
F-MStorm: Feedback-based Online Distributed
Mobile Stream Processing

Mengyuan Chao, Chen Yang, Yukun Zeng, Radu Stoleru
Texas A&M University, USA

Email: {chaomengyuan, yangchen08, yzeng}@tamu.edu; stoleru@cse.tamu.edu

Abstract—A distributed mobile stream processing system al-
lows mobile devices to process stream data that exceeds any single
device’s computation capability without the help of infrastruc-
ture. It is paramount to have such a system in many critical
application scenarios, such as military operations and disaster
response, yet an efficient online mobile stream processing system
is still missing. In this paper, we make the key observation that
the unique characteristics of mobile stream processing call for a
feedback-based system design, which is in sharp contrast with the
static configuration and scheduling of the current mobile stream
processing system, “MStorm” [1]. At first, we demonstrate the
inefficiencies of MStorm through several real-world experiments.
Then, we propose F-MStorm, a feedback-based online distributed
mobile stream processing system, which adopts the feedback-
based approach in the configuration, scheduling and execution
levels of system design. We implement F-MStorm on Android
phones and evaluate its performance through benchmark appli-
cations. We show that it achieves up to 3x lower response time,
10% higher throughput and consumes 23% less communication
energy than the state-of-the-art systems.

Index Terms—stream processing; edge computing; scheduling

I. INTRODUCTION

Emerging computation-intensive mobile applications [2]–[7]
that process stream data collected by various mobile sensors
often require more computation resources than a single device
can provide. Therefore, many existing systems [8]–[10] offload
the computation-intensive tasks to the cloud or nearby high
performance computing (HPC) servers to achieve low latency.
For example, MCDNN [8] offloads deep neural network based
video processing tasks to the cloud, Odessa [9] chooses nearby
HPCs as additional computing resources to recognize objects
from real-time videos and LEO [10] utilizes on-chip DSP co-
processors, GPUs together with the cloud to run inference
algorithms. Although such systems achieve low latency and
high throughput, resources in the cloud or nearby HPC servers
are not always accessible in some infrastructure-less scenarios.
For example, imagine the following scenario:

“A group of first responders, equipped with mobile devices,
is assigned to a post-earthquake area to discover dangerous
zones (e.g., leaking chemical pipes or unstable buildings)
to avoid. The teams collect a large amount of data via
different sensors (e.g., on body video cameras) and analyze
the data in real time via analytical software. Usually, such
data analysis requires significant computational resources
and, thus, it is pushed to the cloud for analysis. However,
the communication infrastructure was destroyed during the
earthquake, which makes offloading to the cloud impossible.
In such case, offloading computation to the nearby mobile
devices at the edge becomes a promising option.”

In this paper, we focus on a distributed stream processing
system deployed on a cluster of mobile devices without an
Internet access (stream processing at the edge). Different
from most stream processing systems that run on a cluster
of wire-connected servers in the cloud (such as Storm [11],
Spark [12] and Flink [13], etc.), stream processing on a
cluster of mobile devices is much more complicated, because
mobile devices have very limited computation resources and
batteries, and the wireless links between different devices are
unstable. Some existing works [14], [15] are designed for the
same environment as ours. However, they focus on processing
bounded batch jobs instead of unbounded stream data.

MStorm [1] makes an important first step towards mobile
stream processing at the edge by implementing a lightweight
system on mobile phones. It provides some basic functionality,
such as parallelism configuration, task scheduling and stream
grouping. However, since its current implementation ignores
some specific characteristics of stream processing at the edge,
it is inefficient as we demonstrate through some simple ex-
periments. First, MStorm configures the number of executors
(threads that execute tasks) at each device simply based on
CPU cores while not taking into account the current CPU
utilization. As the computation resources of a mobile device
is also shared by other applications, this static configuration
can easily lead to a bottleneck that negatively impacts the
system performance (response time and throughput). Second,
the task assignment, when MStorm assigns computation tasks
to devices, is based on a naive round robin strategy. This may
incur unnecessary inter-device traffic and consequently higher
delay and energy consumption. Third, MStorm adopts a shuffle
stream grouping mechanism, where upstream tasks distribute
the output to downstream tasks uniformly at random. However,
as downstream tasks may run on highly occupied devices, the
shuffle grouping mechanism might cause congestion there and
lead to high response time and low throughput.

To solve these problems, one potential solution is to carve
out some static resources dedicated for stream processing [16].
However, unlike servers in the cloud, the resources of mobile
devices at the edge are very limited and need to be shared with
some other resource-intensive applications. It is unreasonable
to allow MStorm to take up some resources even when there is
no stream processing tasks. Another approach is to apply a pull
model [17], [18] like most modern cloud computing systems,
where the machines ask for tasks when they have free slots.
However, this model is not enough for stream processing at
the edge as it does not consider other factors like device-to-
device delays and remaining batteries of devices. Our insight
is that, instead of adopting an open-loop task scheduling which
assumes a static environment, a feedback-based approach that

273

2018 Third ACM/IEEE Symposium on Edge Computing

978-1-5386-9445-9/18/$31.00 ©2018 IEEE
DOI 10.1109/SEC.2018.00027

(a) MStorm Architecture (b) Zookeeper directory

Fig. 1: MStorm system architecture

makes decisions based on the changing system state should be
utilized to deal with the dynamic environment at the edge.

To accomplish this goal, we propose F-MStorm, a feedback-
based online distributed mobile stream processing system. F-
MStorm adopts a feedback-based approach at many different
levels of system design so that the system can adapt quickly to
the changing environment to achieve high performance. At the
configuration level, F-MStorm configures the number of ex-
ecutors on each mobile device based on the free CPU resources
of mobile devices and CPU usage of tasks. At the scheduling
level, F-MStorm assigns tasks to mobile devices based on the
task-to-task traffic and device-to-device communication delay
and energy consumption. At the execution level, the upstream
tasks distribute the output data to the downstream tasks based
on the latter’s stream arrival/processing rate and waiting queue
length. We implement a prototype of F-MStorm on Android
phones and evaluate its performance through a customizable
benchmark application. We also compare F-MStorm with two
scheduling algorithms proposed for Storm (i.e., T-Storm [19]
and R-Storm [20]). The experimental results show that, by
using the feedback information, F-MStorm achieves up to 3x
lower response time, 10% higher throughput and 23% less
communication energy than the state-of-the-art systems.

Our main contributions are summarized as follows:

• Through some real world experiments, we demonstrate
that, without an accurate estimation of the current system
state and appropriate adjustment of the initial configura-
tion, task scheduling and stream grouping, MStorm suf-
fers up to three order of magnitude increase in response
time and 60% reduction in throughput (Section II), which
calls for the feedback-based system design.

• We propose F-MStorm (Section III), which consists of a
feedback-based configuration (FBC) method, a feedback-
based task assignment (FBA) algorithm and a feedback-
based stream grouping (FBG) strategy.

• We implement F-MStorm on Android phones and conduct
real world experiments to evaluate its performance (Sec-
tion IV), which demonstrate the superiority of F-MStorm
over MStorm and two other state-of-the-art systems.

II. BACKGROUND AND MOTIVATION

In this section, we at first briefly introduce the background
of MStorm and its architecture. Then, we show the inefficiency
of MStorm via three experiments. Finally, we motivate our F-
MStorm by explaining why existing solutions do not work.

(a) Topology example

(b) Extended topology example

Fig. 2: Example of an MStorm application

A. MStorm

MStorm [1] is the first online distributed stream processing
system running on mobile devices with Android OS. It is
designed for critical scenarios such as military operations
and disaster response, where no Internet access is available,
whereas the mobile devices of the team members are con-
nected as a cluster through a manpack Wi-Fi access point.
Instead of porting popular stream processing systems (such as
Storm [11], Spark [12] or Flink [13]) running on the cloud,
MStorm is designed and implemented from scratch with a
lightweight infrastructure. This is paramount for mobile stream
processing at the edge, which only has limited resources.

MStorm adopts some technical designs from Apache Storm.
Its architecture is shown in Fig. 1a. An MStorm master node
contains one Nimbus and one Zookeeper service. Nimbus
schedules task execution while Zookeeper coordinates between
Nimbus and mobile devices and maintains the cluster metadata
in a directory-like structure shown in Fig. 1b. Every mobile
device in the MStorm cluster runs a supervisor process and
a worker process, both as Android services. The supervisor
receives tasks from Nimbus and assigns tasks to the worker,
while the worker manages multiple executors (threads) which
are used to execute tasks. MStorm guarantees an at-most-once
processing semantics.

An application in MStorm is modeled as a directed graph
called topology. A topology contains two types of nodes, i.e.,
spout and bolt. A spout partitions the input stream into tuples
and sends these tuples to downstream bolts. A bolt processes
tuples from spout or upstream bolts, and sends the processed
tuples to downstream bolts for further processing. We refer
to a spout or a bolt as application component (or simply
component) in the rest of the paper. A directed edge between
two nodes in a topology indicates that traffic flows from one to
the other. Each component can spawn multiple parallel tasks
which are executed by devices’ executors. If we expand the
component in a topology with multiple nodes, each of which
represents an individual task, we get another directed graph,
i.e., the extended topology. The extended topology graph
shows the actual data flow between individual tasks. Fig. 2
shows the topology and the extended topology of a sample
MStorm application that contains one spout and two bolts,
i.e., bolt1, bolt2. Each bolt further contains two parallel tasks,
i.e., T2, T3 for bolt1, and T4, T5 for bolt2, respectively.

The MStorm application developer needs to provide the
application topology as well as configure the parallel tasks for
each application component. MStorm then decides the number
of executors for each device and assigns tasks to devices for
execution. The output tuples of each task may need to be
sent to the downstream tasks. The mechanism for distributing
tuples is called stream grouping. MStorm currently adopts a

274

Fig. 3: Sample application that demonstrates the inefficiency of
resource-unaware configuration and stream grouping

100

101

102

103

104

105

106

 0 25 50 75 100 125 150 175 200 225 250

A
vg

D
el

ay
 (

m
s)

Running Time (s)

T1
T2

T3
T4

(a) Delay

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 25 50 75 100 125 150 175 200 225 250

T
hr

ou
gh

pu
t (

T
/s

)

Running Time (s)

T1
T2

T3
T4

(b) Throughput

Fig. 4: The results of the sample application that demonstrates poor
performance of resource-unaware configuration

shuffle grouping strategy, i.e., tuples are randomly distributed
to downstream tasks such that all tasks have identical expected
workload in the long run.

B. Limitation of MStorm

Although MStorm makes an important first step towards a
successful design of a mobile distributed stream processing
system, its unawareness of system resource utilization and
mobile network’s characteristics lead to the suboptimal be-
haviors that prevent it from achieving a good performance. In
the following sections, we present three experiments that show
the inefficiency of the current MStorm system.

1) Resource-unaware configuration (RUC): We refer to the
configuration as the users’ preference of parallelism for each
component and the system’s initial configuration of the number
of executors at each device. In MStorm, the system configures
the number of executors at each device based on its CPU cores.
However, since users may run other applications on the mobile
device, the available CPU resources depend not only on the
CPU cores but also on the current utilization. Configuring the
number of executors without an accurate estimation of current
resource utilization may lead to performance bottleneck, where
the heavily-used nodes may be assigned identical number of
executors compared to the idle ones.

We demonstrate this inefficiency through a sample applica-
tion shown in Fig. 3, which consists of 4 tasks (T1 - T4). Four
Google Nexus 5 mobile devices M1 - M4 form a cluster and
MStorm configures identical number of executors per node.
Due to round robin task assignment, which we discuss later,
as it is also inefficient, each mobile device needs to execute
one task. Consider the case when M2 is actively used by other
user’s application, MStorm fails to adapt to this situation and
results in poor performance as shown in Fig. 4. We generate a
stream of data at 12 tuples per second (T/s) and measure the
delay and throughput of each task. As we can see, the delay for
T2 increases from 100ms to 100s because of queuing after the
system runs for 250s. This is unacceptable for any real-time
mobile application. Besides, the overall throughput (10T/s) is
smaller than the input rate (12T/s) due to the bottleneck at T2.
This leads to increasing queues in the system.

Fig. 5: The inter-device traffic incurred by different scheduling

2) Traffic-unaware task assignment: As mentioned earlier,
MStorm uses a round robin task assignment strategy, i.e., it
sequentially assigns tasks to each mobile device until all tasks
are assigned. Although it is easy to implement, it does not
minimize the inter-device traffic, which leads to a higher delay
and energy consumption. To reduce the inter-device traffic,
an intuitive idea is to put as many tasks as possible on the
same node. This leads to our two preliminary attempts for a
more efficient task scheduling algorithm, namely breadth and
depth-first scheduling, respectively. The breadth (depth) first
scheduling works as follows: at first, sort the mobile device
based on the number of configured executors; then assign tasks
to the same mobile device in a breadth (depth) first order
when traversing the extended topology, until the assigned tasks
reach its capacity or there is no more task to assign. However,
we reveal by the following example that, even if the breadth
(depth) first scheduling reduces some inter-device traffic, their
performance are still much worse than the optimal schedule.

Fig. 5 (a) and (b) represent the topology and extended
topology of an application. The edge weights in the extended
topology represent the total traffic from task to task during
a period ΔT . All tasks are assigned to mobile devices M1,
M2, M3, M4 with 3, 2, 1, 1 executors by different scheduling
algorithms. Based on the breadth/depth-first scheduling, tasks
are assigned to mobile devices as shown in Fig. 5 (c)
and (d). Figure (e) represents the optimal scheduling that
minimizes the inter-device traffic. Fig. 5 (f) summarizes the
scheduling result and corresponding inter-device traffic for
each scheduling algorithm, which shows that the round robin
scheduling generates 118% more inter-device traffic than the
optimal scheduling, whereas the breadth-first and depth-first
scheduling also generates 45%, 64% more inter-device traffic
than the optimal. This is because they fail to further distinguish
different inter-task traffic and don’t assign tasks with large
inter-task traffic to the same node.

Moreover, even if we distinguish different inter-task traffic,
it is still coarse grained, considering the diversity of wireless
links. For example, given two tasks with fixed inter-task traffic,
if they are assigned to two nodes with a lower inter-device
delay, the total delay will be lower. If they are assigned to
two nodes with lower communication power, the total energy
consumption for traffic transmission will be less. With round
robin or breadth (depth) first scheduling, all these potential
chances of improving system performance will be missed.

275

100

101

102

103

104

105

106

 0 100 200 300 400 500 600 700 800 900 1000

A
vg

D
el

ay
 (

m
s)

Running Time (s)

T1
T2

T3
T4

(a) Delay

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

T
/s

)

Running Time (s)

T1
T2

T3
T4

(b) Throughput

Fig. 6: The results of the sample application that demonstrates poor
performance of resource-unaware shuffle grouping

Furthermore, except for minimizing delay and energy con-
sumption, sometimes soldiers or first responders require the
system to last longer. To achieve this goal, the tasks need to be
assigned based on the remaining battery of each device. With
round robin or breadth (depth) first scheduling, the batteries
of some devices might be depleted very soon.

3) Resource-unaware stream grouping: Recall that MStorm
adopts a shuffle grouping strategy to distribute output tuples to
downstream tasks. Although shuffle grouping achieves fairness
among tasks in terms of overall workload, we demonstrate that
it cannot adapt to the resource fluctuation resulted from users’
own application usage.

We use the same application as shown in Fig. 3, where all
nodes are idle in the beginning. We set the input rate at 10T/s.
We run resource-intensive applications on M2 and M3 at 500s
and 50s, and close them at 600s and 170s, respectively. Since
shuffle grouping assigns output tuples from T1 to T2 and T3
uniformly at random, the arrival rate at T2 and T3 are 5T/s on
average, even if M2 and M3 are busy with other applications.
As a result, we can see a significant increase in response time
in Fig. 6a (from roughly 102ms to 105ms) and a decrease in
throughput in Fig. 6b (from roughly 5T/s to 2T/s), when the
resource-intensive application is running.

A key observation from Fig. 3 is that the throughput of T2
and T3 increases to 6T/s and 8T/s after the resource-intensive
application terminates, which indicates a higher processing
capability than the average input rate of 5T/s. Therefore, it is
possible to improve the overall throughput by assigning more
stream to other more capable nodes, given that we have an
accurate online estimation of resource utilization at each node.

C. Motivation of F-MStorm

One simple approach to solve the problems above is to carve
out some static resources on each mobile device dedicated for
stream processing [16]. However, unlike servers in the cloud
that are uniformly managed by a cluster manger to undertake
specific jobs, the limited resources of mobile devices at the
edge are shared by both MStorm and other user applications.
Those applications might also be resource-intensive and even
have higher priorities. It is unreasonable to allow MStorm
to take up the valuable resources even when there is no
stream processing tasks. Another approach is to apply a
pull model [17], [18] like most modern cloud computing
systems, where the machines ask for tasks when they have
free slots. However, this model is not enough for stream
processing at the edge as it does not consider other factors
like device-to-device delays, energy consumption of inter-
device communication and remaining batteries of devices. We

argue that, instead of adopting an open-loop task schedul-
ing algorithm which assumes a rather static environment, a
feedback-based approach which makes decisions based on
the current system state (such as CPU utilization, delays and
energy consumption of inter-device communication, remaining
batteries, etc.) should be utilized to deal with the dynamic
environment at the edge. Two ameliorations proposed for
Apache Storm, namely T-Storm [19] and R-Storm [20], have
similar insights with F-MStorm. They also adopt a feedback-
based approach to improve the system performance. However,
neither of them concerns the energy consumption and balance
of energy usage, as they are proposed for systems running in
the cloud. Nevertheless, for a mobile stream processing system
running at the edge, the above two factors directly decide how
long a system can last for. It is paramount for F-MStorm to
take all these factors into account.

III. DESIGN AND IMPLEMENTATION OF F-MSTORM

In this section, we present the design and implementation
of F-MStorm. To overcome the inefficiencies presented in the
previous section, F-MStorm sets configuration, task scheduling
and stream grouping all based on the feedback information.
To better present our idea, we use a scenario with m devices
and an application with N components. The mathematical
model of the problem involves many notations. For readers’
convenience, we summarize them in Table I.

A. Overview
Similar with MStorm, F-MStorm configures the parallelism

of each application component based on the user’s experience
and assigns tasks to the mobile devices through round robin
at the beginning. Then, after a “warm-up” period, each mobile
device periodically reports the feedback information, including
task execution, device resources and network condition, etc., to
Nimbus. Based on this feedback, F-MStorm reconfigures tasks
for each component, resets available executors for each device
and recalculates the best schedule for the whole application.
Because of the dynamic processing workload and changing
environment, the best task schedule might change from time
to time. However, the new best schedule sometimes only
achieve a small performance improvement than the previous
one. In such case, it is not beneficial to switch to the new
schedule, considering the rescheduling overhead and system
stability. To deal with this issue, we propose several reschedule
conditions. If none of these conditions are met, the system
just keeps the origin schedule; otherwise, the reschedule takes
place. Except for reporting to Nimbus, each downstream task
needs to report the execution information to the upstream tasks
periodically. The upstream tasks then distribute the output to
the downstream tasks based on the feedback information.

B. Status Report
In F-MStorm, each mobile device reports the following

information to Nimbus periodically (every ΔT):

• wj : the CPU usage (in MHz) of task j obtained from
/proc/stat and /proc/stat/pid/task/tid/stat [19].

• lj : the queue length at task j, i.e., the number of stream
tuples that are waiting to be processed.

• λj and μj : the average input and processing rate (in T/s) of
task j during ΔT .

• tjj′ : the output rate (in T/s) from task j to j′ during ΔT .

276

TABLE I: Main notations

Notation Description
i Index of component, i = 1, ..., N
j Index of task, j = 1, ..., n. n varies with configurations
k Index of mobile device, k = 1, ...,m

A(i) Task set of component i
c(j) Component that task j belongs to
v(j) Device that task j is assigned to
Wi Expected CPU usage of component i
Ii Expected input rate of component i
Oi Expected output rate of component i
wj CPU usage (MHz) of task j
lj Waiting queue length at task j
λj Input rate (T/s) of task j
μj Processing rate (T/s) at task j
tjj′ Output rate (T/s) from task j to j′
sjj′ Average tuple size (bit) from task j to j′
fk Single core frequency (MHz) of device k
ck The number of CPU cores of device k
uk Total CPU usage (MHz) of device k
rk Available CPU resource (MHz) at device k
dkk′ Communication delay (ms) from device k to k′
bk Remaining battery at device k
etk Energy consumption (nJ) per bit for Tx at device k
erk Energy consumption (nJ) per bit for Rx at device k
P Vector: parallel task number for each component
E Vector: available executors for each mobile device
B Vector: remaining battery for each mobile device
T Matrix: average output rate from task to task
S Matrix: average tuple size from task to task
D Matrix: communication delay from device to device
Q Matrix: energy/bit for transmitting between devices
X Matrix: task assignment to mobile devices
ΔT Period that mobile devices report to Nimbus
Δt Period that tasks report to upstream tasks

• sjj′ : the average tuple size (bit) from task j to j′ during
ΔT . It is defined as the ratio between the total tuple data
size and the total number of tuples from task j to j′.

• rk: the available CPU resource (in MHz) at device k, defined
as rk = fk · ck − (uk −

∑
v(j)=k wj), where fk is the single

core frequency, ck is the number of cores, uk is the current
CPU usage at device k, and

∑
v(j)=k wj is the total CPU

usage of current F-MStorm tasks at device k.
• dkk′ : device-to-device communication delay (in ms) from

device k to k′.
• bk: remaining battery (in mAh) at device k.
• etk and erk: energy consumption per bit (nJ/bit) for tuple

transmission (Tx) and reception (Rx). They can be estimated
based on throughput [21], which we obtained from Device-
BandwidthSampler [22].

Nimbus maintains a moving average for each status, that is,
V = δ∗Vold+(1−δ)∗Vnew, where Vold is the old value stored
at Nimbus, Vnew is the new feedback value, and 0 ≤ δ ≤ 1 is
a factor used to indicate how the status depends on the history.

It deserves to be mentioned that, periodically reporting
and updating these system statuses might cause some extra
communication and computing overhead. However, compared
with the communication traffic size and processing workload
of stream data, the overhead is negligible.

C. Feedback Based Configuration (FBC)
Based on the feedback, Nimbus calculates the following

vectors to reconfigure the system: P = [Pi]
N
i=1, E = [Ek]

m
k=1.

Pi represents the number of parallel tasks of component i and
Ek represents the available executors of each mobile device k.

They are calculated by equation Pi = �Wi

R � and Ek = � rk
R �,

where Wi is the expected CPU usage of component i, rk is
the available CPU resource at device k and R represents the
computing resource of each executor. The ceiling and floor
functions are used to leave some margins for device resource
fluctuation. R is calculated by the following equations:

⎧⎪⎨
⎪⎩

R = min{max{Rl,Re},Ru}
Rl = ηl ∗mink{fk}
Re = mini,k{Wi,

rk
ck
}

Ru = ηu ∗mink{fk}
(1)

where ηl and ηu (0 ≤ ηl ≤ ηu ≤ 1) are parameters to control
the lower and upper bound of an executor’s resource. The
intuitions are as follows. First, the resource of an executor is
mostly determined by the CPU usage of components and the
available resource of mobile devices. Based on this, we can
calculate a basic version of executor resource, namely Re.
Then, to make full use of the CPU resource, a single executor
should not occupy more resource than a CPU core. Therefore,
we need to set an upper bound Ru for the executor resource.
On the other hand, the resource of an executor should not
be too little, otherwise a mobile device will be configured
with too many executors, which incurs a lot of OS scheduling
overheads. Therefore, we also need to add a lower bound Rl

for the executor resource.

D. Feedback Based Assignment (FBA)

We formulate the task assignment in F-MStorm as a mixed-
integer quadratic programming (MIQP) and solve it by a
genetic algorithm. Moreover, to ensure the system stability, we
propose 4 reschedule conditions to avoid frequent reschedules.

1) Problem Formulation: Let matrix T = [Tjj′]n×n rep-
resent the expected tuple output rate from task to task, with

Tjj′ = Ii/Pi∑
j′ tjj′

∗ tjj′ , where i = c(j) is the component that

task j belongs to, Ii is the expected input rate of component
i. Ii/Pi represents the expected tuple input rate of each task.
Let matrix S = [sjj′]n×n represent the measured average
tuple size from task to task and let matrix D = [dkk′]m×m

represent the communication delay between mobile devices.
Let matrix Q = [Qkk′]m×m represent the energy per bit for
communication from device k to k′, where Qkk′ = etk + erk′ .
We denote the decision variables for the task assignment as a
n-by-m 0-1 matrix X , with Xjk = 1 representing that task j
is assigned to device k.

Our objective is to minimize the average end-to-end delay
and energy consumption for each tuple while ensuring the
load balance in energy consumption. The end-to-end delay
consists of processing delay, queuing delay and communi-
cation delay. The energy consumption consists of processing
energy and communication energy. Since the system we care
is homogeneous in executor’s processing speed and energy
consumption model, the way we assign tasks will not affect
the end-to-end processing delay, queuing delay and processing
energy. Therefore, the objective is reduced to minimize the
average end-to-end communication delay and communication
energy consumption while ensuring the load balance in energy
consumption. We formulate the problem as:

minimize
X

F = α ∗ gd
gmax
d

+ β ∗ gq
gmax
q

+ γ ∗ gb
gmax
b

(2)

277

s.t. ∀j,
m∑

k=1

Xjk = 1

∀k,
n∑

j=1

Xjk ≤ Ek

∀j, k, Xjk ∈ {0, 1}

(3)

where gd is the average communication delay, gq is the average
communication energy consumption and gb is the load balance
index. gmax

d , gmax
q , gmax

b represent the maximum gd, gq and gb
that are used to unify the units. α, β, γ ∈ [0, 1] are customized
according to the user’s preference.

gd is calculated as follows. Given the task-to-task output
rate matrix T and task assignment matrix X , we can obtain
matrix T ′ = ΔT · TX , where element T ′

jk represents the
total number of tuples output by j from device v(j) to k
during ΔT . Similarly, we can obtain matrix D′ = XD, where
element D′

jk represents the communication delay from v(j)

to k. With T ′ and D′, we can obtain matrix Md = T ′	D′,
where element Md

jk represents the total communication delay
of tuples output by task j from v(j) to k during ΔT , and 	
represents Hadamard product. λ =

∑
j∈A(1) μj represents the

total output rate of the spout. Then, the average communication
delay of each tuple is calculated as:

gd =

∑
j,k M

d
jk

λΔT
=

∑
j,k ΔT · (TX �XD)jk

λΔT

=

∑
j,k(TX �XD)jk

λ

(4)

Next, we consider the calculation of gq . Similar to the
communication delay, we utilize matrix T ′′ = ΔT ·(T 	S)X
to represent the total traffic data size output by task j from
device v(j) to k in ΔT , matrix Q′ = XQ to represent the
energy consumption per bit for tuple transmission by Wi-Fi
from device v(j) to k. Thereby, the total energy consumption
for tuple transmission from device v(j) to k in ΔT can be
represented as matrix Mq = T ′′ 	 Q′. Then, the power of
tuple transmission is calculated as:

gq =

∑
j,k M

q
jk

ΔT
=

∑
j,k ΔT · ((T � S)X �XQ)jk

ΔT

=
∑

j,k

((T � S)X �XQ)jk
(5)

Finally, gb is calculated as follows:

gb =
m∑

k=1

(
n∑

j=1

Xjk − bk∑m
k=1 bk

∗ n)2 (6)

where bk is the remaining battery of device k. The effect of this
item is intuitive: when two devices posses the same available
CPU resources, the computation tasks should be assigned to
the one with more remaining battery to prolong the lifetime
of the whole system.

2) Genetic Algorithm-based Solution: The aforementioned
problem is typically solved by a CPLEX solver [23]. However,
based on our experimental results, it takes 77 seconds on
average to solve a moderately sized (e.g., 15 nodes and 15
tasks) problem on a desktop, which is impractical for real time
applications on mobile platforms. To deal with this issue, we
implement an approximation algorithm (Algorithm 1), which
returns a near-optimal solution (within 5% of the optimal)

Algorithm 1: ApproxTaskSchedulingAlg()

Input : T , D, S, Q, B, α ,β, γ, λ
Output: Task schedule matrix X

1 if α
= 0 then
2 gd ← Equation 4;
3 gmax

d ← GeneTaskAlloc(gd,max).value ;

4 if β
= 0 then
5 gq ← Equation 5;
6 gmax

q ← GeneTaskAlloc(gq,max).value ;

7 if γ
= 0 then
8 gb ← Equation 6;
9 gmax

b ← GeneTaskAlloc(gb,max).value ;

10 F ← Equation 2;
11 X ← GeneTaskAlloc(F,min).solution ;
12 return X;

in less than 1s for the same problem. Algorithm 1 is based
on a “GeneTaskAlloc” procedure that implements the Genetic
Algorithm (GA) to solve the optimization problems.

Algorithm 1 works as follows. Notice that, F , gmax
d , gmax

q
and gmax

b share the same constraints as shown in Equation 3.
Therefore, they can be solved by GeneTaskAlloc with different
objective functions and goals, i.e. max or min. We first solve
the optimization problem to get gmax

d , gmax
q and gmax

b (line
1 - 9). Then, we use gmax

d , gmax
q and gmax

b to construct the
final objective function F (line 10), and call GeneTaskAlloc
again to get the final solution (line 11).

The GeneTaskAlloc procedure, which takes a fitness func-
tion and an optimization type as input, maintains an iterative
process containing the following operations [24]: SelectPar-
ents, which selects parents from all candidate schedules with
the probability proportional to the fitness function value;
GenerateOffspring, which generates children schedules with
parent schedules by uniform crossover; Mutate, which chooses
a certain number of rows randomly from the schedule matrix
according to the mutate rate and changes the position of
1 randomly; Recombination, which goes through a schedule
matrix row by row and replaces the original schedule with a
better one by exchanging adjacent two rows; FilterOffSpring,
which filters the offspring schedules that do not satisfy the
constraints; SelectPopulations, which selects a fixed number of
populations from the current available schedules according to
the fitness function value; SelectBestSchedules, which selects
the best schedule in terms of the fitness function value. When
the iteration times reach the previously set threshold, the
procedure will exit with the current best schedule.

3) Reschedule Condition: Sometimes, the new schedules
achieve small performance improvement, and switching to
them will actually hurt the performance, considering the
rescheduling overhead and system stability. To avoid such
unnecessary reschedules, we propose the following reschedule
conditions:

• It is the first time that the system gets feedback and do
reschedule.

• The average end-to-end delay exceeds a threshold τ .
• The input rate of any component i exceeds a threshold

times the output, i.e., ∃i,∑j:c(j)=i λj > σ∗∑j:c(j)=i μj .

278

Fig. 7: The benchmark application

• The metric of old schedule exceeds a threshold times
the metric of new schedule, i.e., F (X) > ξ ∗ F (Xnew),
where F is the objective function in Equation 2.

When any of the above conditions is met, the task resched-
ule will take place. To guarantee consistent processing, before
switching to a new schedule, the spout of the old schedule will
stop pulling stream from the data source and the old schedule
will continue running for a while until all the remaining tuples
in the system are processed.

E. Feedback Based Grouping (FBG)
Except for reporting to Nimbus, each mobile device also

reports the execution information (such as task input and
output rates, queue lengths, etc.) to the upstream tasks period-
ically (every Δt). The upstream tasks then direct the output
stream tuples to the downstream task with the “Least Expected
Waiting Time (LEWT)”, which is calculated as follows.

Without loss of generality, we assume task j which belongs
to the component i receives the task execution report from task
j′, which belongs to the downstream component i′, at time t0.
Then, at time t which satisfies t− t0 < Δt, if task j chooses
to send an output stream tuple to j′, the “Expected Waiting
Time (EWT)” for this tuple at task j′ can be calculated by

EWTj′ =
[(λj′ − tjj′ − μj′)(t− t0) + lj′ +Δl]+ + 1

μj′
(7)

where (λj′ −tjj′) is the input rate from other tasks to task j′,
μj′ is the processing rate and lj′ is the waiting queue length
at task j′. Δl is the number of tuples sent to j′ from task j
in the past (t − t0) time. Function [x]+ = max(0, x). Since
we consider the applications in which tuples have no temporal
and spatial relations with each other, according to our LEWT
stream grouping mechanism, an output tuple of j should be
sent to task j′ ∈ A(i′) that achieves the minimum EWTj′ .

IV. PERFORMANCE EVALUATION

In this section, we at first briefly introduce the benchmark
application for evaluating the system performance. Then, we
present the experimental setup and analysis for the evaluation
results. Due to the limitation of space, the experiments of real
applications are presented in a journal extension in the future.

A. Benchmark Application
In order to thoroughly test the performance of F-MStorm,

we developed a benchmark application shown in Fig. 7. The
application consists of a data source and three components,
i.e., spout, bolt1 and bolt2. To precisely control the input,
we let the data source directly generate tuples with the same
size and different inter-arrival time (IAT). The IAT can be
configured with different distributions, including constant, uni-
form (UR), Gaussian (GA) and exponential (EP) distributions.

The processing time (PT) for each tuple can be configured
with different distributions as well, which includes constant,
uniform, Gaussian and Pareto (PA) distributions. For the ease
of presentation, we denote spout, bolt1, bolt2 by C1, C2, C3
in the rest of the paper.

B. Experimental Setup
We conduct experiments on three Google Nexus 5 phones

running Android 6.0 and a laptop configured as WiFi hotspot.
Each Nexus 5 phone has a 4-core CPU and each core
is set to run at 1574MHz. All phones are connected to
the WiFi hotspot. We run F-MStorm or MStorm on these
phones and set system parameters ΔT = 15s, Δt = 5s,
δ = 0.4, τ = 2s, σ = 1.1 and ξ = 1.5. To simulate
the resource fluctuation when users invoke other applications
during the execution of F-MStorm or MStorm, we developed a
resource-intensive disturbance application. We define the light,
medium, and heavy disturbance as the scenarios where we run
this disturbance application with 10%, 80% and 270% CPU
utilization respectively (the total is 400%).

We thoroughly evaluate the system through different types
of experiments. First, we run the benchmark application with
constant IAT (10T/s) and different constant workloads (defined
below) to demonstrate the efficiency of FBC and FBA. We
define the light, medium, and heavy constant workload (LCW,
MCW, and HCW respectively) as the scenarios where the
processing time ratios between C1, C2, and C3 are 1:1:1,
1:15:1, and 1:25:15, respectively. Then, we show the efficiency
of FBG by running experiments with constant IAT and MCW,
with light, medium, and heavy disturbances respectively.
We further evaluate the system’s overall performance and
compare it with two state-of-the-art solutions (TStorm [19]
and RStorm [20] on MStorm) under different constant input
speeds, IAT distributions and processing time distributions.
Finally, we investigate the overall performance when the CPU
frequency of phones decreases due to overheating.

For most experiments, we are interested in the response
time (RT, in ms) and throughput (T/s). For FBA experiments
specifically, we care about the communication delay (ms) and
communication power (mW). In most experiments, we set α =
0.5, β = 0.5, γ = 0 because delay and energy consumption
are more important for us. However, to show that our system
also provides configuration for load balance, we run extra FBA
experiments with α = 0.1, β = 0.1, γ = 0.8 and compare its
performance with the α = 0.5, β = 0.5, γ = 0 case.

C. Evaluation Results
1) The Effects of FBC: Fig. 8 (a)-(c) show the results of

both configuration and task assignment when we have the same
constant input rate and different workloads. The left side of
each figure shows the result of resource-unaware configuration
(RUC) and round robin task assignment, while the right side
shows the result of FBC and FBA. The number of executors
are shown beside each mobile device. With RUC, the number
of parallel tasks for C1, C2, C3 are always configured as
1:2:1, regardless of the workload. The number of executors
is configured as 4 for all devices, which equals the number of
CPU cores. On the other hand, FBC reconfigures the number
of parallel tasks for the light workload as 1:1:1 and for the
heavy workload as 1:3:2. The number of executors for M1,
M2, M3 are reconfigured as 2, 2, 3 based on the feedback.

279

(a) Config. and task assignment for LCW (b) Config. and task assignment for MCW (c) Config. and task assignment for HCW

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000

FBC: Reconfiguration

R
es

po
ns

e
T

im
e

(m
s)

Packet ID

 RUC FBC

(d) End-to-end response time for LCW

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000

FBC: Reconfiguration

R
es

po
ns

e
T

im
e

(m
s)

Packet ID

 RUC FBC

(e) End-to-end response time for MCW

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000

FBC: Reconfiguration

R
es

po
ns

e
T

im
e

(m
s)

Packet ID

RUC FBC

(f) End-to-end response time for HCW

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 10 20 30 40 50 60 70 80 90 100 110

T
hr

ou
gh

pu
t (

T
/s

)

Running Time (s)

 RUC FBC

(g) Throughput for LCW

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 10 20 30 40 50 60 70 80 90 100 110

T
hr

ou
gh

pu
t (

T
/s

)

Running Time (s)

 RUC FBC

(h) Throughput for MCW

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 10 20 30 40 50 60 70 80 90 100 110

T
hr

ou
gh

pu
t (

T
/s

)

Running Time (s)

 RUC FBC

(i) Throughput for HCW

Fig. 8: Evaluation results for constant inter arrival time and processing time

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 20 40 60 80 100 120 140 160 180 200

C
om

m
D

el
ay

 (
m

s)

Running Time (s)

 RR
 TStorm

 RStorm
 FBA

(a) Communication delay for LCW

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 20 40 60 80 100 120 140 160 180 200

C
om

m
D

el
ay

 (
m

s)

Running Time (s)

 RR
 TStorm

 RStorm
 FBA

(b) Communication delay for MCW

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 20 40 60 80 100 120 140 160 180 200

C
om

m
D

el
ay

 (
m

s)

Running Time (s)

 RR
 TStorm

 RStorm
 FBA

(c) Communication delay for HCW

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120 140 160 180 200C
om

m
P

ow
er

 (
m

W
)

Running Time (s)

 RR
 TStorm

 RStorm
 FBA

(d) Communication power for LCW

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120 140 160 180 200C
om

m
P

ow
er

 (
m

W
)

Running Time (s)

 RR
 TStorm

 RStorm
 FBA

(e) Communication power for MCW

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120 140 160 180 200C
om

m
P

ow
er

 (
m

W
)

Running Time (s)

 RR
 TStorm

 RStorm
 FBA

(f) Communication power for HCW

Fig. 9: Evaluation results for round robin and feedback based assignment under different constant workloads

Fig. 8 (d)-(f) show the results of response time. Since FBC
reconfigures the number of tasks of LCW as 3, it allows FBA
to assign all tasks to a single node M3. This significantly
reduces the communication delay and hence the total response
time (Fig. 8 (d)). In Fig. 8 (f), FBC increases the number of
tasks for C2 and C3 of HCW to 3 and 2 respectively, which
eliminates the congestion and reduces the response time.

Fig. 8 (g)-(i) show the results of throughput. For LCW and
MCW, both RUC and FBC have throughput equal to the input
rate; whereas for HCW, RUC has throughput lower than the
input rate because there are not enough parallel tasks for C2
and C3. On the other hand, the throughput of FBC in HCW
equals the input speed as the parallel tasks for C2 and C3
are reconfigured. An interesting observation is about MCW,
where FBC doesn’t change the original parallel tasks, but the

FBA algorithm reduces the inter-device traffic by half, just as
shown in Fig. 8 (b). However, since the communication delay
is much less than the computing delay in MCW, the end-to-end
response time only decreases a little bit in Fig. 8 (e).

2) The Effects of FBA: To isolate the effects of task
assignment algorithms, when we compare FBA with round
robin (RR), TStorm and RStorm, we let RR use the correct
parallelism configuration from the beginning, i.e., 1:1:1 for
LCW, 1:2:1 for MCW and 1:3:2 for HCW (see Fig. 8 (a) -
(c)). In contrast, in FBA, TStorm and RStorm, the parallelism
configuration is reconfigured based on the feedback.

Fig. 9 shows the experimental results, where CommDelay is
the average end-to-end communication delay and CommPower
is the power consumed for transmitting tuples. For LCW, FBA
and RStorm achieve much lower communication delay (Fig.

280

 0
 50

 100
 150
 200
 250
 300
 350

 0 5 10 15 20 25 30 35 40 45 50

T
ot

al
 D

el
ay

 (
m

s)

Random Scenarios

RR (0.148s)
TStorm (0.166s)
RStorm (0.15s)

FBA (0.855s)
Optimal (77s)

Fig. 10: Comparison of Assignment Algorithms

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

CommDelay CommPower LoadBalance

U
ni

fie
d

V
al

ue

Different Metrics

α=0.5, β=0.5, γ=0
α=0.1, β=0.1, γ=0.8

Fig. 11: Comparison of Metrics with different α, β, γ settings

9 (a)) and communication power (Fig. 9 (d)) than RR by
assigning all tasks to a single device. Meanwhile, TStorm
achieves better performance than RR but worse performance
than FBA and RStorm, because its task scheduling algorithm
not only tries to reduce the inter-device traffic but also aims at
achieving load balance between different nodes. This prevents
assigning all tasks to a single node and therefore incurs extra
communication delay and energy consumption. For MCW,
FBA reduces the communication delay (Fig. 9 (b)) of RR,
RStorm and TStorm by 68%, 50% and 26% respectively and
the communication power (Fig. 9 (e)) of RR, RStorm and
TStorm by 64%, 23% and 17% respectively. This demon-
strates the importance of distinguishing different inter-device
communication, in terms of traffic size, communication delay
and power. As for HCW, FBA achieves similar communication
delay and power as TStorm and RStorm while a little bit lower
communication delay and power than RR (Fig. 9 (c) and (f)).
This is because, for this specific heavy workload, the FBA
scheduling algorithm happens to achieve the same schedule
as TStorm and RStorm, and a little bit better schedule as RR.
It is interesting that, the performance of FBA, TStorm and
RStorm is worse than RR until they do rescheduling. This is
because, RR utilizes the optimal parallelism at the beginning,
while FBA, TStorm and RStorm reschedule to the optimal
parallelism based on the feedback by themselves.

In order to throughly compare the performance of FBA, RR,
TStorm and RStorm in more general cases, we did 50 extra
simulations with different mobile device capacities, application
topologies, number of tasks, task-to-task delays and traffic
sizes. The scale the experiment is about 15x15, which means
15 tasks are assigned to 15 mobile devices. Fig. 10 shows the
experimental results. As we can observe, the performance of
FBA is always close to (within 5% of) the optimal schedule,
while the performance of TStorm and RStorm is unstable,
ranging from near the optimal to more than 3x times worse.
In terms of running time, TStorm and RStorm can run as fast
as RR (150ms), and our FBA takes about 850ms, while the
optimal scheduling takes 77s. Taking both performance and

running time into account, our FBA is more practical for a
real system deployment.

In order to show that our system provides flexible config-
uration for load balance, we run extra FBA experiments with
MCW and set α = 0.1, β = 0.1, γ = 0.8. As shown in Fig.
11, a large γ chooses a schedule with better load balance but
higher communication delay and power. This is because, if a
schedule achieves a good load balance, those tasks are very
likely to be assigned to different nodes, which will definitely
increase the communication delay and energy consumption.

3) The Effects of FBG: In order to show the effectiveness
of FBG, we turn off FBC and FBA. Tasks T1, T2, T3, T4
are assigned to M2, M3, M1, M2 respectively (see Fig. 8 (a)
left). We start the disturbance application at 50s on M3. As
we can observe from Fig. 12 (a-c): The light disturbance does
not impact the system performance. However, the medium
and heavy disturbance lead to an increasing response time for
Shuffle. This is because T1 completely ignores the disturbance
at M3 and still sends the output tuples to T2 and T3 randomly.
This causes congestion at T2 and leads to increasing delay.
On the other hand, FBG relieves the negative impact of
disturbance on the performance. As shown in Fig. 12 (d)
and (e), when the disturbance begins, the throughput of T2
begins to decrease and the throughput of T3 begins to increase,
while the delay at T2 remains low. This is because T1 sends
more output tuples to T3 at M1 after it receives feedback
from T2 and T3. We also run experiments with constant IAT
and HCW with FBC and FBA turned on. As shown in Fig.
12 (f), when the medium disturbance occurs, the system with
Shuffle grouping has to perform rescheduling to achieve low
latency while the system with FBG can avoid rescheduling by
directing more stream to the tasks running on the under-loaded
devices.

4) Varying Input Speed: Fig. 13 (a)-(c) show the results
when we adopt the MCW and use different constant input
speeds. Fig. 13 (a) shows the response time. When the input
speeds are 10T/s and 16T/s, both MStorm and F-MStorm can
achieve a stable low response time. However, when the input
speed increases to 20T/s, the response time becomes unstable
and keeps increasing. This is because, the input speed exceeds
the maximum processing speed and causes congestions at the
computation intensive component. In that case, F-MStorm will
do reschedule and increase the parallelism for that component,
which finally eliminates the congestion and brings the latency
back to normal. Fig. 13 (b) shows the results for throughput
with constant input at 20T/s. As we can see, MStorm always
has a lower output rate than the input rate, while F-MStorm
has an output rate equal to the input rate after rescheduling.
Fig. 13 (c) shows the CDF of stable response time in F-
MStorm, TStorm and RStorm with input speeds equal to
10T/s, 16T/s and 20T/s respectively. When the input speed is
10T/s, the response time of F-MStorm, TStorm and RStorm
are similar with each other. This is because they adopt similar
task assignment, and have similar inter-devices communication
delay. However, when the input speed increases to 16T/s, the
latency of TStorm and RStorm can be up to 1.5x latency
of F-MStorm. And when the input speed increases to 20T/s,
the advantage of F-MStorm becomes more obvious, which
can be up to 3x faster than TStorm and RStorm. This is
because, as the input speed increases, there are more tasks after
rescheduling. The inter-device communication among different

281

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000

light disturb at M3

R
es

po
ns

e
T

im
e

(m
s)

Packet ID

Shuffle
FBG

(a) Response time with light disturbance

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000

medium disturb at M3

R
es

po
ns

e
T

im
e

(m
s)

Packet ID

Shuffle
FBG

(b) Response time with medium disturbance

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000

heavy disturb at M3

R
es

po
ns

e
T

im
e

(m
s)

Packet ID

Shuffle
FBG

(c) Response time with heavy disturbance

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 10 20 30 40 50 60 70 80 90 100

medium distrub at M3

A
vg

D
el

ay
 (

m
s)

Running Time (s)

T2(C2 at M3)
T3(C2 at M1)

(d) Dealy of C2 with medium disturbance

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 10 20 30 40 50 60 70 80 90 100

medium distrub at M3O
ut

pu
t (

T
/s

)

Running Time (s)

T2(C2 in M3)
T3(C2 in M1)

(e) Output of C2 with medium disturbance

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

medium distrub at M3

1st reschedule for both

2nd reschedule for shuffle

R
es

po
ns

e
T

im
e

(m
s)

Packet ID

Shuffle
FBG

(f) FBG reduces rescheduling frequency

Fig. 12: Shuffle and feedback based stream grouping for different disturbance

�

�

�

�

�

(a) RT for Diff. Input Speeds (b) Input/output for Diff. Input Speeds (c) RT CDF comparison for Diff. Input Speeds

Fig. 13: Evaluation results when we vary the constant input speeds

�

�

�

�

(a) RT for Input with Diff. IAT (b) Input/output for Input with Exp. IAT (c) RT CDF comparison for input with Diff. IAT

Fig. 14: Evaluation results when we vary the IAT of input

tasks will increase and the advantages of F-MStorm, which
takes inter-device communication diversity into account, will
become more obvious.

5) Varying Inter Arrival Time: Fig. 14 (a)-(c) show the
results when we adopt the MCW and vary the IAT distribution.
Fig. 14 (a) shows the response time. In MStorm, regardless
of the IAT distribution, the response time increases with the
running time. However, in F-MStorm, although the response
time is increasing at the beginning, it goes back to be low
after rescheduling. This is because F-MStorm increases the
parallelism of the computing-intensive component to eliminate
the congestion. The results in Fig. 14 (b) prove this claim,
where the IAT distribution is exponential. MStorm always has
a 1T/s lower output rate than the input rate, while F-MStorm
has an output rate equal to the input rate after rescheduling. It

should be noted that, although the throughputs of MStorm and
F-MStorm seem similar, there is a fundamental difference: a
congestion happens in MStorm, while no congestion happens
after rescheduling in F-MStorm. The delays of MStorm and
F-MStorm in Fig. 14 (a) clearly reflects this phenomenon.
Due to space limitation, we omit the throughput results for
other distributions because they are similar. Fig. 14 (c) shows
the CDF of the stable response time in F-MStorm, TStorm
and RStorm with uniform, Gaussian and exponential IAT
distribution, respectively. With uniform IAT distribution, the
response time of RStorm can be up to 1/3 shorter than that of
TStorm but still up to 2x that of F-MStorm. With Gaussian
IAT distribution, the response time in TStorm and RStorm
are similar with each other, but they are both up to 2x that
of F-MStorm. With exponential IAT distribution, the response

282

�

�

�

�

(a) RT for Input with Diff. PT (b) Input/output for Input with Pareto PT (c) RT CDF comparison for Input with Diff. PT

Fig. 15: Evaluation results when we vary the PT of input

Fig. 16: Sample example for CPU frequency decrease

time of F-MStorm becomes longer. However, it is up to 1/2
shorter than that of TStorm and RStorm. The mechanism
behind is that: more tasks and inter-device communication
exist in the Gaussian and exponential IAT distribution cases,
so the advantages of F-MStorm, which takes inter-device
communication diversity into account becomes more obvious.

6) Varying Processing Time: Fig. 15 (a)-(c) show the results
when we adopt the constant input rate (10T/s) and vary the
processing time. Fig. 15 (a) shows the response time. As
we can see, with uniform distribution of processing time,
both MStorm and F-MStorm achieve stable and low latency.
However, with Gaussian and Pareto distribution of processing
time, F-MStorm achieves much lower and stable response time
than MStorm, because F-MStorm increases the parallelism
of the computing-intensive component, which eliminates the
congestion. Fig. 15 (b) shows the results for throughput with
Pareto distribution. MStorm always achieves 10% lower output
rate than the input rate, while F-MStorm achieves an output
rate that is the same as the input rate after rescheduling.
Due to space limitation, we omit the throughput results for
other distributions because they are similar. Fig. 15 (c) shows
the CDF of the stable response time in F-MStorm, TStorm
and RStorm with uniform, Gaussian and Pareto distribution
of processing time respectively. With uniform distribution of
processing time, the response time of F-MStorm, TStorm and
RStorm are similar with each other. However, with Gaussian
distribution of processing time, TStorm achieves up to 1/4
shorter response time than RStorm but 1/5 longer response
time than F-MStorm. With Pareto distribution of processing
time, the advantage of F-MStorm becomes more obvious.
The mechanism behind is that: more tasks and inter-device
communication exist in the Gaussian and Pareto distribution
of processing time cases, so the advantages of F-MStorm,
which takes inter-device communication diversity into account
becomes more obvious.

7) CPU Frequency Decrease: The CPU overheating pro-
tection mechanism on Android Phones will reduce the CPU

frequency when its temperature goes too high [25]. The CPU
frequency of smart phones we use might drop from 1574MHz
to 1190MHz when it is overheating. To compare MStorm and
F-MStorm in this situation, we first run the resource-intensive
application for a while such that the CPU temperature gets
high. Then, we start MStorm/F-MStorm and the benchmark
application with constant IAT and workload with processing
time ratio 1:25:1. The tasks are assigned to mobile devices
as shown in Fig. 16. In F-MStorm, an initial rescheduling
happens before the CPU frequency drops. The tasks of C1
change from T1 to T5; the tasks of C2 change from T2, T3
to T6, T7, T8; and the tasks of C3 change from C4 to C9.

Fig. 17 (a) and (d) show the time when the CPU frequency
of mobile phones drops in MStorm and F-MStorm respec-
tively. We are interested in how the systems may react to it.
Fig. 17 (b) and (c) show the results for MStorm. When the
CPU frequency of M2, which runs T1 and T4 (light tasks),
drops, the end-to-end response time is not impacted. However,
when the CPU frequency of M1, which runs T3 (heavy task),
drops, the end-to-end response time increases instantly and the
total output rate of C2 (9.5T/s) becomes lower than its input
rate (10T/s). On the other hand, Fig. 17 (e) and (f) shows the
results for F-MStorm. In F-MStorm, when the CPU frequency
of M1, which runs T5 and T9 (light tasks), drops, the end-to-
end response time is not impacted. When the CPU frequency
of M2 and M3, which run T6, T7 and T8 (heavy tasks), drops,
the end-to-end response time only increases a little bit at the
beginning, but soon returns to normal. This is due to the fact
that, when the CPU frequency of M2 drops, T5 directs more
stream tuples to T8; and when the CPU frequency of M3
drops, T5 directs more stream tuples to T7. The total output
rate of C2 keeps at 10T/s.

V. RELATED WORK

Computation Offloading and Edge Computing: Compu-
tation offloading [8]–[10], [14], [15], [26]–[30] has been a
popular research area. Based on the offloading destinations,
the existing work can be categorized into cloudlet offloading,
cloud offloading and hybrid offloading. Cloudlet offloading is
named as edge computing [31]–[34] as well, which aims at
reducing the application response time and saving the Internet
communication bandwidth by taking the control of computing
applications, data, and services away from some central nodes
(“core”) to the logical extreme (“edge”) of the Internet [35].
CloneCloud [27], JustInTime [28] and Odessa [9] are cloudlet
offloading systems that leverage virtual machine migration
mechanisms to reduce the application response time. However,

283

 0

 300

 600

 900

 1200

 1500

 1800

 0 15 30 45 60 75 90 105 120 135 150

F
re

qu
en

cy
 (

M
H

z)

Running Time (s)

 M1
 M2
 M3

(a) CPU Freq. ↓ in MStorm

100

101

102

103

104

105

 0 150 300 450 600 750 900 1050 1200 1350 1500

M2’s frequency decreases

M1’s frequency decreases

R
es

po
ns

e
T

im
e

(m
s)

Packet ID

 MStorm

(b) RT with CPU Freq. ↓ in MStorm

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

O
ut

pu
t (

T
/s

)

Running Time (s)

 T2(C2) at M3
 T3(C2) at M1

(c) C2’s Output with CPU Freq. ↓ in MStorm

 0

 300

 600

 900

 1200

 1500

 1800

 0 15 30 45 60 75 90 105 120

F
re

qu
en

cy
 (

M
H

z)

Running Time (s)

 M1
 M2
 M3

(d) CPU Freq. ↓ in F-MStorm

100

101

102

103

104

105

 0 100 200 300 400 500 600 700 800 900 1000

reschedule

M1’ frequency decreases

M2’ frequency decreases

M3’ frequency decreases

R
es

po
ns

e
T

im
e

(m
s)

Packet ID

 F−MStorm

(e) RT with CPU Freq. ↓ in F-MStorm

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120

O
ut

pu
t (

T
/s

)

Running Time (s)

 T2(C2) at M3
 T3(C2) at M1
 T7(C2) at M2

 T6(C2) at M3
 T8(C2) at M3

(f) C2’s Output with CPU Freq. ↓ in F-MStorm

Fig. 17: How MStorm and F-MStorm deal with CPU frequency decrease

all these systems rely on powerful nearby cloudlets, which are
not always available in some critical scenarios like military
operations and disaster response, because soldiers or first
responders have to move from place to place and they are only
allowed to carry on some lightweight mobile devices. Different
from the above systems, F-MStorm only utilizes nearby mobile
devices as offloading destinations, which is more practical for
the military and disaster response scenarios, because soldiers
and first responders always work together as a group and
their mobile devices can be connected together as a cluster.
MAUI [26] is a cloud offloading system which enables energy-
aware offloading by using remote function calls to the cloud.
MCDNN [8] is a cloud offloading framework that employs
a runtime scheduler to trade off the application accuracy
for resource usage and latency. Orbit [30] and LEO [10]
are similar systems that utilize profile-based partitioning of
applications to offload computation tasks to hybrid computing
resources. All these systems rely on the Internet access, which
however are not always available in some critical scenarios,
because soldiers and first responders always work in some
extremely difficult environments that do not provide any access
to the Internet. Different from these systems, F-MStorm does
not rely on the Internet. Instead, it only needs a mobile device
to be set up as a hotspot, such that all the mobile devices
in a group can be connected together. Some existing work
like Hyrax [14] and Serendipity [15] also offload computing
tasks to the nearby mobile devices. However, their work
focuses on processing bounded batch jobs that have relatively
low requirements on the latency. Instead, F-MStorm focuses
on processing unbounded stream data, which has a higher
requirement on the latency.

Distributed Stream Processing System: Apache Storm [11]
is a distributed stream processing system deployed on cloud
servers. Many improvements based on Storm have been pro-
posed [19], [20], [36]–[39]. Among them, AdaptiveStorm [36]
continuously monitors the system performance and resched-
ules tasks at run-time to reduce the overall response time.
T-Storm [19] accelerates stream processing by using traffic-
aware scheduling, which minimizes the inter-device and inter-
process traffics. R-Storm [20] improves the throughput and
minimizes the network latency by maximizing the resource

utilization. All these works are closely related to F-MStorm,
but they do not consider the detailed differences among
inter-device links, which however are essential in stream
processing at the edge. The authors in [37] propose a scalable
centralized scheme for job reconfiguration, which minimizes
the communication cost while keeping the nodes below a
computational load threshold. The authors in [38] propose a
dynamic resource scheduler for cloud-based distributed stream
processing systems, which measures the system workload
with the minimal overhead and provisions the minimum
resources to meet the response time constraints. The authors
in [39] provide a general formulation for the optimal data
stream processing placement and takes explicitly into account
the heterogeneity of computing and networking resources.
Similar to these works, in F-MStorm, we propose a gen-
eral framework for stream task assignment that takes delay,
energy and load balance all into account. The difference is
that, our problem is more challenging, because in stream
processing at the edge, the inter-device delay is dynamic
and the users’ own application may cause disturbance to F-
MStorm. Except for Storm and its subsequent improvements,
there are other popular stream processing systems like Apache
Spark Stream [12], Flink [13], Samza [40], etc. However,
all these systems are designed and implemented to run on
cloud servers instead of mobile devices. To the best of our
knowledge, MStorm [1] is the first work that performs online
distributed mobile stream processing at the edge. However, it
is inefficient in the system configuration, task scheduling and
execution aspects. F-MStorm improves its efficiency by using
the feedback information.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a feedback-based online distributed
mobile stream processing system running at the edge called F-
MStorm. F-MStorm adopts feedback-based approach at many
system design levels including configuration, scheduling and
execution. We implement F-MStorm on a cluster of Android
phones and evaluate its performance through extensive experi-
ments. The experimental results show that F-MStorm achieves
up to 3x shorter response time, 10% higher throughput and
23% less energy consumption than the state-of-the-art mobile
stream processing systems. It should be noted that, currently,

284

we only focus on the CPU bounded applications and assume
all mobile devices to be homogeneous in hardware. We
also assume that the users in a group always stay in the
wireless range of each other. In the future, we will consider a
heterogeneous computing environment, take into account other
resource constraints like memory usage or network bandwidth
and deal with the node failure case.

ACKNOWLEDGMENT

This material is based upon work supported by National
Institute of Standards and Technology (NIST) under Grant NO.
(#70NANB17H190). We also appreciate the suggestions from
the reviewers and our shepherd Dr. Eyal de Lara.

REFERENCES

[1] Q. Ning, C.-A. Chen, R. Stoleru, and C. Chen, “Mobile storm:
Distributed real-time stream processing for mobile clouds,” in CloudNet
’15. IEEE, pp. 139–145.

[2] D. M. Chen, S. S. Tsai, R. Vedantham, R. Grzeszczuk, and B. Girod,
“Streaming mobile augmented reality on mobile phones,” in ISMAR ’09.
IEEE, pp. 181–182.

[3] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T.
Campbell, D. Gatica-Perez, and T. Choudhury, “Stresssense: Detecting
stress in unconstrained acoustic environments using smartphones,” in
UbiComp ’12. ACM, pp. 351–360.

[4] Y. Lee, C. Min, C. Hwang, J. Lee, I. Hwang, Y. Ju, C. Yoo, M. Moon,
U. Lee, and J. Song, “Sociophone: Everyday face-to-face interaction
monitoring platform using multi-phone sensor fusion,” in Moibsys ’13.
ACM, pp. 375–388.

[5] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword spotting
using deep neural networks,” in ICASSP ’14. IEEE, pp. 4087–4091.

[6] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: Robust smartphone
audio sensing in unconstrained acoustic environments using deep
learning,” in UbiComp ’15, pp. 283–294.

[7] I. Damian, C. S. S. Tan, T. Baur, J. Schöning, K. Luyten, and E. André,
“Augmenting social interactions: Realtime behavioural feedback using
social signal processing techniques,” in CHI ’15, 2015, pp. 565–574.

[8] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy, “Mcdnn: An approximation-based execution framework for deep
stream processing under resource constraints,” in Mobisys ’16. ACM,
pp. 123–136.

[9] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan, “Odessa: enabling interactive perception applications on
mobile devices,” in Mobisys ’11. ACM, pp. 43–56.

[10] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “Leo:
scheduling sensor inference algorithms across heterogeneous mobile
processors and network resources,” in Mobicom ’16, pp. 320–333.

[11] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@
twitter,” in SIGMOD ’14. ACM, pp. 147–156.

[12] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing on
large clusters.” HotCloud ’12, vol. 12, pp. 10–10.

[13] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[14] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using
mapreduce,” DTIC Document, Tech. Rep., 2009.

[15] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
enabling remote computing among intermittently connected mobile
devices,” in Mobihoc ’12. ACM, pp. 145–154.

[16] J. Tang and T. Q. Quek, “The role of cloud computing in content-centric
mobile networking,” IEEE Communications Magazine, vol. 54, no. 8,
pp. 52–59, 2016.

[17] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[18] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica, “Drizzle: Fast and adaptable
stream processing at scale,” in Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, 2017, pp. 374–389.

[19] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online
scheduling in storm,” in ICDCS ’14. IEEE, pp. 535–544.

[20] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Middleware ’15, pp. 149–161.

[21] L. Sun, R. K. Sheshadri, W. Zheng, and D. Koutsonikolas, “Modeling
wifi active power/energy consumption in smartphones,” in ICDCS ’14.
IEEE, pp. 41–51.

[22] “Network-Connection,” https://github.com/facebook/
network-connection-class, 2016, [Online; accessed 14-Dec-2016].

[23] “API: CPLEX,” https://www.ibm.com/, 2016, [Online; accessed 14-Dec-
2016].

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on
evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[25] G. P. Srinivasa, R. Begum, S. Haseley, M. Hempstead, and G. Challen,
“Separated by birth: Hidden differences between seemingly-identical
smartphone cpus,” in HotMobile ’17. ACM, pp. 103–108.

[26] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in MobiSys ’10. ACM, pp. 49–62.

[27] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems. ACM, 2011, pp. 301–314.

[28] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-in-
time provisioning for cyber foraging,” in MobiSys ’13, pp. 153–166.

[29] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “Dsp.
ear: Leveraging co-processor support for continuous audio sensing on
smartphones,” in SenSys ’14. ACM, pp. 295–309.

[30] M.-M. Moazzami, D. E. Phillips, R. Tan, and G. Xing, “Orbit:
a smartphone-based platform for data-intensive embedded sensing
applications,” in IPSN ’15. ACM, pp. 83–94.

[31] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[32] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to dance:
agile vm handoff for edge computing,” in SEC ’17. ACM, p. 12.

[33] L. Chaufournier, P. Sharma, F. Le, E. Nahum, P. Shenoy, and D. Towsley,
“Fast transparent virtual machine migration in distributed edge clouds,”
in SEC ’17. ACM, 2017, p. 10.

[34] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar,
P. Pillai, R. Klatzky et al., “An empirical study of latency in an
emerging class of edge computing applications for wearable cognitive
assistance,” in Proceedings of the Second ACM/IEEE Symposium on
Edge Computing. ACM, 2017, p. 14.

[35] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric com-
puting: Vision and challenges,” SIGCOMM Computer Communication
Review, vol. 45, no. 5, pp. 37–42, 2015.

[36] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in storm,” in DEBS ’13. ACM, pp. 207–218.

[37] A. Chatzistergiou and S. D. Viglas, “Fast heuristics for near-optimal
task allocation in data stream processing over clusters,” in CIKM ’14.
ACM, pp. 1579–1588.

[38] T. Z. Fu, J. Ding, R. T. Ma, M. Winslett, Y. Yang, and Z. Zhang, “Drs:
dynamic resource scheduling for real-time analytics over fast streams,”
in ICDCS ’15. IEEE, pp. 411–420.

[39] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
placement for distributed stream processing applications,” in DEBS ’16.
ACM, pp. 69–80.

[40] “Apache Samza,” https://samza.apache.org/, 2017, [Online; accessed 14-
Dec-2017].

285

