
Efficient Flooding in Wireless Sensor Networks
Secured with Neighborhood Keys

Amin Hassanzadeh, Radu Stoleru, Jianer Chen
Department of Computer Science and Engineering, Texas A&M University

{hassanzadeh, stoleru, chen}@cse.tamu.edu

Abstract—Network flooding is a fundamental communication
primitive for Wireless Sensor Networks (WSN). Flooding is used
for disseminating code updates and parameter changes, affecting
the operation of all nodes in the network. When flooding occurs
each node, typically, broadcasts the flooding packet once. The
costs for flooding, however, can become significant if neighbor-
hood keys are used for communication (as proposed in recent
research on secure localization and key distribution [1]), since,
instead of a single broadcast, a node is required to perform
several unicast transmissions. In this paper we address the
problem of minimizing the number of unicast transmissions
required for ensuring 100% network coverage for flooding in
WSN secured with neighborhood keys. We show that the problem
is NP-hard and propose an approximation algorithm for solving
it. Through simulations, we demonstrate that our algorithm
ensures 100% network coverage for flooding, while requiring,
surprisingly, as low as 0.75 packet transmissions per node.

I. INTRODUCTION

Wireless Sensor Networks (WSN), consisting of large num-
bers of resource constrained (e.g., energy, storage, com-
putation, communication) sensor nodes, have recently been
developed for several applications [2]–[4]. Securing WSN,
especially those targeting military, industrial and civil appli-
cations, has long been a top priority, evidenced by research in
several areas, including key distribution [5], secure communi-
cation [6], and secure localization [7], to name a few.

As a solution for both secure node localization and key
distribution in WSN, Secure Walking GPS (S-WGPS) was
recently proposed [1]. S-WGPS, an extension of Walking GPS
(WGPS) [8], is a practical localization scheme and secure
against Dolev-Yao and GPS-denial attacks. In both WGPS
and S-WGPS, a GPS-enabled master node obtains its current
location from the onboard GPS or Inertial Management Unit
(IMU) and sends it to each newly deployed node, which must
be in its proximity. For secure neighborhood communication
S-WGPS distributes pairwise, neighborhood keys to the nodes
being deployed. The neighborhood keys ensure network re-
silience against Wormhole attacks.

The decision regarding what keys to distribute to a sensor
node, during deployment, resides with the GPS-enabled master
node. The master node estimates the location of the node being
deployed (based on master’s location) and compares it with
locations of the already deployed nodes. It then decides what
keys to distribute to the newly deployed sensor node, such
that the node shares a key with at least one of its neighbors.
It is paramount to remark that: i) S-WGPS, to ensure network
resilience against wormhole attacks, forbids the sharing of a

key between a node and all its neighbors, unless all node’
neighbors are also neighbors (i.e., a clique); and ii) for limiting
the number of keys deployed on each node (because of storage
constraints) S-WGPS does not guarantee that a key is shared
by any two sensor nodes within radio range. Consequently,
it is possible to have true sensor node neighbors unable to
communicate because they do not share a key.

Since the keys distributed by S-WGPS can only be used
for unicast communication, supporting broadcast can become
very costly in terms of energy. In order to broadcast a packet,
a node provisioned with neighborhood keys, would need to
send multiple unicast packets. Motivated by the high cost of
flooding packets from a basestation in a network secured with
neighborhood keys, we seek to investigate how to reduce the
number of unicast transmissions in order to support network
flooding. The first research question we address is whether or
not there exists a solution for the network flooding problem,
in which each node uses only one key for re-broadcasting
a packet1, such that, eventually, all nodes in the network
receive the packet. It is critical to understand that a node might
not be able to directly communicate with all its neighbors
(because they have different keys), but they may be able to
communicate, indirectly, through some shared neighbors, or
neighbors of neighbors, etc. The second research question we
plan to investigate is: if it is not possible to support networking
flooding with one packet transmission per node, then what is
the optimal number of unicast transmissions that ensure 100%
coverage for the flooding packet?

To address the aforementioned research questions, we for-
mally define the problem of efficient network flooding (i.e.,
that uses a single unicast transmission by each node) in WSN
secured with neighborhood keys. We prove that the problem
is NP-complete, propose an optimization version of it, and
develop an approximation algorithm for solving it. In our
proposed solution, the master node employed by S-WGPS
decides the keys that each node in the network needs to use
for flooding packets from a given basestation (we call this
Node/Keys mapping file). Interestingly, after this decision is
made, it is flooded, from the basestation to the entire network
efficiently. Each node receiving the Node/Keys packet, uses
the information from the packet to decide which of its keys to
use for re-broadcasting. This solution will guarantee that all

1This means the node sends only one flooding packet, as it would have
been the case for broadcast-based flooding

2011 IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

978-1-4577-2014-7/11/$26.00 ©2011 IEEE 119

nodes in the network receive the Node/Keys mapping file for
efficiently supporting network flooding. More precisely, this
paper makes the following contributions:

• We formulate the efficient flooding in WSN secured with
neighborhood keys as an optimization problem and show
that it is NP-hard.

• We propose an approximation algorithm which selects an
optimal subset of keys that each node needs to use for
flooding a packet, ensuring a 100% network coverage.

• Through extensive simulations we demonstrate that our
algorithm achieves 100% network coverage for flooding,
while requiring, surprisingly, on average less than 1
packet transmitted per node.

This paper is organized as follows. We present background
material and review the state of art in Section II. We formulate
the problem of efficient flooding in WSN secured with neigh-
borhood keys, and prove that it is NP-hard in Section III. We
show how to formulate our problem as a satisfiability problem
in Section IV, and present an approximation algorithm for
solving it, in Section V. Performance evaluation results for our
proposed algorithm are presented in Section VI. We conclude
in Section VII summarizing the main ideas and contributions.

II. STATE OF ART AND BACKGROUND

Public key cryptography has long been considered very dif-
ficult for resource constrained sensor nodes. Despite successful
implementations on more capable sensor node hardware, e.g.,
iMote [9], [10], most of the proposed encryption algorithms for
typical sensor networks are still based on symmetric cryptogra-
phy. Related to secure flooding/broadcasting, two approaches
have been proposed for broadcast authentication in wireless
sensor networks: i) digital signatures; and ii) µTESLA-based
algorithms [11].

In solutions based on digital signatures, receiver nodes
authenticate received broadcast messages by verifying the
senders’ signature attached to the message. The challenging
aspect of these types of solutions remains the high number
of signature operations needed, despite attempts at reducing
them, as in [12] where an authentication expander graph with
constant degree reduces the number of hashes to be included
in the message. Similarly, other ideas to reduce the number of
unnecessary signature verifications have been proposed [13].

The µTESLA-based algorithms, based on TESLA [14] and
its variations [15]–[17], use symmetric cryptography mech-
anisms. A major limitation for µTESLA is the fact that it
requires the basestation and sensor nodes to be time syn-
chronized. Additionally, most of the algorithms in this class
lack the capability of immediate authentication, making them
vulnerable to DoS attacks against broadcast authentication.
Ning et. al [11] address some of these limitations through
a technique that mitigates DoS attacks against both signature-
based and µTESLA-based algorithms.

Compared with state of art, our proposed solution requires
neither time synchronization nor additional information at-
tached to the broadcast messages (eliminating the need for
expensive signature-related operations on each packet). The

only cost for our solution is the one time flooding that
distributes to all sensor nodes in the network information about
the keys they need to use (the nodes already have the keys)
for network flooding.

A. Support for Broadcast in S-WGPS

For secure neighborhood communication, S-WGPS dis-
tributes pairwise, neighborhood keys to the nodes being de-
ployed. The neighborhood keys ensure network resilience
against wormhole attacks. For assigning keys to nodes, S-
WGPS follows two rules [1]:

Definition 1: Distance Bounding Rule: Only physical
neighbors are allowed to share communication keys; this helps
nodes resist the Wormhole attack since no two nodes far apart
will share a key.

Definition 2: Connectivity Rule: Each node must share
a key with at least one physical neighbor which is already
deployed; this provides neighbor connectivity for all nodes.

Despite S-WGPS attempting to allow nodes to securely
communicate with as many neighbors as possible, it is im-
portant to note that S-WGPS may cause a true physical link
between two neighbor nodes to become invalid/unusable, if
the nodes do not posses a common key.

Due to very limited storage available to sensor nodes, key
distribution algorithms need to limit the number of keys they
store and use, while continuing to fulfill performance and secu-
rity requirements. Certainly there are tradeoffs. On one hand,
if we distribute a small number of keys to each node, it might
be difficult to ensure that aforementioned rules are satisfied.
On the other hand, a large number of keys distributed to each
node would waste precious storage resources. Interestingly, Mi
et al. proved that the minimum number of communication keys
(mmin) that need to be assigned to a sensor node has a close
relation to the maximum number of neighbors (N) of a node,
as follows [1]:

mmin =

{
5 if N ≥ 6
N otherwise

Despite providing a simple and practical key distribution
mechanism for sensor networks, S-WGPS lacks an inexpensive
secure message broadcasting mechanism. Considering Defini-
tion 1, a node never shares the same key with two neighbors
that are not physically connected to each other. Hence, S-
WGPS, does not allow a node to broadcast an encrypted
message to all its neighbors with only one transmission, unless
all the neighbors are physically connected to each others (i.e.,
set of neighbors plus source node make a clique and every
two nodes are physically connected).

An example of how keys are distributed by S-WGPS is
depicted in Figure 1(a), where nodes 1 through 6 are equipped
with different sets of keys (e.g., node 3 has keys {k1, k2, ...}).
Depending on what key a node uses, an encrypted broadcast
message is received2 by: i) all neighbors (BRDCST); ii)

2From here on the term “receive” implies that a node can decrypt the
received message.

120

4

3

5

6

1

2

{k1,k2...}

{k2,k3,...}

{k1,...}

{k1,...}

{k2,...}

{k3,...}

(a)

4

3

5

6

1

2

ek1(M)

ek3(M)

BRDCST

UNICST

(b)

4

3

5

6

1

2
ek2(M)

MLTCST

(c)

Fig. 1. Example of keys distributed by S-WGPS. a) Network connectivity and key distribution. b) The broadcast message sent by node 1 can be decrypted
by all its neighbors (BRDCST) while only node 6 can decrypt the message sent by node 5 (UNICST). c) A subset of neighbors can decrypt the message sent
by node 5 (MLTCST).

some of neighbors (MLTCST); or iii) one of the neighbors
(UNICST) (Definition 2 guarantees that at least one of the
neighbors will receive the broadcast message). As shown in
Figure 1(b), a broadcast message, encrypted and sent by node 1
using k1 is received by all its neighbors. A broadcast message
sent by node 5, however, will be received either by node 6,
using key k3 (as shown in Figure 1(b)) or nodes 3 and 4, using
key k2 (as shown in Figure 1(c)). Therefore, for broadcasts by
node 5, not all its neighbors can receive the message, unless
it is sent twice, encrypted with two different keys. The same
inefficient broadcast occurs for node 3.

III. PRELIMINARIES AND PROBLEM FORMULATION

We model a WSN as a graph G = (V,E) with vertices
V = {v1, v2, ..., vn} representing nodes, and edges E =
{e1, e2, ..., eh} representing communication links. In the WSN
there is a basestation b. During node deployment, the S-WGPS
scheme is used for localizing nodes and for distributing keys
from a set of keys K = {k1, k2, ..., km}, to nodes. We denote
the set of keys assigned to a node vi by Ki, where Ki ⊆ K
and ∪n

i=1K
i = K.

We remark here again, that it is possible for two nodes
to be true neighbors (i.e., the distance between them is
smaller than the communication range), and still not be able
to communicate with each other, because they do not share
a key. To ensure a connected network, however, each node
vi has at least one neighbor it can communicate with (i.e.,
|Ki| ≥ 1,∀vi) using communication key kl assigned to both.
Moreover, nodes vi and vj , where edge (vi, vj) ∈ E, cannot
securely communicate unless there is at least one kl such that
kl ∈ Ki ∩ Kj . Therefore, we define Es, called the Set of
Secure Edges, as the subset of all edges (Es ⊆ E) where for
any ei ∈ Es there is at least one kl assigned to both end points
of that edge. The edges of the graph shown in Figure 1(a)
represent precisely Es. While in Figure 1 there may be nodes
that are within radio range of each other (say nodes 3 and 6),
if they do not share the same key, they will not be able to
communicate directly, and the link between them is excluded
from Es.

A. Problem Formulation

Definition 3: Secure Flooding in WSN with Neighbor-
hood Keys Problem (SFNK): Given a graph G and a set of

keys K, find a set K ′ ⊆ K and mapping L = {(vi, kj)|(kj ∈
K ′) ∧ (kj selected by node vi)}, such that: i) each node vi
has at most one key in set K ′ for rebroadcasting a flooding
packet; and ii) the set E′

s ⊆ E, obtained by the selection of
set K ′, creates a connected graph that spans all the vertices
in V ∪ {b} (i.e., ensure complete network coverage).

The above problem formulation means that we need to
obtain the mapping L of keys to nodes, such that each node has
at most one key for rebroadcasting a message. The basestation
initiates a flood in the network. A node receives a message, it
encrypts it with its key, and rebroadcasts it. E′

s must create a
connected graph to ensure complete Network Coverage for the
flooding message. From here on, we will use the term “node
covered” when a node can successfully receive the flooding
message. A network is covered when all its nodes are covered.

A solution for the SNFK problem shown in Fig-
ure 1, with node 1 as basestation, is the mapping L =
{(1, k1), (2, ϕ), (3, k2), (4, ϕ), (5, k3), (6, ϕ)} (we use ϕ to
indicate that a node does not necessarily need to re-
broadcast the flooding message). The mapping L =
{(1, k1), (2, ϕ), (3, k1), (4, k2), (5, k3), (6, ϕ)}, however, pro-
duces a disconnected graph, an unacceptable solution. In this
case, node 4 never receives the broadcast messages originated
from the basestation since the key k1 selected by node 3 does
not cover nodes 4 and 5.

B. SFNK Hardness

In this section, we first argue that SFNK is different than
other similar problems in graph theory, then prove SFNK
hardness. The Hamiltonian Path Problem (HPP), a known
NP-complete problem, seeks to find a path in an undirected
graph such that each vertex is visited exactly once [18]. One
might remark the similarity of our SFNK problem wit HPP. As
described before, SFNK allows a node to send the broadcast
message to more than one neighbor at the same time (if they
all share the same key). For HPP, however, this is not a valid
case since each node has to choose only one neighbor as the
next hop in the path.

A graph that has a Hamiltonian cycle is called Hamiltonian
graph, e.g., complete graphs and cycle graphs are Hamiltonian
graphs. If a graph has Hamiltonian path, then it has a solution
to the SFNK problem; however, there are graphs that do not
have a Hamiltonian path, but do have an SFNK solution.

121

4

5 6

2

3

B1

K2 ∩ K3 ∩ K4 = Ø

(a)

4

5 6

2

3

B1

K2 ∩ K3 ∩ K4 ≠ Ø

(b)

K2 ∩ K3 ∩ K4 ≠ Ø , K5 ∩ K7 = Ø

4

5 6

2

3

B1

7

(c)

Fig. 2. Comparison of SFNK and HPP. a) There is no solution for SFNK
or HPP, since node 2 has to choose either node 3 or node 4 as the next hop.
b) SFNK has a solution because of the availability of a key shared by nodes
2, 3, and 4 that makes a triangle. c) There is no solution for SFNK and HPP,
although the graph has a triangle.

Obviously, it is possible that a graph has no Hamiltonian path
and no SFNK solution. Figure 2(a), depicts an example of a
graph that has neither Hamiltonian path nor SFNK solution
because node 2 splits the graph in two subgraphs that can
never be visited by a single path. Considering Definition 1,
nodes 3 and 4 cannot share the same key with node 2, since
they are not physically connected.

Figure 2(b) depicts the same graph as in Figure 2(a) with a
connection between vertices 3 and 4. We mentioned that any
physical connection between two nodes does not necessarily
mean that they share a key. We assume, however, that the
graph edges in Figure 2 belong to Es. In this example, node 2
can choose the key shared by nodes 3 and 4, so that they can
decrypt the transmitted message sent by node 2 exactly once.
This is because any triangle in graph G = (V,Es) guarantees
that only one transmission is necessary to send the message
to both neighbors. Nevertheless, having a triangle in a graph
does not necessarily mean that our problem has a solution, as
shown in Figure 2(c).

Theorem 1: SFNK in NP-complete.
Proof 1: The input to SFNK is a graph that can be triangle-

free or non triangle-free. For a triangle-free input graph, SFNK
is the same as HPP since none of the nodes shares a key
with more than one neighbor. Hence, HPP is a special case
of SFNK. Consequently, regardless the input graph, SFNK is
NP-complete unless P ̸= NP . �

Similar to other NP-complete problems, it is possible to
have inputs to SFNK for which there is no solution. In other
words, any key selection K ′ and corresponding mapping L
for such an input is a no-instance in the decision version
of the SFNK problem. Consequently, we propose to reduce
our SFNK problem, in polynomial time, to an optimization
problem (MAX-SFNK) as follows:

Definition 4: MAX-SFNK: Given a graph G and a set of
keys K, find a set K ′ ⊆ K and mapping L = {(vi, kj)|(kj ∈
K ′) ∧ (kj selected by node vi)}, such that each node vi has
the minimum number of keys in set K ′ for rebroadcasting
a flooding message, and the corresponding set E′

s creates a
connected graph spanning all vertices in V ∪ {b}.

This means there may be nodes that have to rebroadcast the

2

3

6

4

1

{k3,k6,k7}
5

{k2,k4,k5} {k4,k8,k9}

{k6,k10,k11}

{k1,k2,k3} {k8,k10,k12}

Fig. 3. Graph example for posing SFNK as a 3-SAT problem.

flooding message more than once. We propose to solve MAX-
SFNK using approximation algorithms, as will be described in
Section V. Before proceedings with approximation algorithms,
we formulate the SFNK problem as a Satisfiability (SAT)
problem because SAT, due to the attention it has received,
has good approximation algorithms.

IV. SFNK IN SAT FORMAT

For SAT, the input is a set F = {C1, C2, ..., Cn} of
clauses, where each clause contains boolean variables X =
{x1, x2, ..., xm} as either xi or its negation xi literal. A
truth assignment to boolean variables satisfies a clause if the
assignment makes the disjunction of the literals of the clause
TRUE.

For expressing SFNK in SAT format, let clause Ci represent
the fact that node vi is covered and that it uses a single
rebroadcast for flooding a message, from a given basestation,
in the network.

Ci =

{
TRUE if vi is covered, and rebroadcasts once
FALSE otherwise

Let boolean variable xj correspond to key kj such that xj is
TRUE if kj is selected by a node, otherwise xj is FALSE. For
a node vi and its corresponding key set Ki = {x1, x2, ..., xq},
Ci is a clause of boolean variables xj .

Flooding aims to transmit a message to all nodes in the
network, while each node selects at most one key for re-
broadcasting the message. If we take into account that before
transmitting a message a key was needed for decrypting it, then
each node needs two keys for supporting network flooding.
If a node uses anything different than two keys, then the
node either has not sent the received message or it has sent it
more than once. Hence, network coverage requires that each
node uses exactly two keys, one for receiving and one for
transmitting a flooding packet.

Therefore, Ci is satisfied if and only if exactly two boolean
variables are TRUE and all other variables are FALSE. This
results in Ci being a disjunction of smaller clauses, which
themselves are conjunctions of literals. Consequently, SFNK
will have a 3-level format (note: the SAT problem has a
standard 2-level format since it is a conjunction of clauses (first
level), where each clause is a disjunction of literals (second
level)). To represent the SFNK problem in a standard SAT
format, we use De Morgan’s law and rewrite each clause in a
conjunctive normal form (CNF) so that function F becomes
a CNF as well.

122

Example: For clarity of presentation we show how SFNK
is formulated as a 3-SAT problem on the input graph given
in Figure 3. This formulation, without loss of generality, is
valid for any k-SAT problem where k is the maximum number
of keys assigned to each node in SFNK. Figure 3 shows a
typical example of a graph with at least 3 neighbors (and
also 3 keys) for each node. The clause for node 1 is C1 =
(x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ x3). This means
C1 is satisfied if and only if exactly two keys are selected (the
same applies to all Cis).

By applying the same boolean algebra to other clauses, the
counterpart of the satisfiability function is F = C1∧C2∧ ...∧
Cn, i.e., F is satisfied if and only if all clauses are satisfied:

F = C1 ∧ C2 ∧ ... ∧ Cn

=

(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)︸ ︷︷ ︸
C1


∧

(x2 ∧ x4 ∧ x5) ∨ (x2 ∧ x4 ∧ x5) ∨ (x2 ∧ x4 ∧ x5)︸ ︷︷ ︸
C2


...

∧

(xm−2 ∧ xm−1 ∧ xm) ∨ (xm−2 ∧ xm−1 ∧ xm)︸ ︷︷ ︸
Cn

∨(xm−2 ∧ xm−1 ∧ xm)︸ ︷︷ ︸
Cn


Let H be the complement of F , i.e., H is TRUE if and only

if F is FALSE and vice versa. Therefore, H = F represents
any key selection that does not cover all nodes. The boolean
function H is then: H = F = C1 ∧ C2 ∧ ... ∧ Cn =

∨n
i=1 Ci.

Now, let Ui = Ci denote any selection that does not cover
node vi. Considering: i) our definition of Ci, for a 3-key node
(i.e., Ci = Σm(3, 5, 6) - summation of all minterms that have
exactly two variables which appeared as xi, while others as
negations); and ii) the De Morgan’s law, Ui for any node with
3-keys is: Ui = Σm(0, 1, 2, 4, 7).

U1 = C1 = Σm(0, 1, 2, 4, 7)

= (x1 ∧ x2 ∧ x3)︸ ︷︷ ︸
m0

∨ (x1 ∧ x2 ∧ x3)︸ ︷︷ ︸
m1

∨ (x1 ∧ x2 ∧ x3)︸ ︷︷ ︸
m2

∨ (x1 ∧ x2 ∧ x3)︸ ︷︷ ︸
m4

∨ (x1 ∧ x2 ∧ x3)︸ ︷︷ ︸
m7

Therefore, H =
∨n

i=1 Ui. Now we convert F into a CNF
using De Morgan’s law. Therefore, the produced expression
is in standard SAT format, i.e., conjunction of clauses where
each clause is a disjunction of boolean variables.

F = H =
n∨

i=1

Ui =
n∧

i=1

Ui = U1 ∧ U2 ∧ ... ∧ Un

= (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
U1

∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
U1

∧ (x2 ∨ x4 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x2 ∨ x4 ∨ x5)︸ ︷︷ ︸
U2

∧ (x2 ∨ x4 ∨ x5) ∧ (x2 ∨ x4 ∨ x5)︸ ︷︷ ︸
U2

...
∧ (xm−2 ∨ xm−1 ∨ xm) ∧ (xm−2 ∨ xm−1 ∨ xm)︸ ︷︷ ︸

Un

∧ (xm−2 ∨ xm−1 ∨ xm) ∧ (xm−2 ∨ xm−1 ∨ xm)︸ ︷︷ ︸
Un

∧ (xm−2 ∨ xm−1 ∨ xm)︸ ︷︷ ︸
Un

(1)

The expression shown in Equation 1 is in SAT format, i.e.,
conjunction of clauses, where each clause is a disjunction
of boolean variables. One can observe that the number of
clauses in SFNK significantly increases with the number of
keys a node has. A higher number of keys, however, is because
of a higher number of neighbors (i.e., higher node density).
While the larger number of clauses might make one think
that the produced expression becomes more sophisticated, it
is paramount to observe that higher node densities result in
higher node coverage (as proven in the theorem below), which,
in turn, result in a shorter execution time for the algorithm
that solves the satisfiability problem, as will be described in
Section V.

Theorem 2: The likelihood of SFNK covering all nodes is
higher for networks with higher node density.

Proof 2: Let Na be the average number of neighbors of a
node, and NM the maximum number of neighbors of a node
in a given connected network of size n. We consider the range
for Na: i) if Na = 1 then SFNK has a trivial solution; ii) if
Na < 2 and NM ≤ 2 (for linear and circular topologies there
always exists a solution). If Na < 2 and NM > 2 there is no
solution because there is no loop and no triangle in the network
(e.g., star topology). This means that there is at least one node
that has to send the flooding message more than once; iii) if
Na > 2, then the graph has at least one loop, which increases
the number of nodes covered with SFNK. The larger Na is, the
higher probability of having loops and triangles in the network
is; iv) if Na = n, then the complete graph requires only
one transmission for covering all the nodes. Consequently, for
larger Na, more nodes will be covered. �

123

V. MAX-SFNK APPROXIMATION ALGORITHM

Our proposed approximation algorithm for SFNK is based
on Johnson’s [19], an approximation algorithm for MAX-SAT
that runs in polynomial time.

First, we introduce notations used in our proposed approx-
imation algorithm, depicted in Algorithm 1. Let φj be the
number of nodes that share corresponding key kj . We denote
by N j

i the set of neighbors of node vi that share key kj ,
and by KBS the set of keys assigned to the basestation for
communicating with sensor nodes within radio range. Let si
denote the number of times a node has received the flooding
packet (i.e., number of keys used for receiving). Our proposed
approximation algorithm, has input sets V,Es,K and outputs
the mapping L of nodes and keys used. For clarity of our
presentation, we will also use an example graph, depicted in
Figure 4.

Given an input graph and a set of distributed keys, the
algorithm first creates all clauses for corresponding keys (Line
1). The mapping L is initially empty as shown in Line 2.
Line 3 selects the most frequent key from the basestation
and sets the corresponding boolean variable to TRUE. For
the example depicted in Figure 4, the assignment in Line 3 is
represented as (0 : x2) which means that the truth assignment
at time 0 for k2 is τ(x2) = TRUE. Then, Line 4 adds the
first pair (b, k2) to the mapping L. Since this key is used
for transmission from the basestation, we set si = 1 for
the corresponding receivers (Line 5), i.e., they can participate
in the rebroadcasting process. Line 6 makes all other keys
shared between basestation and the other nodes FALSE, so
that its neighbors have to select other keys for transmitting
the message, upon receiving it. This intuitively increases the
chance of sending message towards farther nodes.

Next, similar to Johnson’s algorithm, our algorithm assigns
a weight to each clause based on the number of variables in
each clause (Line 7). This weighting mechanism helps the
algorithm to assign a truth value to a variable that satisfies
more clauses. Then, the truth assignment for any unassigned
variable will be executed iteratively. Our approach in assign-
ing truth values to the boolean variables is different from
Johnson’s algorithm since we go over all boolean variables
{x1, x2, ..., xm} not by their index, but by their sorted se-
quence. We sort all nodes in non-decreasing si, for si ≥ 1 (if
they are equal, the recently updated is first). Then, we update
the sequence of the corresponding boolean variables that have
unassigned truth values. This update is performed in the same
order with that of non-decreasing si order. We update this
list at each iteration of our algorithm before we pick the next
variable for truth assignment. This order avoids selecting kj
(i.e., τ(xj) = TRUE) from node vi unless it has received
the message before. Moreover, it guarantees that E′

s is always
connected. In the first iteration, line 9 sorts the list of covered
nodes based on si, that is {2, 3} in Figure 4. Thus, the next
variable to be assigned is a variable corresponding to the keys
in K2. Then, for any variable xj , our algorithm compares the
weight of all clauses that have xi with those that have xj and

Algorithm 1 MAX-SFNK (Input: V,Es,K, Output: L)
1: create set F = {C1, ..., Cp} on {x1, ..., xm} from sets V,Es,K

using Equation 1
2: L = ∅
3: find Max{φj for ∀kj ∈ KBS} and set τ(xj) = TRUE
4: L = L ∪ {(b, kj)}
5: si = 1 for ∀vi ∈ N j

BS

6: set τ(xl) = FALSE for ∀xl ∈ KBS where j ̸= l
7: set w(Cu) = 1/2|Cu| for each clause Cu

8: while there is any unassigned xj do
9: sort list of node in a nondecreasing order based on si for ∀vi

that si ≥ 1
10: update the sequence of X for unassigned xj

11: pick xj with Max{φj} corresponding to node i from the head
of the list

12: find all clauses CT
1 , ..., CT

a in F that contain xj

13: find all clauses CF
1 , ..., CF

b in F that contain xj

14: if Σa
u=1w(CT

u) ≥ Σb
u=1w(CF

u) then
15: τ(xj) = TRUE and delete CT

1 , ..., CT
a from F

16: L = L ∪ {(i, kj)}
17: update sr for ∀vr ∈ N j

i

18: for u = 1 to b do w(CF
u) = 2w(CF

u)
19: else
20: τ(xj) = FALSE and delete CF

1 , ..., CF
b from F

21: for u = 1 to a do w(CT
u) = 2w(CT

u)
22: end if
23: end while

BS
1 2

1
1 3

2
1 2 6 7

3
2 4 5

4
3 7 8

5
7 8 9 16

6
5 6 10 11

7
4 12

8
9 10 14 15

9
11 13

0 : x2

1 : x7

2 : x9
3 : x10

4 : x11

5 : xi

tk : x4 tk+1 : xj

0 : x2

Fig. 4. An example of truth assignment by MAX-SFNK

assigns a truth value that satisfies a heavier set of clauses in
which such a variable appears in. It is shown in Figure 4 that
x7 becomes TRUE. Similar to Lines 4 and 5, the mapping L
and all variables si will be updated in Lines 16 and 17 if a
new key is selected. After any truth assignment (i.e., Lines 15
and 20), satisfied clauses are removed from set F .

Lines 18 and 21, similar to Johnson’s algorithm, double the
weight of clauses that contain xj which were not satisfied by
the decision made in Line 14. The double weight increases the
chances of those clauses to be satisfied in the following itera-
tions. Another important difference between our algorithm and
Johnson’s is that a TRUE assignment in our algorithm means
that a message rebroadcasting with key kj will occur. Thus, all
nodes using this key are considered covered, and the algorithm
increments their corresponding si. Our algorithm extends the
list of covered nodes in the next iteration which affects Line
9. Considering the example in Figure 4, when node 6 is added
to the list of covered nodes and a corresponding variable is
taken to be assigned, most of its clauses that contain x6 (since
k6 is shared by nodes 2 and 6) are already satisfied when we

124

set x2 and x7 as TRUE (based on Equation 1) and surely the
weight of those containing x6 is much higher. This causes
τ(x6) = FALSE and increases the chance of another key of
node 6 (say k11) to be TRUE. One can observe that MAX-
SFNK covers nodes in a depth first manner. Considering the
example in Figure 4, our algorithm covers nodes 2, 3, 5, 8,
6, 9, ..., in order, until no new keys can be assigned to the
last node. At that time, the algorithm continues from node 3,
since s3 = 1.

A. Algorithm Analysis

The approximation ratio for Johnson’s algorithm is based
on the number of clauses it can satisfy; however, in MAX-
SFNK we aim to cover as many nodes as possible. We denote
the upper bound for the number of keys per node by q (q
is analogous with network density - higher node density will
result in more neighbor nodes and keys to communicate with
them), and the number of nodes in the graph by n. The number
of clauses in the corresponding MAX-SAT is n[2q−

(
q
2

)
]. Our

MAX-SFNK algorithm, presented in Algorithm 1, has the time
complexity as MAX-SAT. The number of clauses in MAX-
SFNK, however, increases with the number of keys of a node.
This means that MAX-SFNK deals with more clauses than
the regular q-MAX SAT problem, where q is the maximum
number of keys assigned to a node (note that S-WGPS aims
to keep q low).

Johnson’s algorithm constructs a truth assignment that satis-
fies at least p(1−1/2q) clauses, where p is number of clauses
equal to n[2q −

(
q
2

)
]. Consequently, the minimum number of

covered nodes is n − n/2q . Since a node with an unsatisfied
clause is not necessarily uncovered, we can say that at most
n/2q nodes may be left uncovered and additional rebroadcasts
are needed for them to be covered. Thus, the upper bound for
the number of additional rebroadcasts is OPT+(n/2q), where
OPT is the optimal value. This implies that the success rate of
covering the entire network, such that each node uses exactly
two keys, increases when the network density increases.

It is interesting to identify the worst case scenario for our
algorithm, which is a star graph. In a star topology, the central
node cannot cover all its neighbors with a single rebroadcast.
Our MAX-SFNK allows the central node to perform multiple
rebroadcasts (Lines 8 - 11 in Algorithm 1 continue execution
as long as there exists an unassigned boolean variable (key)
corresponding to the covered nodes.)

VI. PERFORMANCE EVALUATION

We implemented our MAX-SFNK algorithm in Matlab and
performed simulations on a desktop PC with a 3GHz Intel
Core 2 Duo CPU, 4GB RAM. We evaluated the performance
of MAX-SFNK by measuring the number of rebroadcasts
needed (Rebroadcast Ratio) for 100% network coverage of
the flooding message. Additionally, we measured the execution
time of the algorithm for different network sizes and different
node densities (i.e., 7, 12, 19, and 28 nodes per radio range
for all of the evaluations). Since the performance of S-WGPS
is affected by localization success rate and GPS error, we

 99.5

 99.6

 99.7

 99.8

 99.9

 100

 0.5 1 1.5 2 2.5

N
e
tw

o
rk

 C
o
v
e
ra

g
e
 (

%
)

GPS Error (meter)

7 node/radio
12 node/radio
19 node/radio
28 node/radio

(a)

 99.2

 99.4

 99.6

 99.8

 100

 60 70 80 90 100

N
e

tw
o

rk
 C

o
v
e

ra
g

e
 (

%
)

Localization Success Rate (%)

7 node/radio
12 node/radio
19 node/radio
28 node/radio

(b)

Fig. 5. The impact of GPS error and localization success rate on network
coverage.

also evaluated network coverage and execution time of the
algorithm for different localization success rates and GPS
errors. Localization success rate refers to the percentage of
nodes that are localized by GPS (the remaining nodes are less
precisely localized by the IMU).

A. Network Coverage

First, we evaluated the impact of two parameters, local-
ization success rate and GPS error, on network coverage.
These two parameters affect the accuracy of localization and
consequently the key assignment in S-WGPS. Since only two
physical neighbors may share a key, a key shared by two far
apart nodes is set to FALSE in MAX-SFNK. Moreover, if there
is a key assigned to only one node, MAX-SFNK ignores it. By
avoiding such invalid keys a node may become disconnected
from the entire network, affecting the network coverage. It is
important to note that coverage less than 100% is caused by
S-WGPS (its key distribution scheme). Figures 5(a) and 5(b)
show the impact of GPS error and localization success rate
on network coverage, respectively, for a 500-node network of
different densities. As depicted, a higher GPS error causes a
lower network coverage; however, it is very close to 100%.
Also, the higher success rate in localization means less keys
are invalid and the network coverage is higher.

B. Rebroadcast Ratio

Next, we ran simulations for different network sizes (e.g.,
200, 400, 600, and 800 nodes), and different network densities,
to measure the rebroadcast ratio of our algorithm. The average
value for rebroadcast ratio is for all network configurations
(i.e., GPS error and localization success rate) for which S-
WGPS ensured 100% coverage. As shown in Figure 6(a),
networks with higher density have lower rebroadcast ratio for
covering the entire network because the higher node density
results in a larger number of triangles in the network. As
discussed before, triangles in the network help nodes to have
MLTCST-type transmissions, which require only one key.
Thus, more neighbor nodes are covered, while using less
rebroadcasts. Figure 6(a) also depicts a small improvement
in the number of required broadcasts when the network size
increases, while keeping a constant node density. This can be
explained by the fact that larger networks have more possible
paths to cover nodes. It is very interesting to remark that the
average rebroadcast ratio of our MAX-SNFK algorithm can
be below 1 (more precisely 0.75, as shown in Figure 6(a)),

125

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 200 400 600 800

R
e

b
ro

a
d

c
a

s
t

R
a

ti
o

Network Size (Nodes)

7 node/radio
12 node/radio
19 node/radio
28 node/radio

(a)

 100

 200

 300

 400

 500

 600

 700

 200 400 600 800

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Network Size (Nodes)

7 node/radio
12 node/radio
19 node/radio
28 node/radio

(b)

Fig. 6. a) The rebroadcast ratio for different network sizes and node densities.
b) The execution time for different network sizes and densities.

while a typical flooding mechanism has a rebroadcast ratio of
1, and, worse, S-WGPS has an average rebroadcast ratio equal
to the average number of keys a node has.

C. Execution Time

Finally, we investigated the effects of network size, network
density, GPS error, and localization success rate on execu-
tion time. The execution time of MAX-SFNK, for different
network sizes and densities, is depicted in Figure 6(b). As
shown, it takes less than 1 second to select the set of keys
for optimal flooding, even for the largest network size. The
results also show that in networks with higher node densities
the execution time of MAX-SFNK decreases. This is because
each key is shared by more nodes in a network with high node
density, thus more clauses are satisfied by a single boolean
variable set to TRUE by our algorithm. Figures 7(a) and 7(b)
also show the impact of GPS error and localization success
rate on execution time for 500-node network. As depicted,
these two parameters, have a small impact on execution time.
This can be explained as follows: when some of the nodes
become disconnected from the network, possibly because
removing invalid keys, there will still be some unassigned keys
belonging to uncovered nodes. This results in MAX-SFNK
algorithm to perform additional iterations in its main loop.
We note here that our MAX-SFNK algorithm executes until
all nodes are covered or their corresponding keys are assigned
a FALSE value (Lines 8 and 9). In this scenario, we will not be
able to cover all nodes, hence the condition for terminating the
algorithm is FALSE, which will require additional iterations.

VII. CONCLUSIONS

In this paper we investigate efficient flooding in WSN
secured with neighborhood keys. When neighborhood keys are
used, broadcasting packets incurs high costs, since multiple
unicast packets need to be sent. For flooding code updates (a
common operation in WSN, since they are physically inacces-
sible) the naive support of broadcasting through multiple uni-
cast transmission can be very costly. We formulate the problem
of deciding if it is possible to achieve 100% network coverage
by a flooding packet, when each node cleverly chooses one
of its keys to unicast the broadcast message. We show that
the problem in NP-hard and propose an optimization version
of it, and an approximation algorithm. Through simulations,
we demonstrate the 100% network coverage by the flooding
packets can be achieved, at a cost, surprisingly, that can be less

 200

 300

 400

 500

 600

 0.5 1 1.5 2 2.5

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

GPS Error (meter)

7 node/radio
12 node/radio
19 node/radio
28 node/radio

(a)

 200

 300

 400

 500

 600

 60 70 80 90 100

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Localization Success Rate (%)

7 node/radio
12 node/radio
19 node/radio
28 node/radio

(b)

Fig. 7. The impact of GPS error and localization success rate on execution
time.

than that of traditional flooding (where each node broadcasts
each message exactly once).

REFERENCES

[1] Q. Mi, J. A. Stankovic, and R. Stoleru, “Secure walking GPS: a secure
localization and key distribution scheme for wireless sensor networks,”
in WiSec, 2010, pp. 163–168.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Comp. Netw., pp. 393–422, 2002.

[3] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou,
Q. Cao, P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and
B. Krogh, “VigilNet: An integrated sensor network system for energy-
efficient surveillance,” ACM Trans. on Sen. Netw., pp. 1–38, 2006.

[4] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,
M. Ruiz, and J. Lees, “Deploying a wireless sensor network on an active
volcano,” IEEE Internet Computing, vol. 10, pp. 18–25, 2006.

[5] S. A. Camtepe and B. Yener, “Key distribution mechanisms for wireless
sensor networks: a survey,” RPI Computer Science Department, Tech-
nical Report 04-10, Tech. Rep., 2004.

[6] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor
networks,” Commun. ACM, vol. 47, pp. 53–57, June 2004.

[7] L. Lazos and R. Poovendran, “SeRLoc: secure range-independent local-
ization for wireless sensor networks,” in WiSe, 2004, pp. 21–30.

[8] R. Stoleru, T. He, and J. Stankovic, “Walking GPS: a practical solution
for localization in manually deployed wireless sensor networks,” in
the 29th Annual IEEE International Conference on Local Computer
Networks, 2004, pp. 480 – 489.

[9] D. Malan, M. Welsh, and M. Smith, “A public-key infrastructure for key
distribution in tinyos based on elliptic curve cryptography,” in SECON,
2004.

[10] R. Watro, D. Kong, S.-f. Cuti, C. Gardiner, C. Lynn, and P. Kruus,
“TinyPK: securing sensor networks with public key technology,” in
Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor
networks, ser. SASN ’04, 2004.

[11] P. Ning, A. Liu, and W. Du, “Mitigating DoS attacks against broadcast
authentication in wireless sensor networks,” ACM Trans. Sen. Netw.,
vol. 4, pp. 1:1–1:35, February 2008.

[12] D. Song, D. Zuckerman, and J. D. Tygar, “Expander graphs for digital
stream authentication and robust overlay networks,” in Proceedings of
the IEEE Symposium on Security and Privacy, 2002.

[13] C. A. Gunter, S. Khanna, K. Tan, and S. Venkatesh, “DoS protection
for reliably authenticated broadcast,” in NDSS, 2004.

[14] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The TESLA broadcast
authentication protocol,” in IEEE Symp. on Security and Privacy, 2002.

[15] D. Liu and P. Ning, “Multilevel uTESLA: Broadcast authentication for
distributed sensor networks,” ACM Trans. Embed. Comput. Syst., vol. 3,
pp. 800–836, November 2004.

[16] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS:
security protocols for sensor networks,” Wirel. Netw., vol. 8, pp. 521–
534, September 2002.

[17] D. Liu and P. Ning, “Efficient distribution of key chain commitments
for broadcast authentication in distributed sensor networks,” in NDSS,
2003.

[18] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[19] J. Chen, D. K. Friesen, and H. Zheng, “Tight bound on Johnson’s
algorithm for maximum satisfiability,” Journal of Computer and System
Sciences, vol. 58, pp. 622–640, June 1999.

126

