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Abstract—We envision a future where real-time computation
on the battlefield provides the tactical advantage to an Army over
its adversary. The ability to collect and process large amounts of
data to provide actionable information to soldiers will greatly
enhance their situational awareness. Our vision is based on
the observation that the U.S. Military is attempting to equip
soldiers with smartphones. While individual phones may not be
sufficiently powerful for processing large amount of data, using
the mobile devices carried by a squad or platoon of Soldiers as
a single distributed computing platform, a Tactical Cloud, would
enable large-scale data processing to be conducted in battlefields.
In order for this vision to be realized, two issues have to be
addressed. The first is the complexity of writing applications
for distributed computing environments, and the second is the
vulnerability of data on mobile devices. In this paper, we propose
combining two existing technologies to address these issues. The
first is Hadoop MapReduce, a scalable platform that provides
distributed storage and computational capabilities on clusters of
commodity hardware, and the second is the Mobile Distributed
File System (MDFS) which allows distributed data storage with
built-in reliability and security. By making the MDFS file system
work with Hadoop on mobile devices, we hope to enable big data
applications on tactical clouds.
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I. INTRODUCTION

With advances in technology, mobile devices are becoming
capable computing platforms. The new generations of mobile
devices are relatively powerful with gigabytes of memory
and multi-core processors. These devices have sophisticated
applications and sensors capable of generating and collecting
hundreds of megabytes of data. This data can range from raw
application data to images, audio, video, or text files. With
these enhancements in mobile device capabilities, big data
processing in environments such as disaster recover sites and
battlefields is becoming a reality [1]. There is currently an
effort by the military to equip Soldiers with smartphones [2].
We propose utilizing these mobile devices to collect and pro-
cess data in order to provide Soldiers with enhanced situational
awareness.

Current mobile applications that perform massive comput-
ing tasks, such as big data processing, offload data and tasks
to data centers or powerful servers in the cloud [3]. Hadoop
MapReduce [4] is one of the frameworks that exist to make
such computation easier. It splits user jobs into smaller tasks
and runs them in parallel on different nodes, reducing the
overall execution time. In extreme environments, access to
the traditional cloud may not be available. Thus, the ability
to carry out computation across a group of mobile devices,
a Tactical Cloud carried by a squad of Soldiers or a team
of first responders, is essential. This requires a Hadoop-like

framework that is resilient to network failures and can operate
across wireless mobile ad-hoc networks [5] typical of such
scenarios.

A concern that has to be addressed to enable distributed
computation across mobile devices is data security, due to the
envisioned applications for such systems involving sensitive in-
formation [6], [7]. Traditional security mechanisms tailored for
static networks are inadequate for tactical clouds (i.e., tactical-
grade security) due to the ease with which mobile devices can
be lost or captured (and data could be compromised, even
if encrypted). One approach proposed to address this security
vulnerability is the k-out-of-n computing framework [8] which
distributes data across n nodes with the property that the
data from at least k nodes is necessary to reconstruct the
original information. In this paper, we replace Hadoop’s native
distributed file system, HDFS [9], with the Mobile Distributed
File System (MDFS) [8], [10] that uses the k-out-of-n principle
in order to provide the security necessary for the application
domain.

In addition to the lack of tactical-grade security, a main
drawback of HDFS in mobile environments is its inefficient
use of resources. HDFS does not consider device energy
and relies on low latency and high availability networks to
replicate file blocks across multiple devices to increase re-
liability. Interestingly, the aforementioned k-out-of-n-enabled
MDFS [8], [10] also ensures high energy efficiency. Replacing
HDFS with MDFS mitigates these drawbacks while allowing
Hadoop MapReduce to be used as a framework for distributed
computing on mobile devices, with the following benefits: 1)
parallel task execution which prevents a single device becom-
ing a performance bottleneck; 2) efficient and fault tolerant
resource management, task scheduling, and job execution;
and 3) extensive testing and usage for a large number of
applications over the years.

The military provides a unique opportunity to leverage the
power of Hadoop MapReduce operating on tactical clouds with
a reliable and secure distributed file system. The opportunity
arises due to the presence of a collection of mobile devices
within a single domain of ownership. While it’s much harder
to find a group of people willing to allow their mobile phones
to be used as a computing device within other domains,
government issued mobile devices could be configured to be
part of a distributed computing platform within the military.
Such a tactical cloud would enable a number of applications
to be implemented that are beneficial to Soldiers.

An example of an existing application that could greatly
benefit from Hadoop MapReduce in tactical clouds is the
TIGR [11] system used in Iraq by deployed soldiers. This
system collects information from past missions and allows for
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Fig. 1. Hadoop architecture with MapReduce and HDFS components. Steps
1-4 illustrate HDFS read/write operation

continuity of situational awareness through numerous troop
rotations. Before TIGR, as troops rotate out of the theater,
intelligence collected in previous missions were lost. TIGR
provides a large amount of information, in the form of pictures,
audio, video, and text collected over multiple missions that
soldiers can manually search through.

With Hadoop, the most relevant data from TIGR could
be distributed across the tactical cloud using MDFS before
Soldiers head out into the field. In addition, Soldiers can store
new data they collect on their mobile devices. The platoon
leader or squad commander could use MapReduce to extract
intelligence from this data by mapping tasks such as advanced
text processing or media analysis to each device, and reducing
the information output by these tasks to a centralized device
for visualization.

In this paper, we enable Hadoop MapReduce across mobile
devices by replacing its default filesystem with MDFS and
evaluate its performance on a general heterogeneous cluster
of devices. We modify MDFS to match the interface of
HDFS, which would allow other Hadoop frameworks, such
as HBase, to be used on tactical clouds. This approach also
enables existing HDFS applications to be deployed across
mobile devices without requiring any modifications. To the
best of our knowledge, this is the first system that enables
Hadoop MapReduce across mobile devices while addressing
the security requirements of domains such as the military.

II. BACKGROUND, STATE OF ART AND CHALLENGES

A. Hadoop and MDFS Overview
The two primary components of Apache Hadoop are

MapReduce, a scalable and parallel processing framework,
and HDFS, the filesystem used by MapReduce (Figure 1).
Within the MapReduce framework, the JobTracker and the
TaskTracker are the two most important modules. The Job-
Tracker is the MapReduce master daemon that accepts the
user jobs and splits them into multiple tasks. It then assigns
these tasks to MapReduce slave nodes in the cluster called
TaskTrackers. TaskTrackers are the processing nodes in the
cluster that run the Map and Reduce tasks. The JobTracker
is responsible for scheduling tasks on the TaskTrackers and
re-executing the failed tasks.

HDFS is a reliable, fault tolerant distributed file system
designed to store very large datasets. Its key features include
load balancing, configurable block replication strategies and
recovery mechanisms for fault tolerance, and auto scalability.
In HDFS, each file is split into blocks and each block is
replicated to several devices across the cluster. As shown
in Figure 1, HDFS contains the NameNode and DataNode
modules. The NameNode is the file system master daemon
that holds the files’ metadata and inode records of files and
directories. An inode contains various attributes, e.g., name,
size, permissions and last modified time. DataNodes are the
file system slave nodes which are the storage nodes in the
cluster. They store the file blocks and serve read/write requests
from the client. The NameNode maps a file to the list of its
blocks and the blocks to the list of DataNodes that store them.

When the HDFS client initiates the file read operation, it
tries to read the block from the closest DataNodes to minimize
the read latency and maximize the throughput. When the HDFS
client writes data to a file, it initiates a pipelined write to
a list of DataNodes chosen by the NameNode based on the
pluggable block placement strategy. Each DataNode receives
data from its predecessor in the pipeline and forwards it to its
successor.

Plain File

Encrypted

Encrypted AES

AES

Erasure Coding Secret Sharing

Fig. 2. Existing MDFS architecture

MDFS [12], [8], [10]
is a file system that is es-
pecially suitable for battle-
field computation on mo-
bile devices provided to
frontline troops. Computa-
tion occurs across a mobile
ad-hoc network formed
from a collection of these mobile devices, a Tactical Cloud,
where each node can enter or move out of the cloud freely.
MDFS is built on a k-out-of-n framework which provides
energy efficiency, data security and reliability. As shown in
Figure 2, every file is encrypted using a secret key and
partitioned into n1 file fragments using erasure encoding (Reed
Solomon algorithm). The key is also split into n2 fragments
using Shamir’s secret key sharing algorithm. File creation is
complete when all the key and file fragments are distributed
across the cluster. For file retrieval, a node has to retrieve at
least k1 (≤ n1) file fragments and k2 (≤ n2) key fragments to
reconstruct the original file.

The MDFS architecture provides high security by ensuring
that data cannot be decrypted unless an authorized user obtains
k2 distinct key fragments. It also ensures resiliency by allowing
the authorized users to reconstruct the data even after losing
n1-k1 fragments of data. This scheme optimally distributes key
and file fragments to the selected storage nodes such that each
node contains at most one key fragment and one file fragment
for each file, thereby ensuring higher reliability and security.
MDFS provides a fully distributed directory service in which
each node in the network periodically synchronizes its stored
fragments and the corresponding key information with other
nodes.

B. State of Art and Research Challenges
There have been several research studies that attempted to

bring the simplicity and powerful abstraction of the MapRe-
duce framework to heterogeneous clusters of devices. Marinelli
introduced the Hadoop-based platform Hyrax [13] for cloud
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computing on smartphones. In Hyrax, Hadoop TaskTracker
and DataNode processes were ported to Android smartphones
while a single instance of NameNode and JobTracker were run
in a single server. Such a porting of processes directly onto
mobile devices does not address the shortcomings of Hadoop
in mobile environments. As described earlier, HDFS is not
well suited for dynamic, tactical environments.

Another MapReduce framework, Misco [14] was imple-
mented on Nokia smartphones. It has a server-client model,
similar to Hyrax, where the server keeps track of various user
jobs and assigns them to workers on demand. Yet another
server-client model based MapReduce system was proposed
over a cluster of mobile devices [15] where the mobile client
implements MapReduce logic to retrieve work and obtain
results from the master node. Finally, P2P-MapReduce [16]
describes a prototype implementation of a MapReduce frame-
work which uses a peer-to-peer model for parallel data pro-
cessing in dynamic cloud topologies. These solutions, however,
do not solve the issues involved in the storage and processing
of large datasets within the dynamic network.

Huchton et al. [12] proposed a first version of a k-resilient
Mobile Distributed File System (MDFS) for mobile devices
targeted primarily for military operations. Chen et al. [10]
proposed a new resource allocation scheme based on the k-out-
of-n framework and integrated it with MDFS, for significant
improvements in energy consumption. We replace HDFS in
Hadoop with this k-out-of-n-enabled MDFS to ensure energy
efficiency, reliability, and security of Hadoop in tactical, mobile
environments.

For implementing the MapReduce framework over MDFS,
a number of major challenges have to be addressed. The
first is overcoming the limited file system functionality of
MDFS, which supports only read(), write() and list(). The
MapReduce framework requires a much wider range of file
system operations. The MapReduce framework must also
remain compatible with available HDFS applications without
code modification or extra configuration. The second challenge
is the fact that the MapReduce framework needs read/write
streaming (i.e., reading/writing data byte by byte). MDFS can
not support read/write streaming. The third challenge is to pro-
vide the JobTracker the data locality information that it needs
for assigning tasks to TaskTrackers. In MDFS, since no node in
the network has a complete block for processing, determining
the best locations for task execution is a challenge. Finally,
Hadoop uses the network topology to obtain rack awareness.
If the node holding the data for processing is not available
for task execution, the scheduler selects another node in the
same rack. This allows the MapReduce framework to leverage
the higher bandwidth of in-rack switching. Such locality is not
present in MANETs due to their dynamic network topology,
and thus defining rack awareness is a challenge.

III. SYSTEM DESIGN

In the MDFS architecture, a file to be stored is encrypted
and split into n fragments such that any k (<n) fragments are
sufficient to reconstruct the original file. In this architecture,
parallel file processing is not possible as even a single byte of
data cannot be read without retrieving the required number
of fragments. Similar to the MapReduce framework which
assumes that the input file is split into blocks (distributed
across the cluster), we introduce blocks into MDFS. In our
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Fig. 3. Centralized Architecture of MDFS. Steps 1-10 illustrate data read
operation

approach, given a configurable block size, a file is split into a
corresponding number of blocks. Each block is then split into
fragments that are stored across the cluster.

A. System Architecture
We propose two approaches for our MDFS architecture:

a Distributed architecture where there is no central entity to
manage the cluster and a Centralized one, as in HDFS. The
user chooses one architecture during the cluster startup based
on the working environment.

1) Centralized Architecture: This architecture is depicted
in Figure 3 which includes MDFS Client(s), a Name Server,
Data Servers and a Fragment Mapper.

Users invoke file system operations using the MDFS client,
a built-in library that implements a file system abstraction for
upper layer applications. This allows the user to be unaware of
file metadata or the storage locations of file fragments. Instead,
the user can reference each file by paths in the namespace. The
paths use a URI format, e.g. scheme://authority/path where the
scheme decides the file system to be instantiated, e.g. mdfs,
and the authority is the Name Server address.

The Name Server and Fragment Mapper are implemented
as singleton instances across the cluster. The Name Server
is a lightweight MDFS daemon that stores the hierarchical
organization, or the namespace, of the file system. All file
system metadata including the mapping of a file to its list of
blocks is also stored in the MDFS Name Server. The Name
Server has the same functionality as Hadoop’s NameNode.
The MDFS client and MDFS Name Server are unaware of the
fragment distribution, which is handled by the Data Server.

The Data Server is a lightweight MDFS daemon instan-
tiated on each node in the cluster. It coordinates with other
MDFS Data Server daemons to handle MDFS communication
tasks like neighbor discovery, file creation, file retrieval and
file deletion. Unlike Hadoop DataNode, the Data Server has
to be instantiated on all nodes in the network where data
flow operations such as reads and writes are invoked. This is
because the Data Server prepares the data for these operations
and they are always executed in the local file system of the
client.

We kept the namespace management and data management
totally independent for better scalability and design simplicity.
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The Fragment Mapper stores information of file and key frag-
ments which include the fragment identifiers and the location
of fragments. It stores the mapping of a block to its list of
key and file fragments. These daemons can be run on any
node in the cluster. The node that runs these daemons is called
the Master Node. MDFS stores metadata on the Master Node
similar to other distributed systems like HDFS, GFS [17] and
PVFS [18].

The major disadvantage of the centralized approach over
the distributed approach is the master node being a single
point of failure. However, this problem can be mitigated by
configuring a Standby Node in the configuration file. The
Standby Node is updated by the Master Node whenever there
is a change in the file system metadata. The Master Node
signals success to client operations only when the metadata
change is reflected in both the master and standby nodes.
Hence, data structures of the master and standby node are
always synchronized ensuring smooth fail-over.

The Master Node can become overloaded when a large
number of mobile devices are involved in processing. There are
several distributed systems like Ceph [19] and Lustre [20] that
use multiple servers which manage the file system metadata
evenly and avoid scalability bottlenecks of a single metadata
server. MDFS can efficiently handle hundreds of megabytes
with a single metadata server.

2) Distributed Architecture: In this architecture, depicted
in Figure 4, every participating node runs a Name Server and
a Fragment Mapper. The functionality (hence the description)
of the MDFS Client, Name Server, Data Server, etc. is the
same as in the Centralized Architecture. After every file system
operation, the update is broadcast in the network so that the
local caches of all nodes are synchronized. Moreover, each
node periodically synchronizes with other nodes by sending
broadcast messages. Any new node entering the network
receives these broadcast messages and creates a local cache
for further operations. This architecture has no single point of
failure and no constraint is imposed on the network topology.
Each node can operate independently, as each node stores
a separate copy of the namespace and fragment mapping.
The load is evenly distributed across the network in terms
of metadata storage, in contrast to the centralized architecture.
However, network bandwidth and device energy are wasted due
to the messages broadcast by each node for updating the local

cache of every other node in the network. As the number of
nodes involved in processing increases, this problem becomes
more severe, leading to higher response time for each user
operation. Also, memory is wasted due to the metadata being
replicated on all the devices.

B. MDFS Operations
1) File Read: The design of HDFS read operation can not

be used in MDFS. For any block read operation, the required
number of fragments has to be retrieved, then combined and
decrypted. Unlike HDFS, an MDFS block read operation is
always local to the reader as the block to be read is first
reconstructed locally.

However, the overall transmission cost during the read
operation varies across nodes based on the location of frag-
ments and the reader’s location. As the read operation is
handled locally, random reads are supported in MDFS where
the user can seek to any position in the file. Figure 3 illustrates
the control flow of a read operation through the following
numbered steps.
Step 1: The user issues a read request for a file of length L
at a byte offset O.
Step 2: As in HDFS, the MDFS client queries the Name Server
to return all blocks of the file that span the byte offset range
from O to O + L. The Name Server searches the local cache
for the mapping from the file to the list of blocks. It returns
the list of blocks that contain the requested bytes.
Step 3: For each block in the list returned by the Name Server,
the client issues a retrieval request to the Data Server. The Data
Server then uses the File Retrieval module to handle the block
retrieval.
Step 4: The Data Server requests the Fragment Mapper to
provide information regarding the key and file fragments of
the file. The Fragment Mapper replies with the identity of the
fragments and the locations of the fragments in the networks.
Steps 5-6: The Data Server fetches the required number
of fragments from the locations previously returned by the
Fragment Mapper. Fragments are fetched in parallel and stored
in the local file system of the requesting client.
Steps 7-9: The above operations are repeated for fetching
the key fragments. These details are not included in the
diagram for brevity. The secret key is constructed from the key
fragments. Once the required file fragments are downloaded
into the local file system, they are decoded and then decrypted
using the secret key to get the original block. The key and file
fragments which were downloaded into the local file system
during the retrieval process are deleted for security reasons.
Step 10: The Data Server acknowledges the client with the
location of the block in the local file system. The MDFS client
reads the requested number of bytes of the block. Steps 3-9
are repeated if there are multiple blocks to be read. Once the
read operation is completed, the block is deleted for security
reasons to restore the original state of the cluster.

2) File Write: The design of the HDFS write operation
is not applicable for MDFS as data cannot be written unless
the block is decrypted and decoded. Hence, in the MDFS
architecture when the write operation is called, bytes are
appended to the current block until the block boundary is
reached or the file is closed. The block is then encrypted,
split into fragments and redistributed across the cluster. The
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MDFS write operation steps are mostly the inverse of the read
function.

When the user issues a write request for a file of length
L, the file is split into blocks of size L/B where B is the
user configured block size. The user request can also be a
streaming write where the user writes to the file system byte
by byte. Once the block boundary is reached or when the file
is closed, the block is written to the network. Similar to the
HDFS block allocation scheme, for each block to be written,
the Name Server returns a new block id based on the allocation
algorithm and adds the block identifier to its local cache. In
our implementation, the absolute path of each file is used as
the hash key to generate the unique global identifier. The block
stored in the local file system is then encrypted using the secret
key. The encrypted block is partitioned into n fragments using
erasure encoding and the key is split into fragments using
Shamir’s secret key sharing algorithm.

The Data Server now requests the k-out-of-n framework to
provide n storage nodes such that the expected transmission
cost for all clients to retrieve their closest k fragments is
minimal [10]. The Data Server then requests the Fragment
Mapper to add/update the fragment information of this file.
Once the file and key fragments are distributed across the
cluster, the Data Server informs the client that the file has
been successfully created. For security purposes, the original
block stored in the local file system of the writer is deleted
after the write operation completes.

3) File Append: MDFS supports Append operation which
was introduced in Hadoop 0.19. If a user needs to write to an
existing file, the file has to be open in append mode. If the user
appends data to the file, bytes are added to the last block of
the file. Hence, for block append mode, the last block is read
into the local file system of the writer and the file pointer is
updated appropriately to the last written byte. Then, writes are
executed in a similar way as described in the previous section.

4) File Delete: For a file to be deleted, all file fragments of
every block of the file have to be deleted. When the user issues
a file delete request, the MDFS client queries the Name Server
for all the blocks of the file. It then requests the Data Server
to delete these blocks from the network. The Data Server
gathers information about the file fragments from the Fragment
Mapper and sends delete requests to all the locations returned
by the Fragment Mapper. Once the delete request has been
successfully executed, the corresponding entry in the Fragment
Mapper is removed.

5) File Rename: The File Rename operation requires only
an update to the namespace where the file is referenced with
the new path name instead of the old path. When the user
issues a file rename request, the MDFS client requests the
Name Server to update the current inode structure of the file
based on the renamed path.

6) Directory Create/Delete/Rename: When the user issues
the file commands to create, delete or rename any directory,
the MDFS client requests the Name Server to update the
namespace. The namespace keeps a mapping of each file to its
parent directory where the topmost level is the root directory
(’/’). Recursive operations are also allowed for delete and
rename operations.

C. MDFS Consistency Model
Like HDFS, MDFS also follows single writer and multiple

reader model. An application can add data to MDFS by

creating a new file and writing data to it (Create Mode). The
data once written cannot be modified or removed except when
the file is reopened for append (Append Mode). In both write
modes, data is always added to the end of the file. MDFS
provides the support for overwriting the entire file but not from
any arbitrary offset in the file.

If an MDFS client opens a file in Create or Append mode,
the Name Server acquires a write lock on the corresponding
file path so that no other client can open the same file for
write. The writer client periodically notifies the Name Server
through heartbeat messages to renew the lock. To prevent the
starvation of other writer clients, the Name Server releases
the lock after a user configured time limit if the client fails
to renew the lock. The lock is also released when the file is
closed by the client. Preventing concurrent writer clients on
the same file ensures atomicity. The final contents of the file
depend on the order in which the writer clients are served by
the Name Server.

A file can have concurrent reader clients even if it is locked
for a write. When a file is opened for reading, the Name Server
acquires a read lock on the corresponding file path to protect
it from deletion from other clients. As the writes are always
executed in the local file system, the data is not written to
the network unless the file is closed or the block boundary is
reached. So, the changes made to the last block of the file may
not be visible to the reader clients while the write operation is
being executed. Once the write has completed, the new data is
visible across the cluster immediately. In all instances, MDFS
provides strong consistency guarantee for reads such that all
concurrent reader clients will read the same data irrespective
of their locations.

IV. PERFORMANCE EVALUATION

In this section, we present performance results and identify
bottlenecks in processing large input datasets. For measuring
the performance of MDFS on mobile devices, we ran Hadoop
benchmarks on a heterogeneous mobile wireless cluster con-
sisting of 1 personal desktop computer (Intel Core 2 Duo 3
GHz processor, 4 GB memory), 10 netbooks (Intel Atom 1.60
GHz processor, 1 GB memory, Wi-Fi 802.11 b/g interface)
and 3 HTC Evo 4G smartphones running Android 2.3 OS
(Scorpion 1Ghz processor, 512 MB RAM, Wi-Fi 802.11
b/g interface). We have used Apache Hadoop stable release
1.2.1 [21] for our implementation. Our MDFS framework
consists of 18,365 lines of Java code, exported as a single
jar file. The MDFS code does not have any dependency
on the Hadoop code base. Similar to DistributedFileSystem
class of HDFS, MDFS provides MobileDistributedFS class
that implements FileSystem, the abstract base class of Hadoop
for backwards compatibility of all present HDFS applications.
Since no changes are required in the existing code base for
MDFS integration, the user can upgrade to a different Hadoop
release without any conflict. We used TeraSort, a well-known
benchmarking tool that is included in the Apache Hadoop dis-
tribution. Our benchmark run consists of generating a random
input data set using TeraGen and then sorting the generated
data using TeraSort. We considered the following metrics:
1) Job completion time of TeraSort; 2) MDFS Read/Writes
Throughput; and 3) Network bandwidth overhead. We are
interested in the following parameters: 1) Size of input dataset;
2) Block Size; and 3) Cluster Size. Each experiment was
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Fig. 5. (a) Effect of Block size on Job Completion Time; (b) Processing
time vs Transmission time.

repeated 15 times and average values were computed. The
parameters k and n are set to 3 and 10, respectively for
all runs. Each node is configured to run 1 Map task and
1 Reduce task per job. As this paper is the first work that
addresses the challenges in processing of large datasets in
mobile environment, we do not have any solutions to compare
against.

A. Effect of Block Size on Job Completion Time
The parameter ‘dfs.block.size’in the configuration file de-

termines the default value of block size. It can be overridden by
the client during file creation if needed. Figure 5(a) shows the
effect of block size on job completion time. For our test cluster
setup, we found that the optimal value of block size for a
50MB dataset is 4 MB. The results show that the performance
degrades when the block size is reduced or increased further.

A larger block size will reduce the number of blocks and
thereby limit the amount of possible parallelism in the cluster.
By default, each Map task processes one block of data at
a time. There has to be a sufficient number of tasks in the
system such that they can be run in parallel for maximum
throughput. If the block size is small, there will be more Map
tasks processing less data. This would lead to more read and
write requests across the network, which can be costly in a
mobile environment. Figure 5(b) shows that processing time
is 70% smaller than the network transmission time for the
TeraSort benchmark. So, tasks have to be sufficiently long
enough to compensate the overhead in task setup and data
transfer for maximum throughput. For real world clusters, the
optimal value of block size must be obtained experimentally.

B. Effect of Cluster Size on Job Completion Time
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Fig. 6. Effect of Cluster size on Job
Completion Time

The cluster size deter-
mines the level of possi-
ble parallelization in the
cluster. As the cluster size
increases, more tasks can
be run in parallel, thus re-
ducing the job completion
time. Figure 6 shows the
effect of cluster size on
job completion time. For
larger files, there are sev-
eral map tasks that can
be operated in parallel de-
pending on the configured block size. As shown in the figure,
the increase in the cluster size results in increased performance.
For smaller files, the performance is not affected much by
the cluster size, as the performance gain obtained as part of
parallelism is comparable to the additional cost incurred in the
task setup.
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Fig. 8. MDFS Read/Write Throughput of (a) Large files (b) Small files

C. Effects of Node Failure Rate on Job Completion Time

 260

 280

 300

 320

 340

 360

 380

 400

1 2 3 4 5 6 7 8 9

H
a

d
o

o
p

 J
o

b
 T

im
e

 (
s
e

c
)

Number of Iterations

1 node failed

2 node failed

3 node failed

Terasort of 100 MB DataSet (sec)

Fig. 7. Job time vs Number of failures.

Our system is designed
to tolerate failures. Fig-
ure 7 shows the reliability
of our system in case of
node failures. The bench-
mark is run for 10 iter-
ations for 100 MB data.
Node failures are induced
by turning off the wireless
interface during the pro-
cessing stage. This emu-
lates real world situations
wherein devices get dis-
connected from the network due to hardware or connection
failures. In Figure 7, one, two and three simultaneous node
failures are induced in iterations 3, 5 and 8 respectively and
original state is restored in the succeeding iteration. The job
completion time is increased by 10% for each failure but the
system successfully recovered from these failures.

In the MDFS layer, the k-out-of-n framework provides
data reliability. If a node containing fragments is not available,
the k-out-of-n framework chooses another node for the data
retrieval. Since the k and n parameters are set to 3 and 10
respectively, the system can tolerate up to 7 node failures
before the data becomes unavailable. If any task fails due
to unexpected conditions, TaskTrackers notify the JobTracker
about the task status. JobTracker is responsible for re-executing
the failed tasks on some other machine. JobTracker also
considers a task as failed if the assigned TaskTracker does
not report the failure in configured timeout interval.

D. Effect of Input Size on Job Completion Time
Figure 8(a) and Figure 8(b) show the effect of input

dataset size on MDFS throughput. The experiment measures
the average read and write throughput for different file sizes.
The block size is set to 4 MB. The result shows that the
system is less efficient with small files due to the overhead
in setup of creation and retrieval tasks. Maximum throughput
is observed for file sizes that are multiples of block size. This
will reduce the total number of subtasks needed to read/write
the whole file, decreasing the overall overhead. In Figure 8(b),
the throughput gradually increases when the input dataset size
is increased from 1 MB to 4 MB because more data can be
transferred in a single block read/write request. However, when
input dataset size is increased further, one additional request
is required for extra data and thus throughput drops suddenly.
The results show that maximum MDFS throughput is around
2.83 MB/s for reads and 2.12 MB/s for writes for file sizes
that are multiples of block size.

2014 IEEE 3rd International Conference on Cloud Networking (CloudNet)

345



 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50

N
u

m
b

e
r 

o
f 

B
ro

a
d

c
a

s
t 

P
a

c
k
e

ts

Size of Input Dataset (MB)

Distributed Architecture

Centralized Architecture

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4  5  6  7  8  9  10

N
u

m
b

e
r 

o
f 

B
ro

a
d

c
a

s
t 

P
a

c
k
e

ts

Cluster Size

Distributed Architecture

Centralized Architecture

(b)
Fig. 10. Effect of (a) Cluster size (b) Input dataset size on Network bandwidth
overhead in Centralized and Distributed Architecture

Figure 9 shows the effect of input dataset size on job
completion time. The experiment measures the job completion
time for different file sizes ranging from 5 MB to 100MB. Files
generated in mobile devices are unlikely to exceed 100 MB.
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Fig. 9. Completion time vs Input
dataset size.

However, MDFS does
not have any hard limit
on input dataset size and
it can take any input size
allowed in the standard
Hadoop release. The result
shows that the job com-
pletion time varies in less
than linear time with in-
put dataset size. For larger
datasets, there is a suffi-
cient number of tasks that
can be executed in parallel
across the cluster resulting in better node utilization and
improved performance.

E. Centralized versus Distributed Architecture
Figure 10(a) compares the number of broadcast messages

sent during file creation for different input dataset sizes when
the block size is set to 4 MB. The graph shows that the number
of broadcast messages increases with the input data size for the
distributed architecture but remains constant for the centralized
architecture. In a distributed architecture, each block allocation
in the Name Server and subsequent fragment information
update in the Fragment Mapper needs to be broadcast to all
other nodes in the cluster so that their individual caches remain
synchronized with each other. This is a costly operation in
wireless networks due to its large bandwidth requirement. This
effect is much worse when the cluster size grows. Figure 10(b)
compares the number of broadcast messages sent during file
creation for varying cluster sizes. The updates are not broadcast
in a centralized approach as the Name Server and Fragment
Mappers are singleton instances.

The results prove that the distributed architecture is better
suited for medium sized clusters with independent devices and
no central server. The overhead due to broadcasting is minimal
if the cluster is not large. For large clusters, the communication
cost required to keep the metadata synchronized across all
nodes becomes significant. Hence, a centralized approach is
preferred in large clusters. However, data reliability is guaran-
teed by the k-out-of-n framework in both architectures.

V. CONCLUSIONS AND FUTURE WORK

The Hadoop MapReduce framework over MDFS demon-
strates the ability of providing a Hadoop MapReduce frame-
work in a tactical cloud where the HDFS file system is

optimized to handle neither the dynamic and resource con-
strained nature of the tactical cloud, nor the security and
reliability requirements of the domain. The evaluation results
show that our system is capable of enabling big data analytics
of unstructured data like media files, text and sensor data in
tactical environments.
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