Chapter 14

INTERVAL MODELLING,
IDENTIFICATION AND
CONTROL

As we have seen in earlier chapters, sharp and nonconservative estimates of robust
stability margin and performance can be obtained for interval system models. Mo-
tivated by this, it is natural to attempt to model a family of uncertain systems
using the interval framework. This chapter presents a such a technique. It consists
of taking the frequency domain input and output data obtained from experimental
test signals, and fitting an “interval transfer function” that contains the complete
frequency domain behavior with respect to the test signals. Identification with such
an interval model allows one to predict the worst case performance and stability
margins using the results on interval systems given in the previous chapters. The
algorithm is illustrated by applying it to experimental data obtained from an 18 bay
Mini-Mast truss structure and a T-shape truss structure which are used in research
on space structures.

14.1 INTRODUCTION

Obtaining a very accurate mathematical description of a system is usually impos-
sible and very costly. It also often increases the complexity of the corresponding
control mechanism. A recent trend in the area of system identification is to try
to model the system uncertainties to fit the available analysis and design tools of
robust control.

The interval transfer function described throughout this book 1s interpreted as a
family of transfer functions whose coefficients are bounded by some known intervals
and centered at the nominal values. In many cases this is unnatural in the sense that
physical parameter perturbations do not correspond to transfer function coefficients.
In order to relax this limitation, approaches to deal with linearly or multilinearly
correlated perturbations have also been developed. On the other hand, if we observe
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the developments in the interval system area we see that the nominal system has
very little significance. These results in fact emphasize the boundary properties
of the family of systems under consideration. In fact, virtually all the important
results in this field are based on the boundary generating extreme points, edges,
and segments of the interval family of systems.

With this background in mind, suppose that the behavior of the plant is de-
scribed by some known test input and its corresponding measurement output. Due
to noise, nonlinearities and inaccurate measurements, a fixed linear time-invariant
identified model will never exactly represent the data obtained from the plant. Our
aim, in this chapter, is to present an algorithm to obtain a reasonable interval trans-
fer function model around, but not necessarily centered in, a nominally identified
transfer function so that the entire frequency domain behavior of the physical plant
is completely contained in that of the model.

This 1s applied to two experimental test structures. First, the algorithm is
demonstrated by using the Mini-Mast truss structure. In this example, we show
how to construct an interval transfer function model from the experimental data set.
The frequency response of the resulting interval transfer function contains that of
the experimental structure. For the second example, an interval transfer function 1s
constructed to capture sets of experimental data that represent structural changes
due to various added masses. Once the corresponding interval transfer functions are
obtained, they are verified via the frequency domain analysis techniques described
in Chapter 8 as well as their performance based on root locations described in
Chapter 6.

In the next section, a simple technique is described. This technique deals with
a single set of experimental data and constructs an interval transfer function which
represents a reasonably small family containing the experimental data set.

14.2 INTERVAL MODELING WITH A SINGLE DATA SET

Consider the configuration shown in Figure 14.1.

—_— system —

test input test output

Figure 14.1. Experimental structure

In system identification, one applies test inputs and measures the system re-
sponse in order to identify the parameters of an appropriate proposed mathematical
model. It is also common that these test signals are represented in the form of fre-
quency domain data. In fact, there are numerous techniques available to determine
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a best possible linear time-invariant model that closely fits this frequency domain
data set. Suppose that the test frequencies are wy ,ws,- - -wy and the complex num-
bers u(jw;),y(jw;) denote in phasor notation the input-output pair at the frequency
w;. Let

y(jw;) = D(jwi)u(juw;), ¢=12--- N (14.1)

denote the test data generated from an identification experiment. Suppose that
G’ (s) is the transfer function of a linear time-invariant system which is such that
G!(jw) is closest to D(jw) in some norm sense. In general it is not possible to
find a single rational function GI(s) for which G!(jw;) = D(jw;) and the more
realistic identification problem is to in fact identify an entire family G(s) of transfer
functions which is capable of “explaining” or “validating” the data in the sense
that for each data point D(jw;) there exists some transfer function G;(s) € G(s)
with the property that G;(jw;) = D(jw;). The family G(s) can be parametrized
in many alternative ways. For instance, an unstructured approach to describing
G(s) using a normed algebra is to let each element G(s) of G(s) be described as
G(s) = GI(s) + AG(s) where the norm |AG(s)| < p. In such a case, the family
G(s) is identified once G!(s) and p are determined. In general, the identification
algorithm should also be efficient in the sense that the family G(s) that it produces
should be ideally minimal among the set of all such families that explain the data.
In the unstructured case described above, this translates to choosing a small value
of p.

The objective here is to develop an identification algorithm in a framework
where the family of linear time-invariant systems G(s) is obtained by letting the
transfer function coefficients lie in intervals around those of the nominal G (s). The
1dentification requirement is that

D(jw;) € G(jw;) for all w;. (14.2)
Let 5
Gl (s) = no+ms 4 nes” +ngs” + - 4 ns” (14.3)
do +dis + das? +dzs® + -+ dps™
We define i R R R R
Gs) e o8 F 108" 4 3 e 5" (14.4)
do +dis + dos? + d3s® + -+ dps”
and
G(s) :={G(s) :n; € [n; — Wy, 6, n+w,, et ],
d; € [d; — Wi, €, d+ waef ], for all 7} (14.5)
where
W= [de Wi, Wng : Wnn]
e = [ejl'o e ejl'n e et ] (14.6)
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The components of w are to be regarded as weights chosen aprior: whereas the €’s
are to be regarded as dilation parameters to be determined by the identification
algorithm and the data D(jw;)

Remark 14.1. Note that in the expression in (14.5) we use vectors efl and ei

instead of a single €. This setting allows n; and d; to not necessarily be the center
point of the intervals in which n; and d;, lie respectively. This flexibility 1s important
to achieve the minimum possible size of the family G(s).

The requirements on the identified interval model G(s) become:
1) Membership Requirement: D(jw;) € G(jw;), for all i.
2) Size Requirement: ||e*|| as small as possible.

3) Frequency Response Requirement: the weights w must be chosen so that the
frequency response of G(jw) is bounded as tightly as possible for every fre-
quency.

Both size and frequency response requirements are crucial because uniformly smaller
intervals do not necessarily map to smaller image sets or a smaller family. For
example, slightly bigger intervals in higher order coefficients may result in much
bigger image sets than those due to significantly larger intervals in lower order
coefficients.

14.2.1 Interval System Modeling

As described above, the procedure is divided into two parts. First, we identify a
linear time-invariant model G’ (s) which represents the test data D(jw) as closely as
possible. A variety of algorithms are available in the system identification literature
and any algorithm can be taken for this step. Here, a simple least squares based
algorithm is described. Omnce the nominal model is obtained, then the tightest
intervals around each coefficient of the nominal transfer function G(s) should be
created while satisfying the membership and frequency response requirements.

14.2.2 Nominal System Identification

First, a brief description of a standard least squares method to identify a nominal
transfer function whose frequency response fits the given test data D(jw;) as closely
as possible is given. An appropriate order of model may be determined by checking
the singular values of the Hankel matrix generated from the impulse response data.
Under the assumption that the data is noise free, the number of nonzero singular
values determines the order of the system. The details are omitted here. Interested
readers may refer to the references [3] and [122]. After determining the appropriate
order, n, of the system, we let the nominal transfer function be

Gl(s) = 28 (14.7)
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The nominal transfer function coeflicients must be selected to minimize the following
index:

> AW (Gwi) {Re[D(jws )d(jwi) — n(jw; )]} + {Im[D(jew; )d(jws; ) — n(jes )1} } -

i=1

(14.8)
This least square problem generates 2NV linear equations for 2n unknown coefficients
of the transfer function. The weight W/ may be selected by finding the minimum
variance estimator of unknowns. Since the relative error in the valley parts of the
frequency response is more significant than the one in the peak parts, it is in general
necessary to assign high weights for the frequency ranges in the valley parts of the
frequency response.

14.2.3 Weight Selection

As shown in (14.5), the size of the interval of variation for each coefficient of the
family G(s) depends on w and ¢. In this subsection we consider the problem of find-
ing an appropriate set of weights w. The weight selection procedure is extremely
important because inappropriate selection of weights may result in an unnecessar-
ily large family. This results in a large image set in the complex plane at some
frequencies, even though the intervals themselves may be small.

It is natural to think that a weight represents the average sensitivity of a coef-
ficient of the nominal model with respect to the variation of data points. Thus, we
establish the following reasonable algorithm for selecting weights.

Suppose the test data consists of N data points obtained at corresponding fre-
quencies,

Let us define the ' model set as follows:

.y | D(jwi), i=I
GI(JW)—{GI(]-%)’ i=1,2,--0—-11+1,--- N

In other words, the model G4(jw) is identical to the nominal identified model G (jw)
with the [ data point replaced by the [*® component of the test data D(jw). Now
we construct the I'' identified model, which we call G (s), which is identified from
the I*h data set Gi(jw). Let

né—|—n115—|—n1252—|—n353—|—~~—|—n25”
d)+dis+ dys? +dss® + -+ dlsn

Gl(s) = (14.10)

and

pi=[ng n - m, dy dy - dy]. (14.11)

If we assume that |G;(jw) — GJ(jw)| is small, the sensitivity of the coefficients of
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the nominal model with respect to variations in the I** data point is described as
[ 7o —ngl ]
p n, — n’l
T = 14.12
OGL (jwy) |do dy| ( )
| Jdo— ] ]

Collecting the sensitivity of the coefficients of the nominal model with respect to
the variation of all the data points, = 1,2,---, N, we have

op B
oG (jw)
— ap -
GG | [l o Mo—dd] - =y
_ P n2 L o2 P
G (jus) | — |n0.n0| |do — di] |dn — d |
op o —ng| - Jdo —dY | (dy — Y|
L 0G7 (wn)

The weights are then defined as the average of these for each coefficient:

W

[N o = bl T, o =

= [Wnu,"',Wnn,WdD,"',de]. (1413)

Using this selected weight, we proceed to determine the intervals of the transfer
function coefficients.

14.2.4 Interval System ldentification

After determining an appropriate weight vector w, we need to find e* to satisfy the
given requirements. We now first consider the membership requirement. Recall the
nominal system given in (14.3) and substitute s = jw, then we have

=
(o —w'na 4 )
(do —w?dy + - )
_ neven( )+jn0dd(w
4 (@) + jd (w

Jjlwny —wing + )

_|_
_|_

)). (14.14)
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Since the nominal model transfer function G (s) cannot perfectly represent the data
set D(jw), we have the following relationships for a particular frequency w;.

D(jwi) = o + jfi ~ G' (juw;)
B neven (WZ) + jnodd (WZ)
T deven (Wz) + jdodd (Wz) '
The difference may be added to the coefficients of the nominal model as follows:
D(juwi) = ai + jf;
(o —wing )+ j(wing —wing + - )
(do —wido + - ) + j(widy —wlds + - - )

(14.15)

where 7; := n; + Wy, €, and d; 1= d; + wg,¢q, for all ¢. If we rewrite this in terms
of a linear matrix equation, we have

Alw;, ai, B)WE = Blw;, oy, ;) (14.16)
where
Alws, g, 3;) =
o —fw —aw? fwd - -1 0 w! 0 —w! 0
G ow;  —fw? —qwd 0 0w, 0 —wP 0 WP :
(14.17)
de
W .=
Wi
L N
and
B(w;, o, 3;) =
+(ng —wing +wing — )
—ﬁi(do — (.dizdz —|—wfd4 — . ) — ai(widl — w?dg —|—wf’d5 — )
+wing —wing +wlng — )

Here we assume without loss of generality that A(w;, «;, ;) has full row rank. Then
the minimum norm solution ¢; can be computed as

¢ = AC)T [AOACT]T B(). (14.18)

After finding ¢; for all ¢ = 1,2,-, N, the intervals of the transfer function coefficients
are determined as follows:

TIRES miin{O, G

:= max{0, ¢, } (14.19)

€7, = miin{O, Gi,k} eji'k = miaX{O, Gi,k} (14.20)
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for all k. Clearly, the procedure guarantees the satisfaction of the three requirements
given earlier. Once the interval model is obtained, various extremal properties of
this model can used in assessing the performance of any proposed controllers. These
would exploit the results on interval systems developed in earlier chapters.

In the next section, the technique is illustrated by applying it to a large space
structure experimental facility developed at NASA’s Langley Research Center.

14.3 APPLICATION TO A MINI-MAST SYSTEM

14.3.1 Model Description

The Mini-Mast system shown in Figure 14.2 is a 20.16 meter-long deployable truss
located in the Structural Dynamics Research Laboratory at NASA Langley Research
Center. It is used as a ground test article for research in the areas of structural
analysis, system identification, and control of large space structures. The Mini-Mast
was constructed from graphite-epoxy tubes and titanium joints by using precision
fabrication techniques. The 102 measurements shown in Figure 14.2 were derived
using 51 noncontacting displacement sensors distributed from Bay 2 through Bay
18. Three shakers are located circumferentially around the truss at Bay 9 and their
locations are selected primarily to excite the low frequency modes below 10 Hz.
There are two bending modes and one torsion mode in this low frequency range.
These three modes are designed to be separated from the other frequency modes.
The experimental data used in this example is obtained by using one displacement
sensor output at Bay 9 from one input. In this example, we use the experimental
data within the 45 [rad/sec] low frequency range with 180 frequency data points.
This low frequency range covers the three low frequency modes described earlier.
Figure 14.3 shows the frequency response test data.

14.3.2 Interval Model Identification

Using the weighted least squares method described earlier, we select W' (jw) shown
in Figure 14.4 (Top). The identified model obtained is

ng+nis+ n252 + n353 + n454 + 71555

dy + dis+ dys? + dss® + dyst + dss® + 56

G'(s) =

where

ng = —5.78 x 104 dy = 2.96 x 107

ny = 5.88 x 102 dy =2.15 x 103
ny = —8.74 x 102 dy = 1.10 x 10°
ns = 0.073 ds = 2.75 x 103
ny = —0.967 dy =2.21 x 103

ns = 3.48 x 107 ds = 2.58

The eigenvalues of the identified model transfer function are as follows:
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3 102
excitation displacement
shakers measurements

Figure 14.2. Mini-Mast structure
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Figure 14.3. Experimental data set

Eigenvalues

1 —7.11 x 1072 £ j5.3560 1st bending mode
—4.22 x 1071 £ j26.302 1st torsion mode
3 —7.99x%x 107! £38.616 2nd bending mode

05 L L L L L
-0.02  -0.015 -0.01 -0.005 0 0.005  0.01

0.025

The magnitude and phase comparisons of the test data and the identified model are
given in Figure 14.4 (Middle and Bottom). The dashed lines denote the frequency
response of D(jw) and the solid lines denote the frequency response of G¥(jw).
The dotted lines in Figure 14.4 (Middle) indicates the error in magnitude (i.e.

|D(jw) — G'(jw)|) for illustration.

We now create intervals around this nominal identified model. The weight se-
lection method described in Section 14.2.3 gives the following weights for each co-

efficient:
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Weighting
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Figure 14.4. Least square weights (Top), Magnitude plots of identified model,
experimental data, model error(Middle), Phase plots of identified model and exper-
imental data (Bottom)

Wy, = 2.7053 x 10 W, = 3.9152 x 103
w,, = 1.2041 wg, = 2.2715 x 107
W, = 2.3214 x 10~ W4, = 5.8095 x 10
W, = 4.0113 x 103 W, = 1.5250

W, = 2.4768 x 10~ W4, = 5.9161 x 102

Wy, = 2.9620 x 107° wa, = 1.2520 x 10=3
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This set of weights produced the following interval system:

- - L9 s 3 o .5
ng + N8+ Nos”™ + N3s” + Ny + N s

G(s) = = - - = = ~
do + d15 + d282 + d353 + d4 + d555 + 58
where
ny € [—6.006, —5.666]x10% Cgo € [2.936,2.979]x 107
ny € [ 4.769, 7.840]x10? c{l € [2.0663,2.2335]x10°
Ny € [—8.959, —8.609] x 102 c{z € [1.092,1.099]x10°
ng € [—4.9791, 5.6904]x10~" 6{3 € [2.672,2.841]x103
ng € [—9.749, —9.373]x 107! dy €12.209,2.219]x103
f5 € [—0.8570, 1.1648]><10_4 ds € [2.526,2.619]><100

14.3.3 Model Validation

Figure 14.3 shows the polar plot of the test data for each frequency at which mea-
surements were taken. FEach mode of the polar plot has been separated in Fig-
ures 14.5(a), (b), (c) for illustration. The frequency envelope of the Interval Model
is generated from the extremal segment set Gg(s). These figures show that every
data point of the test data is bounded by the image set generated by the interval
model at the corresponding frequency. Figure 14.5(d) was drawn for the entire fre-
quency range. These figures show that the uncertainty model obtained here is a
valid interval model for the given test data set. Similarly, Figure 14.6 shows the
magnitude and phase plots of the test data and the interval model. Clearly, both
magnitude and phase plots of the test data are contained in the tightly bounded
tubes representing the boundary of the frequency responses of the interval system.

In the next section another application is discussed. In this example, multiple
data sets are used to identify the corresponding interval transfer function. Fach
data set represents the experimental structure with a specific set of added masses.

14.4 VIBRATION SUPPRESSION CONTROL OF A FLEXIBLE
STRUCTURE

The objective of this example is to apply theoretical developments on interval sys-
tems to a laboratory experiment and to achieve meaningful robust control design
and analysis of the vibration control problem of a flexible structure. Specifically,
a controller is designed to damp structural vibrations such that changes in struc-
tural parameters can be tolerated. Therefore, it can be guaranteed that the level of
damping will be bounded inside a predicted range.

The test structure is a scaled version of a typical flexible truss-like space structure
and the parametric uncertainty is represented by mass added to various locations on
the structure. This type of structural change is common in many space-bound dy-
namic systems. For example, appendage articulation or decreasing fuel weight over
the life of a satellite are all possible system variations. While inertial changes were
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Figure 14.5. Nyquist images of interval model and experimental data (a) first
mode, (b) second mode, (¢) third mode, (d) image set of the system
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Figure 14.6. Bode plots of interval model and experimental data

chosen for this investigation, this by no means limits the methodology presented
herein. Indeed, the effects of changes of any plant parameter, such as structural
damping or moduli, could be accounted for in these interval system techniques. We
start by describing the structural dynamics of the system.

Structural Dynamics

A 10-bay aluminum truss structure that was built for this experiment is shown in
Figure 14.7. Each bay of the structure is a 0.5 meter cube made of hollow aluminum
tubing joined at spherical nodes with threaded fasteners. The last three bays of the
structure form a T-section. This is done so that the torsional modes of vibration will
be more pronounced. The final structure has a mass of 31.5bkg and is cantilevered
horizontally from a massive monolithic base.
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Figure 14.7. Ten Bay MeroForm Truss with T-section
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A Finite Element Model (FEM) of the structure is shown in Figure 14.8. A modal
analysis is performed on the model giving information about the structure’s modal
frequencies and mode shapes. The solution results in 7 modes of vibration in the
100Hz bandwidth. In order to establish the credibility of the model as well as embed

38 39
37
4
3
2
Y
s
1
Z 5 9 13 17 21 25 29
41 44

Figure 14.8. Finite element model of 10 bay truss including node number

natural structural damping data, experimental frequency domain data is collected
from the structure using a Tektronix 2642A Fourier Analyzer. The input applied
to the structure consists of an impulse applied to Node 40 (see Figure 14.8) of the
structure, and the output is from an accelerometer mounted at Node 40 as well.
The natural frequencies and damping ratios are extracted from the experimental
data using the Eigensystem Realization Algorithm (ERA) method which we will
not describe here. Interested readers may refer to reference [101]. Table 14.1 shows
the resulting values for the first seven modes from the FEM model as well as the
experimental data. From the FEM model we also extract a reduced-order mass
matrix M and stiffness matrix K for the structure. The equation of motion for
a multi-degree of freedom system is transformed into the standard modal form so
that the modal damping matrix can easily be included. Transforming this back into
physical coordinates yields the mass; stiffness, and damping matrices. Hence the
following second-order lumped-mass parameter model of the structure was used to
represent the structural dynamics.

Mi + Di + Ka = Bu (14.21)

The vector x represents the physical coordinates of the structure, the vector u
represents the force input into the structures, the triple (M, D, K) represents the
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Table 14.1. Results of FEM model and ERA 1dentified model

Mode FEM model ERA model
Frequency(Hz) Frequency(Hz) Damping(&)

1 Vertical Bending 9.22 9.45 .0120
2 Horizontal Bending 9.31 9.70 .0140
3 Torsional 18.13 19.69 .0080
4 Vertical Bending 47.43 49.01 .0020
5 Horizontal Bending 55.12 60.30 .0010
6 Torsional 84.73 92.84 .0006
7 Mixed Motion 87.48 98.70 .0003

dynamics of the structure and the matrix B represents the input matrix. The
damping matrix was developed from ERA identified modal parameters,

D= (ST "ApS;, (14.22)

where

AD = dlag [251 Wiy eony 2€n wn]

and S, 1s a mass normalized modal matrix for the reduced order model. The model
represents a baseline model of the structure used in control design.

Actuator Dynamics

A reaction mass actuator (RMA) shown in Figure 14.9 is used to input force into
the structure. This actuator uses a mass-magnet and electrical coil assembly to
accelerate a proof-mass. An amplified signal applied to the stationary electrical
coil creates a magnetic field. The constant field of the magnet inside the moving
mass reacts against the new magnetic field causing force and hence movement of the
mass. The mass rides on shafts which are limited to linear motion. The mass has
a total usable travel length of about 2.5 cm. Any acceleration of the mass caused
by force imparted from the coil results in an equal but opposite reaction force on
the actuator’s housing. When the actuator is mounted on the structure, the force
18 imparted on the structure. Hence, the actuator is space-realizable because it
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requires no inertial reference frame such as the earth.

Figure 14.9. Reaction Mass Actuator assembly used for motion control

The actuator contains an internal non-contacting displacement sensor to aid
in keeping the mass centered with respect to its housing. The block diagram of
Figure 14.10 shows the local control scheme used for keeping the mass centered. The
PD type controller contains a proportional feedback loop which acts as a spring and
a derivative feedback loop which adds an equivalent viscous damping to the motion
of the mass. The resulting system acts like a simple single degree of freedom mass-
spring-damper system. Notice that a first-order filter is included to reduce the
effects of high frequency noise in the damping loop. Realizing that the force output
of the actuator is actually the inertial acceleration of the mass, the output force of
the actuator has the following dynamics.

F(s) mrs® + ms?

= 14.2
Vin(s)  mrs3 +ms®> + (c+kT)s + k ( 3)

where m 1s the reaction mass, & is the equivalent stiffness, ¢ is the equivalent viscous
damping constant, and 7 is the time constant of the noise filter. This transfer
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function represents the force output F(s) with respect to the voltage input Vi, (s)
applied to the RMA’s coil, the output of the PD controller. As shown in Figure 14.7,

ms2 X
VPC ‘/err . ‘/in .
O 1 O B
— _|_ x
=T ] Kas
Ky,

Figure 14.10. Block diagram of the local centering control system of RMA

the actuator is mounted between Node 39 and Node 40 of the structure. This
location on the end of the structure is chosen because the modal participation factors
of the first few modes of the structure are large at this location. A second-order
model of the actuator and structure is created by combining the mass, stiffness, and
damping coefficients of the actuator’s local feedback system with the mass, stiffness,
and damping matrices of the structure. This can be done when the constant 7 is
small enough that it doesn’t have an effect in the frequency range of interest.

It should be noted that several design considerations were made when building
an actuator and setting the local feedback gains. First, the actuator is designed so
that its mass is small compared to the structure. The reaction mass is approximately
1.67 kg and the parasitic mass is 1.6kg so that the actuator is just over 10% of the
structure’s mass. Note also that the efficiency ratio of the actuator itselfis 51%. The
damping ratio of the actuator affects the damping in the structure both passively
(without active control) and with the active control designed. These considerations
were taken into account when choosing the internal damping in the actuator.

Parametric Uncertainty

The uncertainty of the structure considered here is due to masses added to Nodes
44 and 17. We want to examine the structural changes that occur when each added
mass varies from Okg to 2.5kg. In order to observe the frequency domain behaviour
of the system with respect to the changes of these added masses, we take the
following six samples of various weights of added masses as shown in Table 14.2. As
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Table 14.2. 2 Masses Added to Structure

Case 1 2 3 4 5 6

Node 17 0Kg 05Kg 10Kg 15Kg 20Kg 25Ky
Node 44 0Kg 05Kg 1.0Kg 15Kg 2.0Kg 25Kg

a result, the modal frequencies are shifted as the masses are varied. Our particular
interest 1s the model uncertainty for the first horizontal mode and the first torsional
mode with the natural frequencies ranging 4 to 24Hz. The output measurement is
from an accelerometer located at node 40 in the horizontal direction and the input
is generated by applying the random signal to the RMA actuator. Figure 14.11
illustrates the change in the frequency peaks of the experimental data when these
inertial parameters change.
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Therefore, it is reasonable to assume that for any value of added mass ranging 0
to 2.5 kg the frequency response of the corresponding structure remains inside the
thinnest envelope covering the frequency response of these six sampled structures.
By combining (14.21) and (14.23), we arrive at a transfer function expression of the
actuator-structure composite system

52X (s,p)

G(s,p) = o) (14.24)

where Vi, (s) is the voltage across the actuator coils and s? X (s, p) is the response
of an accelerometer. The unknown parameter, p, represents the uncertainty in
the structural dynamics. Although we are using inertia to generate a family of
perturbed systems, this by no means limits the techniques presented here to inertial
perturbations only.

Vibration Suppression Control Law

The controller 1s designed using classical root locus techniques. Later it is cast
in terms of interval control systems to observe the robustness of the closed loop
system. Vibration damping is accomplished using a local velocity feedback (LVF)
control scheme. Velocity feedback is fed into a single actuator from an accelerometer
located at Node 40 horizontal direction, such that,

u=—K,. (14.25)

The control design is based on the model as in (14.21). Here we consider the model
of the first horizontal bending mode and the first torsional mode. Feeding back the
velocity term through feedback gain, K, , the closed loop pole locations of the system
are predicted. After varying the gain, a root locus plot is created. The resulting
plot shows a trend of increased damping in all of the modes as the actuator gain
increases. As expected, the actuator’s damping is predicted to decrease and thus
the pole of the actuator dominated mode moves toward the left half plane.

To implement the controller, a negative velocity signal 1s fed to the actuator to
“cancel out” the motion of the structure, or reduce its velocity. An accelerometer
i1s mounted on the housing of the actuator, and is thus connected to the structure.
In order to get a velocity signal, the acceleration signal from the sensor must be
integrated. However, integration of electrical signals results in exponential growth
of any DC noise or DC offsets anywhere in the system. Therefore, we use a “velocity
estimator” and the estimator 1s formulated as

(s) _ s
a(s)  s2 4 w.s + w? (14.26)

where w,. is the break frequency of the filter, V(s) i1s an estimated velocity signal
and a(s) is the accelerometer input. The value used here is 0.5H z, and since the
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estimator acts like an ideal integrator at frequencies above 6w,, the feedback signal
should be proportional to the velocity of the structure.

Initially, the controllers are implemented for the structural system with no
added mass. Figure 14.12 shows the significantly increased damping in the first
two modes(horizontal bending and torsional). The control is successful in increas-
ing the system damping, but the question of robustness still remains unanswered.
How much will slight changes in the system affect the closed loop control of the
structure? The interval control model answers this question.
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Figure 14.12. Experimental frequency response function of the open-loop and
closed-loop systems with zero added masses: — Open-Loop; - - Closed-Loop K, =

30; ... Closed-Loop K, = 60.

14.4.1 Model ldentification
Model Structure

The objective of this section is to construct a family of models such that its frequency
response contains the six samples of experimental data shown in Figure 14.11. Each
data set consists of 900 data points over the frequency ranging 4 to 24 H z. We first
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select the transfer function of the nominal model with an appropriate order:
no(s)
gols) =
(s) To(s)
Conp s g s 4 nls 40
s+ dd sl d9s 4 dS

(14.27)

Here, we choose the structure of the family of transfer functions as follows:

no(s) + 5700 auri(s)
G(s) =< g(s) : = 14.28
) { B GG A, B (o) (1428)
where 7;(s) and ¢;(s) are base polynomials of degree m and m — 1, respectively.

The parameters «; and 5; are the interval parameters which will be determined by
their limiting values:

a; € loy, of], B €[6,8, for all ¢

Upon the determination of the interval family G(s), we expect that the frequency
response of every structure corresponding to each and every value of added mass
ranging over 0 to 2.5kg remains inside that of the family G(s).

In the next subsection we show how to determine the desired family of transfer
functions G(s), equivalently determining a nominal model gq(s), a set of base poly-
nomials (7(s), ¢;(s)), and the limiting values of interval parameters «; and 5;. We
will call this type of model an interval model.

Interval Model ldentification

The algorithm to generate an interval model starts with identifying a model for
each sample set of data. Any standard identification technique can be used for this
purpose and here we again use a least squares based system identification technique.
We first determine the order of the transfer function:

ni(s)
gi(s) = di(s)
i om 7 m—1 i
:nmg +?zm_15 +...+'no’ i=1,---,6. (14.29)
s fdi o smml 4 4 d

Once a judicious choice of the order of the transfer function is made, determination
of the coefficients of each transfer function may be found by solving a least square
problem. Let D;(w) be the i"" sample data set consisting of 900 data points and
W(w) is a positive weighting function, then the least square solution generates the
coefficient set of the transfer function g;(s), which minimizes the index:

Ji = W(w) [R(wr)” + I(wi)’] (14.30)

k=1
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where

R(wy) .= Real [D; (w, )d; (jw) — n; (jw)]
Hwy,) = Imag [D; (w )d; (jw) — n; (jw)] -

We repeat this procedure for all six test data sets to obtain the transfer functions
gi(s),i=1,...,6. A typical choice for the nominal model gq(s) is the average of
these:

1< 1<
0 _ k 0 k
n =g g n; and d; = 6;:1 dy . (14.31)

The parameter perturbation vectors of the i*® identified model are defined as
Ani =n; — Ny, AdZ = dz — do (1432)

In order to determine the set of base polynomials r;(s) and ¢;(s) in (14.28), we
employ a Singular Value Decomposition. To illustrate this SVD technique, we first
form a matrix for the uncertainty of the denominator as

AD=[Ad; Ady ... Adg]. (14.33)
The SVD factors the matrix AD as
AD=USVT, (14.34)

where U and V are orthonormal matrices and S is a rectangular matrix

S =[Sm 0] (14.35)
with S, = diag[s1, sa, ..., $,,] and monotonically nonincreasing s;, ¢ = 1,2,---,m
§1 >8> > 5, > 0. (14.36)

The number of non-zero singular values s; is the rank of the matrix AD.

Suppose that the size of the perturbation matrix AD is m X n with n > m
and the number of the non-zero singular values is mj;. Then the corresponding
coordinate vector of the perturbation Ad; relative to this basis 1s

Aqg; = UT Ad,. (14.37)
Thus, we have

[Aq, ... Aq,]=UT[Ad; ... Ad,]
=UTAD.

Here the singular value matrix is expressed as

5'::[ S ]:: [‘%%k ] (14.38)
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with S, = diag[s1, s2, ..., $m,]. Thus,

=UTAD
=yuTusvT

=U'U [S%VT]

_ [V
_Im[ : ]
SOVT
™

where S, VT is an m; x n matrix. The last m — my; elements of any Aq; are
zero. From this, it is clear that all the uncertainty vectors Ad; are inside the space
spanned by the first my, orthonormal vectors of U.

Furthermore, since 52% VT is of full rank, the dimension of the uncertainty ma-
trix AD is my,. Notice that the i*" (i < my) row vector of the matrix [Aq; ... Aqy]
18 8; VZ»T with norm s;. The j™ element of vector s;V; represents the perturbation
Ad; in the direction of u;. Each singular value s; indicates the magnitude of the
perturbations in the direction of u;.

For structures with low damping, the scalar value d, which is the multiplicative
product of the squares of all the natural frequencies, may be many orders larger
than the scalar d%,_;, which is the sum of 2¢;w; where & and w; are the damping
ratio and the natural frequency of the i*" mode, respectively. For example, we will
show that d of the first two modes in the model of the ten-bay structure is 107
times larger than d of this model. Thus we need to compute the perturbation
matrix with proper weights and we denote this weighted perturbation matrix as
ADW:

ADY =W 'AD (14.39)
where W, = diaglw} w? ... w?] and w9 is the standard deviation of the i*® row

vector of AD. To find the distribution of the weighted uncertainty, we again use
SVD to factor the matrix

ADW = UWSW (V)T where UY = [}V ... W] (14.40)

™m

Here the singular value s; indicates the weighted perturbations distributed in the
direction of u?". The corresponding coordinate vector of the uncertainty Ad}
relative to the basis {ul’, ..., u'} is

Aq? = U™ AdY (14.41)

Since the basis {ulV,..., u?¥} corresponds to the weighted perturbation matrix
ADY | we want to find a basis corresponding to the nonweighted perturbation
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matrix AD. From (14.39) and (14.40), the matrix AD can be written as
AD = WUV S(vW)T. (14.42)

The basis for the nonweighted perturbation matrix AD is computed as

Uy = WaUWY | where Uy = [ug gz ... Ugm] (14.43)
The basis {ug1,..., Ugn for the nonweighted perturbation matrix AD is equiv-
alent to the basis {u}" ..., u/¥} for the weighted perturbation matrix ADW.

The corresponding coordinate vector of the uncertainty Ad; relative to the basis
{ugy,. .., ug, }is

Aqi == Ud_1 Adl
= (UW)~H (W)~ (Wa)Ad)”
= (U")TAd) = Aq. (14.44)

Notice that the nonweighted perturbation coordinate vector Aq; is the same as the
weighted coordinate vector Aq!V. Both perturbation matrices therefore share the
same singular values. The fixed polynomials g;(s) of the interval model in (14.28)
are now composed of the basis vectors of Uy,

qi(s) = Z wgi(§)s™ (14.45)

where ug;(j) is the j™ element of vector uy;. Finally, we determine the bounds for
the corresponding polynomial q;(s) as

+_ (s o _
B = max(Aqi(f)), j=1,...,m (14.46)
B = 121£6(Aqi(])), j=1...,m (14.47)

where Aq;(j) is the j™ element of vector Aq;. This interval model represents
an optimal linear box of the determined polynomials to cover the perturbation.
Similarly, we also apply the SVD technique to the numerator perturbation matrix
to obtain 7;(s), ], and o .

The above procedure insures that each transfer function g;(s), ¢ = 1,2,---,6
that represents the system with different added masses is contained in the interval
transfer function G(s). Consequently, we will be justified in carrying out design
and analysis on this interval model.

14.4.2 Experimental Results

We utilize the techniques developed in Chapters 6 and 8 to analyze the vibration
suppression control of the ten-bay truss structure with added mass uncertainty. A
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reaction mass actuator(RMA) located between nodes 39 and 40 is used to excite
and control the structure’s motion. An accelerometer located at node 40 is used to
measure the acceleration in the x direction at this position. Here we consider the
model for the modes within the 4 — 24 Hz frequency range. There are two modes,
one bending mode and one torsional mode, in this bandwidth. The experimental
frequency domain data were collected using a Tektronix 2642A Fourier Analyzer.
The controller consists of a proportional-derivative (PD) system connected to the
actuator. The transfer function of the actuator is denoted as g,(s), and we denote
the transfer function of the actuator-structure composite system as g;(s). The
900 point frequency response functions of the experimental system with actuator
dynamics (actuator-structure composite system) are expressed as

9 (jwr) = ga(Gwr)g? Gwr), k=1,2,---,900 (14.48)

where g; is the i*" set of experimental data and ¢? represents the system dynamics
excluding actuator dynamics. The transfer function of the actuator is given by

ga(s) = "al®) (14.49)

2.3853 x 1073s% + 1.6745s”
2.3853 x 10—3s3 4 1.674hs*> 4 25.781s5 + 1251.3

This includes the second order dynamics of the RMA, plus a first order filter used
in conjunction with a PD controller which keeps the center of its mass positive
at stroke. Following the modeling procedure described, we first apply the least
squares technique to each set of data ¢? to obtain the identified model for each
case of incremented added masses given in Table 14.2. Figure 14.13 compares the
experimental data and the identified models including actuator dynamics. The
figure shows that each identified model closely fits the corresponding experimental
data set. The two peaks of each set of experimental data represent two structural
modes and the natural frequency of each mode decreases when the added weight
increases. Also the magnitude of each mode changes slightly for all the cases.
Table 14.3 shows the structural eigenvalues of these six identified models. After we
obtained the identified structural models excluding actuator dynamics, we computed
the nominal model as the average of these six models and we have

go(s) = 228 (14.50)

_ —3.463 x 1073s* — 1.173 x 10733 — 24.68s”
T 5% 4524183 + 1625552 + 402255 + 4.412 x 107"

Recall the model structure in (14.28). If we determine the coefficients of the base
polynomials r;(s) and ¢,(s), and intervals of the parameters «; and j;, the interval
model will be completely determined. By applying the interval modelling procedure
described in Section 14.4.1, the coefficients of these polynomials and intervals of the
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Figure 14.13. Experimental frequency response function (—) and Identified Mod-
els (- -): From Right to Left 0K g, 1Kg, 2Kg, 3Kg, 4Kg, 5 Kg.

Table 14.3. Eigenvalues of the identified models

Model No. First mode Second mode
1 -1.38644361.094 -1.473343123.00
2 -1.3065£359.930 -1.36774)117.76
3 -1.1854+358.892 -1.48714j113.96
4 -1.1081+£357.902 -1.41674j110.79
5) -1.0424+356.929  -1.48734j108.03
6 -0.9581+£355.724  -1.50504j105.10

parameters are obtained as shown in Tables 14.4 and 14.5. Table 14.4 shows that
the coefficients of the denominator depicting the model uncertainty are dominated
by the uncertainty in the direction of the first singular vector. The perturbation dis-
tributed in the direction of the fourth singular vector is around 1000 times smaller



610 INTERVAL MODELLING, IDENTIFICATION AND CONTROL  Ch. 14

Table 14.4. Coefficients of ¢;(s) and intervals of j;

¢ (s) g(s) gs(s) ga(s)
§3 1.4326 x 10~ —25118 x 10~  —1.8767x 1072 —1.0399 x 103
52 8.6678 x 102 5.5011 x 102 —8.0878 x 102 1.1301 x 103
st 4.1568 x 10° 1.8545 x 10° 6.8649 x 103 8.2205 x 102
50 4.0831 x 10° 2.5353 x 10° —2.4265 x 10° —6.1023 x 10°

gr 3.1117 x 10° 2.8036 x 101! 2.5123 x 1072 2.5140 x 1073
B~ —2.3396 x 10° —2.1055 x 1071 —3.3913 x 1072 —2.5161 x 1073

Table 14.5. Coefficients of r;(s) and intervals of «;

1 (s) ro(s) r3(s) ra(s)  rs(s)
st —8.7360 x 104 —3.2529 x 107° 9.2234 x 107> 0 0
s —1.3370x 104 3.8897 x 1071 1.0547x 10=° 0 0
s2 —3.3372 x 10° —1.0513 x 10° —3.5316 x 10° 0 0
st 0 0 0 1 0
50 0 0 0 0 1
at 2.4339 x 10° 1.0485 x 10° 6.3217x 10=2 0 0
a”  —1.8816 x 10° —1.3450 x 10° —3.5834x 1072 0 0

than that of the first singular vector. Table 14.5 shows that the model uncertainty
of the numerator part is dominated by the uncertainty in the directions of the first
two singular vectors. The Edge Theorem (Chapter 6) is now applied to the interval
model obtained. Figure 14.14 shows the root clusters for two structural modes of
interest. Experimentally identified eigenvalues are also included for comparison.
From the interval model of the structure we obtained, we now can write the inter-
val model of the system which includes the actuator dynamics (actuator-structure
composite system), as follows:

na(s) [mo(s) + Y auri(s)]

R AEITTOES yiaye)
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Figure 14.14. Root cluster (.) of closed-loop interval model and eigenvalues (*)
of open-loop experimental structure for various added masses.

— na(S)HO(S) + Z?;-'l_l Oéﬂla(s)ri(g)
T dy(5)do(s) + Yoy Bida(s)qils) (14.51)

Next, we apply the techniques described in Chapter 8 to obtain the magnitude
envelopes of the interval model given in (14.51). Figure 14.15 shows the magnitude
envelopes and the magnitude plots of the experimental transfer functions g;{(w) for
¢ =1,2,---,6. It is seen that the magnitude envelopes cover all the experimental
data sets. It should be noted that these six experimental transfer functions represent
a sample of all parametric changes which correspond to added masses at nodes 17
and 44. The interval model on the other hand accounts for the dynamics of the
system for continuous changing masses at these two nodes up to 2.5Kg. To verify
the identified interval system by using the closed-loop experiment, we first design a
local velocity feedback controller based on the root loci techniques for the vibration
suppression of the structure. The transfer function of the controller is

o di(s) T 2t ws+ 72

K(s) = ng(s) —110K,s
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Figure 14.15. Magnitude envelope (—) of interval model and experimental data
(..) for the open-loop system frequency response functions.

where K, is the velocity feedback gain. The controller is designed for the structure
without added masses. With K, = 30, the damping ratio of the first mode is
increased from 2.2% to 6.6% and the damping ratio of the second mode from 1.2%
to 3.9%. The closed-loop interval system transfer function with the controller K(s)
can be computed as

T(s) =
i (5) [na(s)nos) + S0 as(na(s)ri(s))]

di(5) [da(5)do(s) + 3272 Fi(da(5)4:(5))] + na(s) [na(S)no(S) + ai(”a(S)ﬂ(S))]
This interval system representation may be separated into the fixed and perturba-
tion terms .
_ o(s) + 370 aini(s)
Bls) + 227L1 Bilri(s) + 71 @iffai(s)
where the fixed part of the polynomials are

a(s) = dy(s)na(s)no(s),

T(s)

(14.52)
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B(s) = di(s)da(s)do(s) +nx(s)na(s)no(s)

and the perturbation part polynomials are

a1i(s) = di(s)na(s)ri(s)
Bri(s) = di(s)da(5)q:(s)
Bai(5) = ng(s)na(s)r; (s).

Figure 14.16 depicts the magnitude envelope of the closed-loop interval system
which shows that the envelope bounds the magnitude of the experimental transfer

functions.
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Figure 14.16. Magnitude envelope (—) of interval model and experimental data

(..) for the closed-loop system frequency response functions.

The root clusters of the closed-loop interval system are also plotted by applying
the Edge Theorem (Chapter 6) and it is given in Figure 14.17. The damping for
each mode of the closed-loop family of systems is increased and this i1s verified by
comparing the boundaries of the root clusters in Figures 14.14 and 14.17. Thus,
from this root cluster plot, one can predict the worst case damping of the closed

loop system while the added mass varies anywhere in between 0 to 2.5Kyg.

In
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Figure 14.17. Root cluster (.) of closed-loop interval model and eigenvalues (*)
of closed-loop experiment for K, = 60.

other words, as long as the varied system remains inside the Bode envelope given
in Figure 14.15, the poles of the closed loop system will remain inside the cluster
regions shown in Figure 14.17.

14.5 NOTES AND REFERENCES

In this chapter we have freely employed a variety of terms used to explain sys-
tem identification and the control structure experiment. We intentionally did not
explain these terms in detail because our emphasis lies in interval system identi-
fication. However, the interested reader may refer to the following references for
further details. An excellent collection of papers dealing with the issue of system
identification and robust control is to be found in Kosut, Goodwin and Polis [151],
[1], and references therein. These are mainly focused on the H.,, ¢; and u prob-
lems. The least square approach used in Section 14.2.2 to determine a nominal lin-
ear time-invariant transfer function is described in detail by Adcock [3] and also by
Juang and Pappa [122]. The method of selecting the normalized least square weight
W' (jw) and its effect on the identified model are discussed in Bayard, Hadaegh,
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Yam, Scheid, Mettler, and Milman [24]. They also discussed the problem of selecting
an appropriate order of the transfer function in detail. The MATLAB ToolBox for
Figensystem Realization Algorithm (ERA) which was used to extract the natural
frequencies and damping ratios from the experimental data for the second example
was developed by Juang, Phan and Horta [123]. The details of the Reaction Mass
Actuator (RMA) can be found in the work of Garcia, Webb and Duke [102]. The
details of a Local Velocity Feedback (LVF) scheme which was used to accomplish vi-
bration damping can be found in Zimmerman, Horner and Inman [248]. A velocity
estimator is also described in Hallauer and Lamberson [107]. The first experiment
was developed by Keel, Lew and Bhattacharyya [140]. The experiment was also
modified to reflect mixed H,., and parametric uncertainty, and various results are
reported in Lew, Keel and Juang [161, 162]. The second experiment was performed
by Lew, Link, Garcia and Keel [163] and the related results are reported in Link,
Lew, Garcia and Keel [164]. Different approaches of interval system modeling are
also reported by Sotirov and Shafai [209] and [217].



