConsequentBC Sdoes
not exist. O

7. Implementation

We implemented DutyCode and LFRLPL Tran-
sition in nesC for TinyOS 2.1. We modified sev-
eral existing TinyOS modules: CC2420ReceiveC,
CC2420TransmitC and CC2420CsmacC - from now on,
we will refer to these modules & ceive, Transmit
andCsma, respectively. We also added DutyCode spe-
cific modules: RandomLPL and RPowerCycleC. The

ECS algorithm was implemented in Java, on a central

server. It uses network topology information collected

from the nodes to decide the coding scheme for each

node.

7.1. Packet Streaming

We modified theTransmit andReceive modules
and implemented th&andomLPL module for packet

cause it is the only module that maintains the transmis-
sion internal state.

Upon receiving a transmit request from the applica-
tion with the result of clear channel assessment (CCA),
the Transmit module copies the message to the radio
chip and waits for the backbinterval corresponding to
the CCA resultTransmit can defer a packet transmis-
sion until the actual transmission has been started. The
application would not be aware about this packet defer
and RLPL handles the deferred packet as soon as possi-

7.2. Elastic and Random Sleeping

We implementetinodified the RandomLPL and
RPowerCycleC modules so that sleep requests are no
longer handled periodically, as done for LPL. Instead,
the requests to put the radio in low power mode (i.e.,
requests to sleep) are treated as one time requests. The
RPowerCycleC module is also modified not to perform
clear channel assessment (CCA) before turnifighe
radio. This is because the network coding application
decides to put a node to sleep, based on the knowl-
edge it has about the currently transmitted stream. This
stream is useless to the node. Hence, performing CCA

streaming. When streaming is achieved, an application is unnecessary - we know that a transmission is ongo-
sends packets one after another, without any significanting, but it is useless. We also modified ttsma module

delay (i.e., as soon assndDone () event is signaled).

to turn df the radio only ifTransmit decides to defer

Each packet header contains the number of remainingthe transmission.
packets in the stream, computed based on the coding

scheme used.
The Receive module notifies theTransmit mod-

7.3. The ECS Algorithm
We implemented the ECS algorithm in JAVA. We ex-

ule when the node receives a stream packet from an-ecute the algorithm on a central server, after we col-

other node. Upon receiving a signal frokeceive,
12

lect connectivity information from the entire network.



We leave the development of a distributed ECS algo-
rithm as future work. When the algorithm starts, the
network topology is constructed by receiving neighbor
tables from the motes, via serial ports. Based on the
network topology, ECS computes the optimal coding
scheme for each node as described in Section 4. The
new coding schemes are transmitted back to the nodes
via serial ports. When the flooding starts, each node
uses the new coding scheme.

7.4. LPL to RLPL Mode Transition

In order to achieve a smooth transition between LPL
and RLPL (as described in Section 5), we built two in-  |¢* M| "%
dependent modules, one containing the LPL protocol,
and the other RLPL. We also created a wrapper module
that provides a common interface both MAC prOtO‘?f_"S- in the lower left corner. The origin is where the source node,
The wrapper handles the LPL to RLPL mode transition j,itiating the flood operation, was located. The networktis a
smoothly: if the current MAC protocolis in the middle  most 5 hops (when the radio transmit power is the lowest). The
of transmission, the transition happens after receiving central server is where measurements for power consumption
the sendDone () event. Switching is accomplished by neighborhood are collected.
stopping the current MAC protocol and then starting the
other MAC protocol. Especially for the transition from
LPL to RLPL, the transient state noSleepLPL is intro- total flooding time While we are interested in en-
duced to minimize the packet loss, as explained in Sec- €rdy consumption, we also aim not to increase the to-
tion 5. The noSleepLPL is implemented such that the tal flooding time. The parameters that we vary are
DefaultLPL andRPowerCycleC modules do not turn  the sleep interval§ ), node density ND), the size of

off the radio when requested by an application through Packet & P), the number of packetd(P), the length of
the wrapper module. the NACK timer, i.e., NACK delayI(IACKD), and the

Inter-Page Intervall(). From Theorems 6.1 and 6.2,
the BO; should satisfy the conditionpp/cs- BO. >
8. Performance Evaluation BOy > BQ.. In order to decrease the collision proba-
bility of DutyCode and reduce the penalty for retrans-
We evaluated the performance of DutyCode, ECS al- mission, the greater bound for BOis used for the
gorithm and LPYRLPL mode transition in a testbed experiments. In our experiments, the default back-
consisting of 42 Epic motes [5] deployed in an indoor O©ff intervals were chosen as follows: BCand BQ;
environment of approximately 508ft Among the 42 are chosen randomly in the interval [0.3msec, 8msec],
nodes, 14 are instrumented for power consumption mea-BO1c and BQc are chosen randomly in the inter-
surements. The map of our testbed is shown in Fig- val [0.3msec, 2msec], B{3=(2+nodeid)/32msec, and
ure 11. The testbed has a diameter of at most 5 hops.BOrc=(5+ nodeid)/32msec.
We varied the network density (and implicitly the diam- ~ The default values for the parameters argl =
eter of the network) by changing the radio TX Power 17msecND = 4, SP= 28bytes,NP = 256, NACKD
(i.e., the TXCTRL.PALEVEL register of the CC2420 = 640msec|l = 300msec. Theféects of these param-
transceiver [6]). The TX Power can be varied from 2 to eters on the performance of DutyCode are investigated
31, the lowest and the highest transmit power levels, re- in the remaining part of this section.
spectively. Each experimental point represents the mean
of 5 executions of the protocol. Standard deviation is 8.1. Preliminary Evaluation
depicted in all performance evaluation results. We verified the correct operation of DutyCode proto-
As state of art for our performance evaluation we col using three regular nodes and a source node, forming
chose AdapCode [3], a flooding protocol that uses net- a single hop network. An oscilloscope was used to mea-
work coding. The metrics we used for performance sure the actual power consumption and sleep intervals.
evaluation are thger node energy consumpti@and Figure 12 depicts the oscilloscope view of coded packet
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Figure 11: The map of our testbed. For each norgy)(rep-
resents its relative coordinate with respect to the origif)
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tyCode should consume the same amount of energy if
Slis Omsec. This is because both AdapCode and Du-
tyCode use the same network coding scheme, and at
S | = Omsec, neither scheme allows nodes to sleep.
Before presenting the experimental results, we would
like to build the intuition that although energy savings in
DutyCode are expected to increase with higher sleep in-
terval, this can only occur until a certain pgthteshold
(i.e., a certain sleep interval). Below this threshold,
nodes sleep very little, and are still awake while useless
packet transmissions are taking place. Longer sleep in-

Figure 12: Packet streaming captured on oscilloscope showsteryals (i.e., duty-cycling) will allow them to save more

the current consumption during sleeping and during packet
transmission. The current consumptions increases from top
to bottom. The sleeping interval is indicated by a solidarro
and the packet streaming is denoted by a dotted arrow (i.e.,
sleeping interval is low current consumption, packet sirea
ing requires high current consumption).
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Figure 13: The fect of the sleep intervéd | on energy con-
sumption and execution time of flooding. The bound on the
energy diciency of DutyCode is also plotted.

transmissions of the 3 nodes after receiving a page from
the source. As shown, two small spikes under the dotted
arrow indicate a packet transmission. A cluster of such

spikes represents a “stream”. In our experiment, a page
consisted of 4 packets, hence the 4 sets of spikes. The

solid arrow indicates the sleep duration of a node. As
the figure shows, during a stream transmission, other

nodes are in the sleep state. As soon as the transmis

sion is finished, one of the remaining nodes starts its

stream transmission, while the remaining nodes sleep

(since they already have the page).

8.2. Sleep Interval

In this experiment we investigate how sleep inter-
val S| affects energy consumption and total flooding
time. Itis important to remark that AdapCode and Du-
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energy. After the threshold point, however, nodes lose
opportunities for network coding, i.e., there are pack-
ets being transmitted, but because nodes sleep, they do
not receive the packets. Consequently, nodes will not
be able to decode coded packets, and more NACKs and
ReNACKs will be transmitted. At this point the en-
ergy dficiency of duty-cycling is much less than the en-
ergy lost because of retransmissions caused by sleeping
when network coding is taking place.

We measured energy consumption and total flood-
ing time by varyingS | in the [4msec, 60msec] range,
while keeping other parameters constant. Figure 13 de-
picts our results, which confirm our intuition. A3l
increased, the energy consumption of DutyCode gradu-
ally decreased untl | was 45ms, after which it started
to increase. Following our analysis in Section 6, the
maximum energy saving is achieved when the sleep du-
ration matches the stream duration. The explanation for
the 45ms optimal sleep interval is as follows. In these
set of experiments, we do not employ ECS - we sim-
ply use the default coding scheme that AdapCode uses
(i.e., based on neighbor density). In our testbed, due to
a relatively uniform deployment, all nodes have a cod-
ing scheme of 2. This means that the 8 packet page is
coded in 4 packets. Since a stream has 4 packets, the
opportunity for sleeping is only for the last 3 packets in
the page. Transmitting a single packet in TinyOS takes
about 8ms. Hence transmitting 3 packets, coupled with
the additional small backts between streaming packets
(i.e.,BOy) will total around 45ms.

_ The experimental results follow the analytical result,

as the maximum energy saving for our testbed was
achieved whers| = 45msec. The theoretical upper
bound of energy saving is also shown in the figure for
comparison. The maximum energy savings achieved
for our testbed was 42%, while the theoretical bound
is 66%.

We also compare the energy consumption of Duty-
Code with that of NoCode, a modified version of Adap-
Code which does not use network coding, but uses duty
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3500 ¢ fime e 1 140 In our experiments we varied the TX Power from 3
— 3000 | 1 120 to 7. For TX Power levels above 7, the network be-
£ B comes a single hop network. We keep all other param-
~ 1100 & . .
& 2500 r o eters constant. Our experimental results are shown in
g 2000 | x % . 80 = Figure 15. The aforementioneéfects can be observed

g e from Figure 15. As TX Power increased from 3 to 4
1500 ¢ and from 5 to 6, the energy consumption and time for
1000 140 flooding decreased, due to a reduced network diame-

ter (i.e., fewer hopes were needed to reach all nodes in
the network from the source), despite the higher num-
ber of collisions. However, for increases of TX Power
from 4 to 5 and from 6 to 7, the network diameter re-
mained constant. Consequently, only the higher num-
ber of collisions influenced the performance, increasing
cycling. The results are presented in Figure 14. As €nergy consumption and time for flooding to complete.
shown, DutyCode consumes less energy than NoCode.

Interestingly, NoCode consumes less energy than Adap-8.4. Total Number of Packets

Code, revealing that, for our scenario, duty-cycling can
be more energy ficient than network coding. Nev-
ertheless, by combining network coding with duty cy-
cling, DutyCode can achieve more aggressive energy
savings.

Tx Power

Figure 15: The ffect of node density on energy consumption
and total flooding time for DutyCode.

In this experiment we evaluate the impact the total
number of packets has on enerdii@ency and flood-
ing time. We expect that flooding more packets in the
network will result in higher energy consumption and
longer time for flooding.
. Our performance evaluation results are depicted in
8.3. Node Density Figure 16. We can observe that, as the total num-

In this experiment we explore the impact of node ber of packets increased, both energy consumption and
density on energyficiency and total time for flood- flooding time increased. This is because more packets
ing in DutyCode. We are interested in thfeets of being transmitted increase total transmission time and
node density because a higher node density causes moralso the probability of collisions. Interestingly, as the
collisions, thus increasing energy consumption and total number of packets increased from 64 to 512 (700%),
time for flooding. At the same time, however, a higher power consumption increased by 600%. This incre-
node density might also decrease network diameter, as-ment is not strictly linear because, as the number of
suming that the network size is fixed, like our testbed. packets increases, nodes find more appropriate cod-
This decrease in the network diameter would result in ing schemes, thus decreasing the likelihood of redun-
lower energy consumption and shorter time for flood danfuseless transmissions. As a reminder, we note here
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that in these sets of experiments we employ the same al- e %y 3
gorithm for deciding the coding scheme, as AdapCode. 8000 |
We investigate the performance of our ECS algorithm in = 17
Section 8.8. s 0 g

Itis also interesting to note that in this experiment, al- = 4000 | ) 155 g
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when compared to AdapCode, our solution’s savings re- % 2000 | AdapCode Energy —+— | 5o
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8.5. Packet Size Figure 19: The fect of Inter-Page Interval on energy con-
In this experiment we investigate théfect of packet sumption and total time for flooding.

size on energy ficiency and total time for flooding.

We obtained performance results for packet sizes in the

range [28bytes, 108bytes]. We keep all other parame- to generate additional delays and potential energfiine

ters constant. ciencies. The NACK intervals we chose are in the range
The results are depicted in Figure 17. As shown, as [340msec, 740msec].

the packet size increased, both energy consumption and The results are depicted in Figure 18. As shown, the

total time for flooding decreased. One can observe thatincrease in the NACK Interval results in an increased

when the packet size increases 3-fold, the energy con-energy consumption and total time for flooding, for both

sumption decreases by 33%. This emphasizes that inDutyCode and AdapCode. One can also observe that

a packet transmission, the badkmtervals are signifi- ~ DutyCode is slightly lessféected by longer NACK In-

cantly longer than the time taken for actual packet trans- tervals, i.e. the slopes of curves depicting DutyCode

mission. From our experiments, it appears that more en-energy consumption and total time for download are

ergy can be saved by sending a few large packets insteadgsmaller than for AdapCode.

of many small ones. A possible explanation is the good

link quality in our testbed. 8.7. Inter-Page Interval

In AdapCode and DutyCode, the source node main-

8.6. NACK Interval tains a time gap, called Inter-Page Interval, between

In this experiment we investigate thect NACK in- subsequent page transmissions. In this section we in-
terval has on energyfieciency and total time of flood-  vestigate the fect this interval has on the energy con-
ing. As mentioned before, a node waits fWACK In- sumption and total time for flooding. For this evalua-

terval’ to receive a useful packet without transmitting a tion, we use Inter-Page Intervals in the range [180msec,
NACK). An increase in NACK Interval time is expected 700msec] while keeping all other parameters constant.
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Figure 20: The ffect of sleep interval in DutyCode with and  transmitted in the network.
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9000
The results of our evaluation are depicted in Fig-

ure 19. We observe that the Inter-Page Interval, over 7900 ¢
the rage we considered, does not have a noticeable in- 6000
fluence on the energy consumption or the total time for 4500 |
flooding of DutyCode and AdapCode. Consequently, I
we infer that as long as the increase in Inter-Page Inter-

val does not increase the idle time of nodes (i.e., time
when nodes do not have anything to transmit) in the
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network, the Inter-Page Interval does not significantly Mode
affect energy fliciency and total time for flooding of
DutyCode and AdapCode. Figure 22: The ffect of MAC protocol on the energy con-

sumption of DutyCode.
8.8. DutyCode with ECS

in Figure 21. As expected, DutyCode with ECS out-
performs DutyCode without ECS, in terms of the to-
tal packet transmissions, regardless of LQT. As LQT
increases from 0.8 to 0.9, the total number of packet
transmissions for DutyCode with ECS decreased. This
is because at higher LQT (i.e., higher symmetry in com-
munication), the coding schemes derived are more ac-
curate. Interestingly, the increase of LQT from 0.9 to
0.95 actually increased the total number of transmis-
sions. This is because the total number of valid links
(i.e., links above the threshold) tends to decrease with
extremely high LQT, thereby allowing only very few re-
dundant transmissions.

In this section, we investigate the performance gain
from integrating ECS with DutyCode. We also examine
the impact of Link Quality Threshold (LQT) on ECS.
As presented in Section 4, LQT is a design parameter
of ECS. Diferent LQT values result in fierent topolo-
gies, therebyfiiecting the performance of ECS.

We measured energy consumption and total flooding
time for both DutyCode with ECS and DutyCode with-
out ECS by varying sleep interval. For these experi-
ments, LQT= 0.95. We chose this high value (i.e., in-
dicating we only used highly symmetric links) to ob-
tain accurate coding schemes (i.e., children and parent
nodes can communicate symmetrically) and ensure suf-
ficient redundancy for packet decoding. The results are .
depicted in Figure 20. The patterns for energy consump- 8.9. LPLRLPL Mode Transition
tion and flooding time of DutyCode with ECS was sim- To assess theffects of LPI/RLPL Mode Transition,
ilar to that of DutyCode. The graph also shows that Du- we evaluate DutyCode is LPL mode, in RLPL mode
tyCode with ECS outperforms DutyCode without ECS, and in the LPYRLPL “protocol transition” mode. The
by approximately 10%. Sleep Interval value we chose is 45msec for these ex-

We also measured the total number of packet trans- periments. This is because DutyCode in RLPL mode
missions for both DutyCode with ECS and DutyCode achieves higher energy savings, when compared to Du-
without ECS, by varying LQT. The results are shown tyCode in LPL mode, at this value for the Sleep Inter-
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val. We measure the energy consumption over a time each transmission is handled as a transmission to each
period of 150sec. To be noted is the fact that the execu- neighbor individually.
tion of the flooding application is less than 150sec. The A variety of network coding approaches have also
longer time interval allows us to illustrate ifieiencies been proposed. With COPR [20], Cui, et.al. maximize
in RLPL, when network flooding is not present. throughput by combining several unicast packets into
The results are shown in Figure 22. As expected, the a single broadcast packet. BEND, Zhang, et.al. [21]
energy consumption of RLPL mode is high as the nodes improves packet delivery rates, reducing retransmis-
are awake most of the time, even when the flooding ap- sions, but negates much of the energy savings by for-

plication does not execute. As shown, the [/RLPL warding multiple copies of the same packet. Energy-
“protocol transition” mode is 20% more energiieient efficiency at intermediate nodes was examined in [22]
than the LPL mode. where Markov chains were used to determine bounds on

energy consumption. Inspired by Reed-Solomon codes,

network coding based on raptor codes is proposed for
9. Related Work video streaming on lossy packet networks in [23]. De-

creased errors contribute to higher throughput and re-

In the area of duty cycling, research has often ex- duced power consumption in [24]. Multimedia through-

amined low power listening (LPL) and scheduling. B- put and energy{&ciency in wireless networks is exam-
MAC [4] is a simple LPL protocol with periodic listen-  ined in [25]. However, existing coding schemes did not
ing that requires no synchronization. However, in high take duty cycling into consideration. CODEB [26] uses
traffic networks, throughput is impacted. X-MAC [7] Reed-Solomon based coding algorithm for achieving
improves B-MAC by using ACKs, but sters similar in- optimal coding. Cluster based network coding scheme
efficiencies in networks using broadcast. Wise-MAC [8] is proposed in [27], to minimize the redundancy in mes-
enhancesféciency by creating opportunities for syn- sages transmitted. But these schemes are done for uni-
chronization, but is designed for low ffa& networks. cast message patterns. Similarly, TEEM [28], Max-
In SPAN [9], average sleep time is lengthened but com- MAC [29] and BEAM [30] are tr&ic aware MAC pro-
mon network configurations cause power exhaustion in tocols that deal with unicast messages. P-MAC [31]
nodes on high tiéic routes. S-MAC [10] uses adaptive, may not scale to a large, message-intense network, as
periodic sleep, and clustering. Although it iffieient it requires periodic trdic pattern update to achieve traf-
at low bandwidth, performance degrades at higher net- fic aware duty-cycling.
work loads. T-MAC [11] enhances S-MAC by reducing  In [1], we investigated the integration of network cod-
the awake period even more. However, nodes frequently ing with duty-cycling in flood-based WSN. This article
miss useful packets while asleep. SCP [12] saves powerimproves the energyfigciency of [1] by proposing ECS,
by scheduling coordinated transmission and listen pe- a coding decision algorithm that minimizes the redun-
riods. However, high network loads reduce sleep op- dant packet transmissions, thereby saving more energy.
portunities. DW-MAC [13] is another scheduling pro- Furthermore, an adaptive transition technique accom-
tocol that allows nodes to wake up on demand. AS- plishes a smooth and timely transition between LPL and
MAC [14] achieves scheduling through periodic hello RLPL without packet loss.
packets but fails to optimizeiéciency because the hello
packet has to be transmitted at the wake up intervals
of each neighbor. RI-MAC [15] is a receiver initiated 10. Conclusions
MAC protocol with an aim to reduce the idle-listening.
But, scheduling algorithms do not apply for broadcast  Network coding and duty-cycling are two popular
applications. The sleep and awake durations (i.e., duty techniques for saving energy in wireless sensor net-
cycle) for each node are computed as an optimization works. In this article, we demonstrate that although they
problem for unicast transmissions [16]. Opportunistic achieve energy féciency by conflicting means, they
flooding [17] and Schm-Dist [18] save energy in a low can be combined for more aggressive energy savings
duty-cycling networks by treating broadcast transmis- in flood-based sensor network applications. To achieve
sions as unicasts. ADB [19] achieveB@ent broadcast  aggressive energy savings we propose DutyCode, a net-
in asynchronous duty-cycling networks, through collab- work coding friendly MAC protocol which implements
oration among nodes achieved by additional informa- packet streaming and allows the application to decide
tion in the packet footer. These technique may not scale when a node can sleep. Through analysis and real
to large scale and message intense networks becauseystem implementation we demonstrate that DutyCode
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does not incur higher overhead than state of art solu- [13] Y. Sun, S. Du, O. Gurewitz, D. B. Johnson, DW-MAC: a low la

tions, and that it achieves up to 46% more energy sav-
ings when compared with network coding-based solu-
tions that do not use duty-cycling. The proposed scheme
requires minimal changes to existing network coding

applications. We also present ECS, a technique that op-

timizes the network coding scheme of each node. We
develop an integrated network coding with duty cycling
solution, which allows smooth MAC protocol transition
between LPL (i.e., more energtfieient when flooding

is not taking place) and RLPL, which is more energy ef-
ficient when network flooding occurs. We demonstrate
the dfectiveness and practically of our proposed solu-
tions analytically and through real system implementa-
tion and evaluations.
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