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ABSTRACT
Drug Delivery Systems (DDSs) are of vital importance to treat
dangerous diseases, such as cancer. The goal of DDSs is to provide
the required medication to the diseased area without affecting other
healthy parts of the body. Most advanced DDSs use nanoparticles
since they are able to cross biological barriers, but it has been
shown that about 1% of injected nanoparticles are delivered to the
diseased area. Molecular Communication (MC) paradigm is used to
study DDSs, in particular to model the propagation of nanoparticles
by advection and diffusion throughout the cardiovascular system
in order to maximize the amount of nanoparticles reaching the
diseased area. While existing work proposes different methods
to tackle this problem, none of them aim to identify the optimal
transmitters location to inject nanoparticles such that they reach the
intended target while avoiding other areas in the body. In this paper,
we propose an optimization problem to determine the optimal
placement of transmitters to achieve a desired signal strength at a
target organ, while ensuring that the interference at the organs we
intend to avoid is below a threshold. We consider different scenarios
to study how the transmitters location are affected by the desired
signal strength for the target, and the threshold interference at the
regions to avoid. We find that the choice of the target and avoidance
regions, and the model of the circulatory system have a significant
impact on the transmitters location.
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1 INTRODUCTION
Drug Delivery Systems (DDSs) play an increasingly important role
in providing treatment to major diseases such as cancerous tumors,
cardiovascular diseases, diabetes, among others. DDSs have been
studied in different fields including biomedical engineering, com-
puter science and medicine. Very recently, researchers focused on
studying the use of nanoparticles in DDSs due to its ability to cross
biological barriers. With today’s DDS designs that use nanopar-
ticles, it has been proven that only 1% of nanoparticles are being
delivered to the diseased area [17]. Therefore, optimization of drug
delivery using DDSs is of utmost importance.

DDSs with nanoparticles in biomedical engineering and com-
puter science havemostly been studied under themolecular commu-
nication (MC) paradigm [2, 4, 6, 7, 9, 11]. In MC, the information is
encoded as molecules, where transmitters (e.g. bio-nanomachines,
injection devices, etc.) transmit nanoparticles, which are propa-
gated through a channel (e.g., water, air, blood). The MC paradigm
models bio-nanomachines and injection devices as transmitters,
nanoparticles as the molecular signal, and the targeted site (e.g.
organs) as receivers. The transmission of the drug (in the form of
nanoparticles) is modeled as propagation model and path loss. This
approach simplifies the study of the movement of drugs through
the complex human cardiovascular system.

There is work that focuses on the optimal delivery of nanoparti-
cles to the diseased organ by using an active targeting approach [4,
6, 7, 9, 11], in which nanoparticles are directly delivered to targeted
organ by using bio-nanomachines acting as transmitters and re-
ceivers. On the other hand, the work by Chahibi et al. [2, 3] studies
the optimal delivery of nanoparticles using an passive targeting
approach, where the nanoparticles are injected into the cardiovas-
cular system reaching the targeted site by advection and diffusion.
However, none of the mentioned research optimize the locations at
which the nanoparticles are injected.

It is important to optimally choose the injection points for the
drug. When the drug is inserted into the veins, it flows along with
the blood and reaches the heart. It is then diluted and delivered to
the organs. Therefore, only a small percentage of the drug reaches
the targeted organ. In MC terms, the path loss between the trans-
mitter and receiver is high. If the drug is inserted in the arteries,
a small amount is sufficient. Again, in MC terms, as the distance
between the transmitter and receiver is reduced, so is the path
loss. Inserting drugs directly into the arteries can be dangerous.
Hence, it is important to optimally choose the points of injection
and the dosage at those points, i.e., the transmitter locations and
their transmit powers.

The propagation of the nanoparticles through the human circula-
tory system resembles the movement of sensors in other flow-based
systems such as water distribution systems [12–15]. Such models
offer insights on the dissipation models for DDSs. In this paper, we
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apply concepts from flow-based systems to model the dissipation
of nanoparticles through the blood vessels. We also aim to optimize
the number of transmitters (i.e., injection points) and the transmit
power (i.e., dosage) such that the receiver (i.e., diseased areas) re-
ceives a minimum received signal strength (i.e., drug nanoparticles)
while ensuring that the interferences at the other receivers is below
a threshold (i.e., side effects in other parts of the body are reduced).
Specifically, the main contributions of this paper are the following:

• We formulate the problem as a transmitter placement op-
timization problem in order to determine the location and
transmit power of transmitters (i.e., nanoparticle injectors)
in order to ensure a required received signal strength at the
desired receivers (target organs), and an interference below
a threshold at other receivers (organs to avoid).

• We model the path loss of the human circulatory system
through a discrete drug dissipation matrix.

• We solve the MC optimization problem for different scenar-
ios, where the nanoparticles target certain organs, while
avoiding certain areas that might be affected by them.

This paper is structured as follows: Section 2 introduces the
model and formally presents the optimization problem, whereas
Section 3 describes the model. Section 4 presents numerical results
for the model under different scenarios, and Section 5 concludes
the paper and presents directions for future work.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we define and formulate the optimization problem
to determine the location and transmit power of transmitters where
nanoparticles need to be deployed.

We consider a DDS that treats diseases throughout the cardiovas-
cular system with multiple transmitters whose task is to inject the
nanoparticles in certain locations in the body closer to the diseased
area. The MC interpretation of this system is that there are multiple
transmitters, and a set of target receivers.

2.1 Definitions
We model the arteries of the human circulatory system as: a) a
directed tree G(V ,E), in which every edge (u,v) ∈ E has a non-
negative real-valued capacity denoted by c(u,v); and b) two sets of
vertices S = {s1, s2, ..., sk } - a set of sources, andD = {d1,d2, ...,dk }
- a set of sinks, where S,D ⊂ V . The human circulatory system
model is key to the propagation model for the nanoparticles. The
movement of the nanoparticles through the human circulatory
system is modeled as an acyclic flow network.

Definition 2.1. An Acyclic Flow Network, F, is defined as a real
valued function F : V ×V → R with the following properties:

• F(u,v) ≤ c(u,v), where c(u,v) is a constant indicating the
capacity of the edge. This means that the flow on an edge,
cannot exceed its capacity.

• ∑
w ∈V F(u,w) = ∑

w ∈V F(w,u)∀u ∈ V , unless u ∈ S or
w ∈ D, which means that the net flow of a vertex is 0, except
for source and sink nodes.

• Each edge between vertex i and j in F is an artery, which we
assume is an asymmetric cylindrical tube with the following
properties:
– A length li j .
– Radii r topi j and rboti j for the two ends of the artery, and an

average radius ri j , which is defined as r topi j e−ki j li j , where

ki j =
log (r topi j /rboti j )

li j
.

– A cross-sectional area Si j , where Si j = πr2i j .
– A mean velocity of blood flow ui j .

Definition 2.2. A Zone of Interest (It ) is a subset of vertices in
graph G(V ,E), i.e., It ⊂ V , which we are interested in delivering
the drug to, i.e., the target receivers. For certain diseases, F may
have multiple zone of interest.

The decision vector for each targeted vertex i is defined as It =
[0, 1, 0, ..., ], where an entry is equal to 1 if vi ∈ It , 0 otherwise.

Definition 2.3. A Zone of Avoidance (Ia ) is a subset of vertices in
graphG(V ,E), i.e., Ia ⊂ V , which might receive some nanoparticles,
but they are not the target receivers. Similar to It , a given F can
have multiple zones of avoidance.

The decision vector for each vertex that needs to be avoided is
defined as Id = [0, 1, 0, ..., ], where an entry is equal to 1 if vi ∈ Ia ,
0 otherwise.

Definition 2.4. The Degree of Coverage of Target (Dct ) is the
received signal strength threshold of zone It . Every receiver in
It should receive at least Dct fraction of the transmit power (i.e.,
injected nanoparticles).

Definition 2.5. The Degree of Coverage of Avoidance Organ
(Dca ) is a threshold interferences in zone in Ia . Every receiver in Ia
receives at most Dca fraction of the transmit power (i.e., injected
nanoparticles).

Definition 2.6. The decision vector I is defined as I = [0, 1, 0, ..., ],
where an entry is greater than 0 and at most 1 if a transmitter
is present at vertex i , 0 otherwise. The value of Ii represents the
transmit power.

Definition 2.7. The MC propagation model uses a drug dissipa-
tion matrix D, defined such that each element di j represents how
the drug propagates in each artery ij.

d11 d12 ...d1n
... di j ...

dn1 ... ...


di j provides the fraction of the drug that reaches vertex vi if the

drug is injected in a vertex vj . This is the path loss observed by a
receiver at vj if the transmitter is at vi .

Definition 2.8. The height of each vertex is defined as the length
of the path from the root (i.e., heart) to the vertex, which is repre-
sented with the vector H= [h1,h2, ...,hi , ...,hn ].

Definition 2.9. The received power in an vertex is defined as
the vector R = [r1, ..., ri , ..., rn ], which is calculated as follows: r j
=
∑n
i=1(Ii · Di j ).
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2.2 Problem Formulation
Given the above definitions, we formulate the optimization problem,
which we call the “Transmitter Placement Problem.” The objective
of optimization problem is to minimize the cost of transmitters
placement.

Transmitter Placement Problem: Given an acyclic flow net-
work F, zones of interest It and zones of avoidance Ia in F where
It ∩ Ia = ∅, and two degrees of coverage Dct and Dca , find the set
S = {(si ,qi )|si ∈ V ∩ qi ∈ N} of transmitters si (sources) and their
transmit power qi such that the received signal strength at It is at
least Dct and the interference at Ia is at most Dca . This problem is
mathematically formulated as:

minimize
n∑
i=1

eHi · Ii

subject to: ITt · R ≥ Dct

ITd · R ≤ Dca
n∑
i=1

Ii = 1

We select an exponential function to express the difficulty of
placing transmitters as their locations get farther away from the
heart. In this paper, we assume that it gets exponentially harder
to inject nanoparticles in deeper arteries since blood in arteries is
conveyed from the heart to all parts of the body.

We formulate two versions of the optimization problem: OPT1
and OPT2. In OPT1, the decision variable I is set as a binary vari-
able. InOPT2, the decision variable I is set as a real number between
0 and 1.

3 PROPAGATION MODEL FOR
NANOPARTICLE DISSIPATION

In this section, we present two models on how the nanoparticles
propagate through the cardiovascular system in order to calculate
the received power in each vertex in F. Contrary to radio prop-
agation models where the path loss is a function of distance, the
path loss in MC is a function of the dissipation of the nanoparticles
through the human circulatory system. As defined in Section 2, the
drug dissipation matrix D provides the path loss function.

One of the most commonly used models was inspired by the
work in [8] that also takes a graph-based approach to model the
transport of nanoparticles over a network subject to advection and
diffusion. The model proposed assumes that the concentration of
nanoparticles varies over time and reaches a steady state after a
long period of time. An approximation of the model can be obtained
by assuming that the concentration is in a steady state. However,
their model does not provide a direct way to obtain the fraction
of the nanoparticles that reaches an artery if they are injected in
a particular artery. Thus, we approximate the drug propagation
using simpler models for the following reasons:

• The matrix used to model the drug dissipation needs to be
inverted in order to obtain the final concentration, but it
cannot be inverted under all conditions.

• The circulatory system takes a long time to achieve a steady
state.

In this paper, as an alternative approach, we approximate the
dissipation matrix D using two methods: (i) Volume , and (ii) Flow .
We derive these models from the mobility models for free-flowing
sensors in flow-based systems [13–15], and water distribution sys-
tems [12]. It is important to note that these are probabilistic models
for the movement of the nanoparticles in the blood vessels. Extend-
ing the methods proposed in [8] and [3] to obtain the D matrix is
not trivial and is beyond the scope of this paper. The aforemen-
tioned models are simple and dependent mostly on the physical
properties of the blood vessels.

In the Volume approximation, we derive Di j using:

Di j = I + P + P2 . . .Pk

where I is the identity matrix, and

Pi j =
Volume of artery entering vj

Total volume of all arteries exiting vi

if there is an artery between vi and vj , and Pk = 0.
The Flow approximation is also obtained similarly. The only

difference is that in the Flow approximation,

Pi j =
Blood flow of artery entering vj

Total blood flow of all arteries exiting vi
if there is an artery between vi and vj .

The interpretation is that the nanoparticles at a junction follow
a probabilistic path, where the probability distribution is guided
either by the volume of arteries leaving the junction (in theVolume
approximation), or the blood flowing away from the junction (in
the Flow approximation).

4 NUMERICAL RESULTS
In this section, we present numerical results to demonstrate the
benefit of our optimization model. We have also included a subsec-
tion to discuss the interpretation of the results and the practical
applications of the model.

We use AMPL to solve the optimization problem for different
scenarios on the NEOS solver [5]. In order to model the vertices and
edges in F, we use the anatomical data of large arteries collected
in [10] from a young male, where we denote large arteries as the
edges and the vertices are the junctions that form each artery. The
graph is shown in Figure 1 and the list of large arteries and their
dimensions are shown in Table 1.

We evaluate our model for both the OPT 1 and OPT 2 objectives
with both theVolume and Flow approximation models. The metrics
we used are: (i) Cost - the cost function

∑n
i=1 e

Hi · Ii , described
in Section 2.2, (ii) Number of transmitters, and (iii) Location of
transmitters. The parameters we changed in our analysis are: (i)
Dct from 0.3 to 0.6 in increments of 0.1; (ii) Dca from 0.02 to 0.1 in
increments of 0.02; (iii) Scenario.

The different scenarios used in the evaluation are shown in
Table 2. In each scenario, we consider different target arteries and
the same avoidance arteries, which are identified by the vertices
that form a specific artery we aim to target or avoid. The reason to
select the same avoidance arteries for all scenarios is because splenic
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Figure 1: Topology of large arteries with vertices labeled.

Table 1: List of edges (large arteries) and their dimensions.

Edge ij Name ℓi j (cm) r
top
i j (cm) rboti j (cm)

(8,6) Ascending aorta 1 1.525 1.502
(6,3) Ascending aorta 3 1.502 1.42
(3,5) Aortic arch 3 1.42 1.342
(5,9) Aortic arch 4 1.342 1.246
(9,15) Thoracic aorta 5.5 1.246 1.124
(15,17) Thoracic aorta 10.5 1.124 0.924
(17,18) Abdominal aorta 5.25 0.924 0.838
(18,20) Abdominal aorta 1.5 0.838 0.814
(20,22) Abdominal aorta 1.5 0.814 0.792
(22,24) Abdominal aorta 12.5 0.792 0.627
(24,26) Abdominal aorta 8 0.627 0.55

(26,27),(26,32) External iliac 5.75 0.4 0.37
(27,29),(32,34) Femoral 14.5 0.37 0.314
(29,31),(34,36) Femoral 44.25 0.314 0.2
(27,28),(32,33) Internal iliac 4.5 0.2 0.2
(29,30),(34,35) Deep femoral 11.25 0.2 0.2

(6,7) Coronaries 10 0.35 0.3
(3,2) Brachiocephalic 3.5 0.95 0.7

(2,42),(9,10) Subclavians 3.5 0.425 0.407
(42,44),(10,12) Brachials 39.75 0.407 0.25
(44,45),(12,14) Radials 22 0.175 0.175
(44,46),(12,13) Ulnars 22.25 0.175 0.175
(42,43),(10,11) Vertebrals 13.5 0.2 0.2

(2,1) R. carotid 16.75 0.525 0.4
(5,4) L. carotid 19.25 0.525 0.4
(15,16) Intercostals 7.25 0.63 0.5
(18,19) Sup. mesenteric 5 0.4 0.35
(17,37) Celiac 2 0.35 0.3
(37,38) Hepatic 2 0.3 0.25
(37,41) Hepatic 6.5 0.275 0.25
(38,40) Gastric 5.75 0.175 0.15
(38,39) Splenic 5.5 0.2 0.2

(20,21),(22,23) Renals 3 0.275 0.275
(24,25) Mesenteric 3.75 0.2 0.175

and hepatic supply to the spleen and liver respectively which are
clearance organs [1].

The cost function at the optimal solution with the Flow approxi-
mation, forOPT 1 are shown in Figure 2, and forOPT 2 are shown in
Figure 3. For Scenario 3, we see infeasible solutions for all values of
Dct andDca withOPT 1with Flow approximation. We observe that
the cost increases as Dct increases, and decreases as Dca increases.
It means that as we need more receiver signal strength at the target

Table 2: Scenarios used for numerical results where avoid-
ance arteries (Ia ) are hepatic (37,38,41) and splenic (38,39).

Scenario # Target (It )
1 Abdominal aorta (24,26)
2 Sup. mesenteric: (18,19), Renals:

(20,21,22,23)
3 Sup. mesenteric: (18,19)
4 Femorals: (27,29,32,34)
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Figure 2: OptimalCost in some scenarioswithOPT 1 and Flow
approximation model for different values of Dct and Dca .

organ, or less interference at the avoidance organs, the cost to do
so increases. The way the cost increases in each scenario, however,
it is different.
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Figure 3: Optimal Cost in each scenario withOPT 2 and Flow
approximation model for different values of Dct and Dca .

The cost function at the optimal solution with the Volume ap-
proximation, for OPT1 are shown in Figure 4, and for OPT2 are
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Figure 4: Optimal Cost in some scenarios with OPT1 and
Volume approximationmodel for different values ofDct and
Dca .
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Figure 5: Optimal Cost in each scenario with OPT2 and
Volume approximationmodel for different values ofDct and
Dca .

shown in Figure 5. The results show similar trends as the Flow
approximation model. However, Scenario 2 has an infeasible so-
lutions with the Volume approximation for OPT1. Also, Dca has
lesser effect on the cost as compared to the Flow approximation.

The number of transmitters at the optimal solution with the
Flow and Volume approximation for OPT 2 are shown in Figures 6,
and 7. For OPT 1, the number of transmitters is always 1, if there is
a feasible solution. The results show that in most cases, the number
of transmitters either increases or stays the same asDct is increased
and Dca is decreased.
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Figure 6: Number of transmitters in each scenariowithOPT 2
and Flow approximation model for different values of Dct
and Dca .
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Figure 7: Number of transmitters in each scenariowithOPT 2
andVolume approximationmodel for different values ofDct
and Dca .

4.1 Result interpretation and Discussions
Present work in DDSs shows that if all the drug is injected in the
veins (i.e., distributed by the heart), less than 1% of the drug reaches
the targeted organ. Compared to that, our solutions improve the
result by injecting the drug in the arteries.

The choice of regions to target and avoid has a huge impact
on the transmitter locations and cost. We see that sometimes the
number of transmitters changes when Dca is changed for a given
Dct , and vice versa, but they remain the same in several cases. From
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PPPPPPPDct

Dca 0.02 0.04 0.06 0.08 0.1

0.3 8, 18, 21, 7 8, 18, 21, 7 8, 7 8 8
0.4 8, 18, 21, 7 8, 18, 21, 7 8, 21, 7 8, 5 8, 5
0.5 8, 18, 21, 7 8, 18, 21, 7 8, 18, 21, 5 8, 5, 21 8, 5
0.6 8, 18, 21, 7 8, 18, 21, 5 8, 18, 21, 5 9, 19, 21, 5 9, 21

PPPPPPPDct

Dca 0.02 0.04 0.06 0.08 0.1

0.3 8, 18, 7 8, 18, 7 8, 18, 7 8, 5 8, 5
0.4 8, 18, 7 8, 18, 5 8, 18, 5 9, 18, 5 9, 5
0.5 8, 18, 5 9, 18, 15 17, 18, 15 17, 18, 15 17, 18, 15
0.6 18, 20 18, 20 18, 20 18, 20 18, 20

Table 3: Transmitter locations for scenarios 2 and 4 respec-
tively with OPT2 and Flow approximation model for each
Dct and Dca combination.

Table 3, we see that although the number stays the same, the specific
locations of the transmitters are different. When the transmitter
locations change, so does the cost. Therefore, a combination of the
cost and number of transmitters gives a better understanding of
the difficulty of meeting the requirements.

Additionally, the transmitter placement patterns change at spe-
cific points as Dct and Dca are changed. We observe that the re-
ceived signal strength at the targeted region and the interference at
the avoidance region can remain the same over more than one set
of Dct and Dca values for the same scenario. This typically occurs
when a set of transmitters provides much more than Dct nanopar-
ticles in the targeted region, and much less than Dca nanoparticles
in the avoidance region.

There are some cases when the solution is infeasible. If theDct is
too large, or the Dca is too small, it becomes increasingly harder to
satisfy the constraints. Beyond a certain limit, the problem becomes
infeasible, e.g., requiring all of the drug to be delivered to two
organs is not possible. In other circumstances that are not as severe,
infeasibility occurs due to the way the dissipation happens. The
point at which the infeasible solution occurs is also not the same
across scenarios and dissipation models.

Another interesting observation is that the results are differ-
ent for the Volume and Flow approximation models. This shows
the importance of the blood circulation model for this problem.
This highlights the importance of an accurate model for the blood
circulation system.

These observations show that the transmitter locations depend
heavily on the disease, human body condition, and the coverage
requirements.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented the Transmitter Placement Problem
in order to determine the optimal location and transmit power
of transmitters in the human cardiovascular system to ensure a
required received signal strength at the desired receivers, and an
interference below a threshold at other receivers. We proposed
two approximation propagation models based on blood flow and
volume of large arteries. To evaluate both models, we consider four
scenarios with different targets and same avoidance areas to study
how the transmitter locations are affected by the desired signal
strength for the target and the threshold interference at the regions
to avoid. Results showed that the transmitters location depend on

the location of the disease, propagation models, and the received
signals requirement at the receivers.

This work opens up several new avenues to make the optimiza-
tion problem more realistic. An important extension that we leave
for future work is to consider the continuous cyclic movement of the
nanoparticles in the human circulatory system. Furthermore, the
drug dissipation models used in this paper are approximations, and
real models validated through simulations, or mathematical models
need to be developed. Deriving from related work in flow-based
systems [16], we envision a bio-medical cyber-physical system ap-
proach to the DDS by including a control system to vary the dosage
at transmitters location.
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