Chapter 12

STATE SPACE PARAMETER
PERTURBATIONS

In this chapter we describe some robust parametric results formulated specifically
for state space models. We first deal with the robust stability problem for interval
matrices. When the parameters appear in the matrices in a unity rank perturbation
structure, the characteristic polynomial of the matrix is a multilinear function of
the parameters. This allows us to use the Mapping Theorem described in Chapter
11 to develop a computational algorithm based on calculating the phase difference
over the vertices of the parameter set. Next we introduce some Lyapunov based
methods for parameter perturbations in state space systems. A stability region in
parameter space can be calculated using this technique and a numerical procedure
for enlarging this region by adjusting the controller parameters is described. We
illustrate this algorithm with an example. The last part of the chapter describes
some results on matrix stability radius for the real and complex cases and for some
special classes of matrices.

12.1 INTRODUCTION

Most of the results given in this book deal with polynomials containing parameter
uncertainty. These results can be directly used when the system model is described
by a transfer function whose coefficients contain the uncertain parameters. When
the system model is described in the state space framework, the parameters appear
as entries of the state space matrices. The polynomial theory can then be applied
by first calculating the characteristic polynomial of the matrix as a function of its
parameters. In this chapter, the aim is to provide some computational procedures
which can determine robust stability and compute stability margins for the case in
which parameters appear linearly in the state space matrices. Under the technical
assumption that the perturbation structure is of unity rank the characteristic poly-
nomial coefficients depend on the parameters in multilinear form. This allows us
to use the Mapping Theorem of Chapter 11 to develop an effective computational
technique to determine robust stability. This is illustrated with numerical examples.
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Next, we describe a Lyapunov based technique to handle perturbations of state
space matrices. A stability region in parameter space is determined by this method.
While this method does not require us to compute the characteristic polynomial, the
stability region obtained from this method is conservative. However, the method
gives a direct way to handle perturbations of state space matrices. Furthermore,
with these formulas, the stability margin can be increased through optimization over
the controller parameter space. This procedure is referred to as robustification. The
results are compared with the previously described method, which used the Mapping
Theorem, via examples.

In the last part of the chapter we describe some formulas for the matrix stability
margin for the real and complex cases and for some special classes of matrices.

12.2 STATE SPACE PERTURBATIONS

Consider the state space description of a linear system:

& = Az + Bu
y="Cx (12.1)
with the output feedback control
u= Ky. (12.2)

The stability of the closed loop system is determined by the stability of the matrix
M := A+ BKC. We suppose that the matrices A, B, K, and (' are subject to
parameter perturbations. Let

P = [plap2a"'apl] (123)

denote the parameters subject to uncertainty and set
p=p"+Ap (12.4)
where p® is the nominal parameter and Ap denotes a perturbation. Write

M(p)=M(p’ + Ap)
= M(p®) + AM(p°, Ap). (12.5)

Assuming that the entries of AM(p? Ap) are linear functions of Ap, we can write
AM(P°,Ap) = Ap1 By + Apo Es + -+ Ap E. (12.6)

We shall say that the perturbation structure is of unily rank when each matrix
FE; has unity rank. The special attraction of unity rank perturbation structures
is the fact that in this case the coefficients of the characteristic polynomial of A/
are multilinear functions of Ap as shown below. When the Ap; vary in intervals,
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this multilinear structure allows us to use the Mapping Theorem of Chapter 11
to develop an effective computational procedure to determine robust stability and
stability margins in the parameter space p. The stability margin will be measured as
the smallest ., norm of the vector Ap required to make M(p”, Ap) just unstable.
In the robust stability literature, state space perturbations are often treated by

supposing that
AM =DUE (12.7)

where the matrix U is regarded as a perturbation. In this formulation, one can
calculate the smallest induced norm of U for which M + AM just becomes unstable.
We remark that the parametric stability margin, defined as the vector norm of the
smallest destabilizing vector Ap, has a physical significance in terms of the allowable
perturbations of the parameter p. Such a direct significance cannot be attached to
the matrix norm. Nevertheless, it has become customary to consider matrix valued
perturbations and we accordingly define the matriz stability radius as the norm of
the smallest destabilizing matrix. We give some formulas for the calculation of the
matrix stability radius in the real and complex cases.

12.3 ROBUST STABILITY OF INTERVAL MATRICES

We first establish that the unity rank perturbation structure leads to multilinear
dependence of the characteristic polynomial coefficients on the parameter p.

12.3.1 Unity Rank Perturbation Structure
Let us suppose that

M(p) = M(p®) +Ap1 By + Aps Eo + - -+ Api . (12.8)

Mg

Lemma 12.1 Under the assumption that rank(E;) = 1 for each i, the coefficients
of the characteristic polynomial of M(p) are multilinear functions of p.

Proof. Write

8(s,p) =det [sI — M(p)].
In é(s,p), fix all parameters p;, j # ¢ and denote the resulting one parameter
function as é(s,p;). To prove the lemma, it is enough to show that 8(s,p;) is a

linear function of p; for fixed s = s*. Now since E; is of unity rank, we write
E;, = bicf where b; and ¢; are appropriate column vectors. Then

8(s*,p;) =det | s — My — ijEj —pibic]
i

A
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= det (S*I —A —pibicZ»T)

=det{ (s*T — A) | T —p; (s"T—A)~! bick
N—— ———
A(s*)
= det(s"] — A) det (I — pifl(s* )bicZ»T>
= det(s* I — A)p? det (pi_lf - fl(s*)biciT) .

Notice that A(s*)b;c! is of unity rank. Let X denote the only nonzero eigenvalue of
this matrix. We have

8(s*,pi) = i [pr " (pr ! — A)] det (57T — A)
=p} [p7™ — Apy "] det (51 — A)
= (1— Ap;) det (5*[ — A) .

Thus we have proved that (s, p;) is a linear function of p;. &

12.3.2 Interval Matrix Stability via the Mapping Theorem

The objectives are to solve the following problems:

Problem 1  Determine if each matrix M(p) remains stable as the parameter p
ranges over given perturbation bounds p; <p; < pr, i=1,--,L

Problem 2 With a stable M(p”), determine the maximum value of ¢ so that the
matrix M(p) remains stable under all parameter perturbations ranging over
pY) —wie < p; < p? + w;e for predetermined weights w; > 0.

These problems may be effectively solved by using the fact that the characteristic
polynomial of the matrix is a multilinear function of the parameters. This will allow
us to use the algorithm developed in Chapter 11 for testing the robust stability of
such families.

The problem 1 can be solved by the following algorithm:

Step 1: Determine the eigenvalues of the matrix M(p) with p fixed at each
vertex of II. With this generate the characteristic polynomials corresponding
to the vertices of II.

Step 2: Verify the stability of the line segments connecting the vertex characteris-
tic polynomials. This may be done by checking the Bounded Phase Condition
or the Segment Lemma.

We remark that the procedure outlined above does not require the determination
of the characteristic polynomial as a function of the parameter p. It is enough to
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know that the function is multilinear. To determine the maximum value of ¢ which
solves the second problem, we may simply repeat the previous steps for incremental
values of €. In fact, an upper bound € can be found as that value of ¢ for which one
of the vertices becomes just unstable. A lower bound € can be determined as the
value of € for which a segment joining the vertices becomes unstable as follows:

Step 1:  Set e =€/2

Step 2:  Check the maximal phase differences of the vertex polynomials over the
parameter box corresponding to e.

Step 3:  If the maximal phase difference is less than 7 radians, then increase
to € 4 (€ — €)/2 for example, and repeat Step 2.

I

Step 4:  If the maximal phase difference is 7 radians or greater, then decrease
to € — (€ — €)/2 and repeat Step 2.

1™

Step 5: This iteration stops when the incremental step or decremental step
becomes small enough. This gives a lower bound ¢ and an upper bound €.

If ¢ and € are not close enough, we can refine the iteration by partitioning the
interval uncertainty set into smaller boxes as in Chapter 10.
The following examples illustrate this algorithm.

12.3.3 Numerical Examples
Example 12.1. Consider the interval matrix:

apy=| b r ]

where
p0 = [p(l);pgapg] = [_3, _27 1]
and

pElpr pT]=[-3-€¢-3+€, pelpy, pi]=[-2—¢-2+4,

p3€[p5apg_]:[1_€al+€]'

The problem is to find the maximum value €* so that the matrix A(p) remains stable
for all € € [0, ¢*]. Although the solution to this simple problem can be worked out
analytically we work through the steps in some detail to illustrate the calculations
involved.

The characteristic polynomial of the matrix is:

6(s,p) = s(s —p1) — paps.
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In general this functional form is not required since only the vertex characteristic
polynomials are needed and they can be found from the eigenvalues of the corre-
sponding vertex matrices. Let us now compute the upper bound for e. We have
eight vertex polynomials parametrized by e:

Ay(s) :=1{6(s,p) peV}
where
V= {(pr. o, 03), (b7, 05, 0%), (07,03, p3), (07, P35, 05 ), (0, o4, pT),
(rt.p7.0%), (0, P35 p5), (0F .17, p5)}

We found that the vertex polynomial é5(s) has a jw root at € = 1. Thus we set
¢ = 1. Using the multilinear version of GKT (Theorem 11.1), A(s) is robustly
Hurwitz stable if and only if the following sets are Hurwitz stable:

Li={s[As—p))+(1=N6—p0)] —pird X e0,1]}

Lo = {s[Ms —p7) + (1= X)(s —pF)] —pzpf : X €[0,1]}

Ly = {s[Ms —p7) + (1= X)(s —pF)] —pFp3 : A €[0,1]}

Ly = {s [A(s —p7) + (L= A)(s—pf)] —pap5 s A€ [0, 1]}

M; :{ s(s —py) — [’\1172 +(1- Al)P;] [’\21’5 +(1 —/\z)pfi{]
(/\1, A2) €0, ] [ 1]}

M :{ s(s — pi) [’\1172 —Aps ] [Pepz + (1= X)p3]
(A1, A2) €0, ] [0 1}

The L;, ¢ = 1,2,3,4 are line segments of polynomials, so we rewrite them as follows:

Li=Xs—py —p5pd)+ (1= N(s —pf —p3pd)
Ly =Ms—p7 —p3p3 )+ (1 =N (s —pf —p3p)
Ly =Xs—py —pips )+ (1= N(s—pf —pipy)
Ly=Xs—py —pyp5)+ (L= (s—pf —p3p3)

Now we need to generate the set of line segments that constructs the convex hull of
the image sets of M5 and Mg. This can be done by connecting every pair of vertex
polynomials. The vertex set corresponding to Mjy is:

M5V(5) = {ME : (/\1 s /\2) S {(0; 0); (0: 1): (1: 0): (1: 1)}}
If we connect every pair of these vertex polynomials, we have the line segments:
Ls = s(s —py) — [Apdpd + (1= Npips]

= Ms" —prs—pips )+ (L= A)(s* —py s — pip3)
Le = s(s —p7) — [Ap$p§ + (1 — N)p5 pT ]
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1= M) (s* —py s —p3 pd)
1—X)p3 p5 ]

1—X)(s* —ps — pop3)

—)‘(5 —pls—p2p3)
Ly =s(s—py)— [/\png,
—’\(5 —pls—png,)

(
+ (
(
Ly =s(s—py) — [’\pz ps +(1— A)Pz_p??]
=As® —prs—pips) + (1= A)(s* —prs—p3p3)
Ly =s(s—py)— [/\Pz ps +(1=A)psy EI%—]
= (s’ —pls—png) (1=X)(s* =pys —p3 p)
Lio=s(s—py) - [ p3py + (1= Npsp ]
_’\(5 —prs=pipy)+(1- ’\)(52_p15_pzp3)~

Similarly, for Mg we have the line segments:

Ly = s(s —pF) = [Mpdpd + (1= Mpdp5]

= A(s” —pTS—pzps) + (1= X)(s* — pfs —pfp3)
Ly =s(s —pi) — [Mpdpd + (1 — Nps pi]

—’\(5 —pTS—png,) (1 /\)(52_p15_pzp3)
Lis = s(s —pf) — [Apy pd 4+ (1= N)p3 p3 ]

:’\(5 pf’s—png,) (1 /\)(52 _pls_p2p3)
Lis=s(s —pf) — [Aodps + (1= X)p3 p3]

= Ms* —pfs—pips )+ (1= A)(s" —pfs—psp3)
Lis = s(s —pif) — [Apdps + (1 - Mp3 pd ]

= A(s” pTS—pzps) + (1= )" —pfs—p3pd)
Lis =s(s —pi) — [Mpdpd + (1 — N)p3 p35 ]

:’\(5 pTS—png,) (1 /\)(52 —p15_p2 P3 )

The total number of line segments joining vertex pairs in the parameter space is 28.
However the actual number of segments we checked is 16. This saving is due to the
multilinear version of GKT (Theorem 11.1), which reduces the set to be checked.
By testing these segments we find that they are all stable for ¢ < 1. Since ¢ = 1
corresponds to the instability of the vertex polynomial é3(s) we conclude that the
exact value of the stability margin is e = 1. The stability check of the segments can
be carried out using the Segment Lemma of Chapter 2.

We can also solve this problem by using the Bounded Phase Condition. The set
of vertices is

Ay(s)={V;,i=1,2---,8}
where

Vi(s) =s” —pfs—pipt =s" —2s+2
Vo(s) =s” —pfs—pypf =s” —25+6
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Va(s) = s> —pis — pfp3
Va(s) =s* —pfs—pop3
Vs(s) =s° —pis —p3py
Vo(s) =s° —pis —popi
Va(s) = s —pr s —pfps
Va(s) =s" —pis —pop3

515
=52 —2s
=52 —2s
=5 —4s+2
=52 —4s+6
=s?—14s
=s? —4s.

From the vertex set we see that the difference polynomials V;(s) — V;(s) are either
constant, first order, antiHurwitz or of the form ¢s and each of these forms satisfy
the conditions of the Vertex Lemma in Chapter 2. Thus the stability of the vertices
implies that of the edges. Thus the first encounter with instability can only occur
on a vertex. This implies that the smallest value already found of ¢ = 1 for which
a vertex becomes unstable is the correct value of the margin.

100

Maximum Phase difference of Vertices

Figure 12.1.
mials (Example 12.1)

Maximum Phase Differences @Av(w) (in degrees) of Vertex Polyno-
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This conclusion can also be verified by checking the phases of the vertices. Since
there are duplicated vertices, we simply plot phase differences of six distinct vertices
of A(jw) with e = 1. Figure 12.1 shows that the maximum phase difference plot as
a function of frequency. This plot shows that the maximal phase difference never
reaches 180 degrees confirming once again that € = 1 is indeed the true margin.

Remark 12.1. The phase of a vertex which touches the origin cannot be deter-
mined and only the phase difference over the vertex set is meaningful. The phase
condition can therefore only be used to determine whether the line segment exclud-
ing endpoints, intersects the origin. Thus, the stability of all the vertices must be
verified independently.

Example 12.2. Let

W= (A4 BECOR
—1 00 Ll roise 0 (101
SO 2009 0 —1hk] fo10] ) ®
0 0 -3 11 ’

where

ki € Tk k] =[—c. ] ks €[k, k3] = [~ cl.
We first find all the vertex polynomials.

Ay(s):=16(s,k;): k; €V, i=1,234}

where
V= {(k17k2) : (kf—’k;—)’ (kl_’kz_)’ (kl_’k;—)’ (kil—’kz_)} .

We found that the minimum value of € such that a vertex polynomial just becomes
unstable is 1.75. Thus, € = 1.75. Then we proceed by checking either the phase
condition or the Segment Lemma. If the Segment Lemma is applied, one must
verify the stability of six segments joining the four vertices in Av(s). If the phase
condition is applied, one must evaluate the phases of the four vertex polynomials
and find the maximum phase difference at each frequency to observe whether it
reaches 180°. Again, the calculation shows that the smallest value of ¢ that results
in a segment becoming unstable is 1.75. Thus € = 1.75. This shows that the value
obtained ¢ = 1.75 is the true margin.

The algorithm can also be applied to the robust stability problem for nonHurwitz
regions. The following example illustrates the discrete time case.

Example 12.3. Consider the discrete time system:

—05 0 ky
zk+1)=| 1 050 —1 |z(k)
ky ko 0.3
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For the nominal values of k) = kY = 0, the system is Schur stable. We want to
determine the maximum value of €* so that for all parameters lying in the range

ki € (=€) ko€ (—€,€)

the system remains Schur stable. Using the procedure, we find the upper bound
€ = 0.2745 which is the minimum value of € which results in a vertex polynomial
Just becoming unstable. Figure 12.2 shows that the maximum phase difference over
all vertices at each 8 € [0, 27) with € = € is less than 180°. Thus we conclude from
the Mapping Theorem that the exact parametric stability margin of this system is
0.2745.

MAXIMUM PHASE DIFFERENCES

Figure 12.2. ®A (f) vs 0 (Example 12.3)

In the next section we describe a Lyapunov function based approach to param-
eter perturbations in state space systems which avoids calculation of the character-
istic polynomial.
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12.4 ROBUSTNESS USING A LYAPUNOV APPROACH

Suppose that the plant equations in the state space form are

= Azxr + Bu
y=Cz. (12.9)

The controller, of order ¢, is described by

l;c = Acxc + ch
u=C.x.+ D.y. (12.10)

The closed-loop system equation is

¢ [A+BD.C BC. [ =
QL‘.C - BCC Ac IC

-1 o [0 a]lm S0 R[] e

Ay By K o

Now (12.10) is a stabilizing controller if and only if A, + B, K,C; is stable. We
consider the compensator order to be fixed at each stage of the design process
and therefore drop the subscript . Consider then the problem of robustification
of A+ BKC by choice of K when the plant matrices are subject to parametric
uncertainty.

Let p = [p1,pa,- -, pr] denote a parameter vector consisting of physical parame-
ters that enter the state-space description linearly. This situation occurs frequently
since the state equations are often written based on physical considerations. In
any case combination of primary parameters can always be defined so that the re-
sulting dependence of A, B, ' on p is linear. We also assume that the nominal
model (12.9) has been determined with the nominal value p® of p. This allows us
to treat p purely as a perturbation with nominal value p® = 0. Finally, since the
perturbation enters at different locations, we consider that A + BKC perturbs to

A+BEC+Y pE

i=1

for given matrices E; which prescribe the structure of the perturbation.
We now state a result that calculates the radius of a spherical stability region
in the parameter space p € IR". Let the nominal asymptotically stable system be

i(t) = Ma(t) = (A+ BEC)x(t) (12.12)
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and the perturbed equation be

(t) = (M + ZpE) x(t) (12.13)

where the p;, 2 = 1,---,r are perturbations of parameters of interest and the £; 7 =
1,---,r are matrices determined by the structure of the parameter perturbations.
Let @ > 0 be a positive definite symmetric matrix and let P denote the unique
positive definite symmetric solution of

MTP+PM+Q=0. (12.14)

Theorem 12.1 The system (12.13) is stable for all p; satisfying

- Tmin (@)
> il < (12.15)
i=1 Zi:l /’le

where p; = ||ET P+ PE|s.

Proof. Under the assumption that M is asymptotically stable with the stabilizing
controller K| choose as a Lyapunov function

V(z) =2 Px (12.16)
where P is the symmetric positive definite solution of (12.14). Since M is an
asymptotically stable matrix, the existence of such a P is guaranteed by Lyapunov’s
Theorem. Note that V(x) > 0 for all x # 0 and V(z) — oo as |[z|| — co. We
require V(z) < 0 for all trajectories of the system, to ensure the stability of (12.13).
Differentiating (12.16) with respect to # along solutions of (12.14) yields

V(e)= 2" Pe+ 2" Pi

=" (MTP+ PM)x+ T (i:piEiTP + ZpiPEZ») e (12.17)
i=1
Substituting (12.14) into (12.17) we have
Viz)=—2"Qu+ 2" (ipiETP—i—ZT:piPEi) . (12.18)
i=1 i=1
The stability requirement V(a:) < 0 is equivalent to

zT (ZpETP + Zpipﬂ) x < l‘TQl‘. (12,19)
7=1 7=1
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Using the so-called Rayleigh principle,

T
Omin (@) < IxTQf < Omax(Q), forall #0 (12.20)
and we have
Tmin(@)xT 2 < 2T Qx. (12.21)
Thus, (12.19) is satisfied if
T (ZpiEiTP + ZpiPEi) # < omin (@) . (12.22)
i=1 i=1

Since

xl (ZT:PiEfTP-I-ZT:pz’PEi) x

i=1 i=1

<[22 ][

2

(ZT:]%ETP + ZT:]%PEZ)
i=1 i=1

< e (Z il ||ETP+PEZ»||2) (223

i=1

(12.22) is satisfied if

r

ST (Ipil 1EF P+ PE||2) < 0min(Q). (12.24)

i=1
Let
i = ||[ET P+ PE||2 = omax(EY P+ PE;).
Then (12.24) can be rewritten as

r

ST (Ipil [1EF P+ PE||,)

i=1

H
Ha

=(lp | lpa| -+ -+ )| | <onin(@) (12.25)

which 1s satisfied if
2l < lpll ll2ll3 < in(@): (12.96)
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Using the fact that

el = Ipil?
i=1
r

ullz = il
i=1

we obtain
r 0_2. (Q
pil* < = (12.27)
Z'Z:; Zi:l /’LZZ
&
This theorem determines for the given stabilizing controller K, the quantity
- 0-12nin Q o-rznin Q
p(K,Q) = ( 2 = (&) (12.28)

which determines the range of perturbations for which stability is guaranteed and
this is therefore the radius of a stability hypersphere in parameter space.

12.4.1 Robustification Procedure

Using the index obtained in (12.28) we now give an iterative design procedure to
obtain the optimal controller K* so that (12.28) is as large as possible. For a given
K, the largest stability hypersphere we can obtain is
2
201 Omin (Q)
max p° (K, ) = max 2—= (12.29)
Q Q" Xic M
and the problem of designing a robust controller with respect to structured param-

eter perturbations can be formulated as follows:
Find K to maximize (12.29), i.e.

m}gx{m&xpz(K, Q)} = m}gx{mgx %} (12.30)

i=1 Ml
subject to all the eigenvalues of A + BK (' lying in the left half plane, i.e.

MA+ BEC) CC-.

Equivalently
2
(K, Q) = max Znin(@) 12.31
max p*(K, Q) = max ST (12.31)
subject to
MA+ BKC) CC.
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Thus the following constrained optimization problem is formulated: For the given
(A, B, C) with the nominal stabilizing controller K define

(A+BKCY'P+ P(A+ BKC)=-Q =171, (12.32)
and the optimization problem

Yoy |EL P+ PE5

min J = rlr(l}g T (7T (12.33)
subject to
J.:= max Re[A] <0.

T MAFBRO)

Note that the positive definite matrix @) has been replaced without loss of generality
by LTL. For any square full rank matrix L, LT L is positive definite symmetric.
This replacement also reduces computational complexity.

A gradient based descent procedure to optimize the design parameters K and L
can be devised. The gradient of J with respect to K and L is given below. Before
we state this result, we consider a slightly more general class of perturbations by
letting

A=A+ piA,  B=By+> piB;. (12.34)
i=1 i=1
Then we get
M=Ay+ByKC and FE; =A; + B;KC. (12.35)

Theorem 12.2 Let J be defined as in (12.33) and let (12.34) and (12.35) hold.
Then

a)
or___ 2
oL~ o3 (LTL)
{Umm(LTL)VT _ Z 0lax (E] P+ PE;) (upvy, + vmug)} (12.36)

i=1

where V' satisfies

(Ao + BoKC)W + V(Ag + BoKO)T =

- Z Omax (EZTP + PEz) [Ei(ua,iv;ri + vaiug;) + (uaivg; + UaiuZi)EiT]
i=1
(12.37)
Vy; and u,; are left and right singular vectors corresponding to O-max(EZTP +
PE;), respectively, and v, and w,, are left and right singular vectors corre-
sponding to omin (L7 L).
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b)
aJ 2

W B Orznin (LTL)

{Z Omax (B P+ PE;) Bl P (vaiul; + uqivl;) + BT PT VT} C" (12.38)

i=1

’UTBO 8[(' Cw
0 _ ge G (12.39)

8[\7” o UTU}

where v and w are the corresponding left and right eigenvectors of (Aq +
ByKC') corresponding to Amax the eigenvector with max{Re (A)}.

The proof of this theorem is omitted. The gradient can be computed by solving the
two equations (12.37) and (12.38). A gradient based algorithm for enlarging the
radius of the stability hypersphere p(K, Q) by iteration on (K, Q) can be devised
using these gradients. This procedure is somewhat ad hoc but nevertheless it can
be useful.

Example 12.4. A VTOL helicopter is described as the linearized dynamic equa-
tion:

x —0.0366 0.0271 0.0188 —0.45557] [,
d |zy| | 0.0482 —1.0100 0.0024 —4.0208 T
X4 0 0 1 0 L4

0.4422 0.1761 |
ps —1.9922 | | uy

1 -5.5200 44900 | | us
0 0
L1
£
y=1[0100] xz
T4

where

z1  horizontal velocity, knots

xs vertical velocity, knots

@3 pitch rate, degrees/sec

x4  pitch angle, degrees

uy  collective pitch control

uy  longitudinal cyclic pitch control
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The given dynamic equation is computed for typical loading and flight conditions
of the VTOL helicopter at the airspeed of 135 knots. As the airspeed changes all the
elements of the first three rows of both matrices also change. The most significant
changes take place in the elements py, p2, and ps. Therefore, in the following all
the other elements are assumed to be constants. The following bounds on the
parameters are given:

pr = 0.3681 + Apy, |Api| < 0.05
ps = 1.4200 + Aps, |Ap,| < 0.01
ps = 3.5446 + Aps, |Aps| < 0.04.

Let
Ap = [Ap1, Aps, Aps]

and compute

max ||Ap]||. = 0.0648. (12.40)

The eigenvalues of the open-loop plant are

0.27579 £ j0.25758
A(A) = —0.2325
—2.072667

The nominal stabilizing controller is given by

x| —163522
0= 158236 |

Starting with this nominal stabilizing controller, we performed the robustification
procedure. For this step the initial value 1s chosen as

1.0 0.0 —-0.50 0.06
0.5 1.0 -0.03 0.00
-0.1 04 100 0.14
0.2 06 —-0.13 1.50

L()I

The nominal values gave the stability margin
po = 0.02712 < 0.0648 = ||Ap]|

which does not satisfy the requirement (12.40). After 26 iterations we have
p* = 0.12947 > 0.0648 = || Ap||-

which does satisfy the requirement. The robust stabilizing 0'" order controller
computed is

K= —0.996339890
o 1.801833665
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and the corresponding optimal L*, P* and the closed-loop eigenvalues are

0.51243 0.02871 —0.13260 0.05889
—0.00040 0.39582 —0.07210 —0.35040
0.12938 0.08042 0.51089 —0.01450
| —0.07150 0.34789 —0.02530 0.39751

[ 2.00394 —0.38940 —0.50010 —0.49220
—0.38940 0.36491 0.46352 0.19652
—0.50010 0.46352 0.61151 0.29841
| —0.49220 0.19652 0.29841 0.98734

L=

—18.396295
AMA+ BEK*C)= | —0.247592+ j1.2501375
—0.0736273

This example can also be solved by the Mapping Theorem technique previously
described. With the controller K* obtained by the robustification procedure given
above we obtained a stability margin of ¢* = 1.257568 which is much greater than
the value obtained by the Lyapunov stability based method. In fact, the Lyapunov
stability based method gives p* = 0.12947 which is equivalent to ¢ = 0.07475. This
comparison shows that the Mapping Theorem based technique gives a much better
approximation of the stability margin than the Lyapunov based technique.

12.5 THE MATRIX STABILITY RADIUS PROBLEM

In this section, we suppose that the perturbations of the system model can be
represented in the feedback form shown in Figure 12.3.

z=Az+Dv, y=~FEz

Figure 12.3. Feedback Interpretation of the Perturbed System

Thus we have
x = Ax+ Dv
y=Fz (12.41)
v=Ay.
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In the perturbed system, we therefore have
&= (A+ DAE)x. (12.42)

We regard the nominal system matrix to be A. Under perturbations it becomes A+
DAFE where E and D are given matrices defining the structure of the perturbations
and A is an unstructured uncertainty block. In the following A will be allowed to
be complex or real. In each case the size of the “smallest” destabilizing matrix A
will be of interest. This problem is therefore a generalization of the gain and phase
margin problems. In general, the signals v and y are artificially introduced and do
not have any significance as inputs or outputs.

In the literature, it has become customary to measure the size of the perturbation
using the operator norm of the matrix A. Let K denote a field. We will consider the
two cases K = IR or K =C. Let y € K¢, v €K', and || - ke and || - ||g: denote given
norms in K¢ and K', respectively. We measure the size of A by the corresponding
operator norm

IA]l = sup {||Ayllx: -y €K7, [yllks < 1} (12.43)

Let 8 denote the stability region in the complex plane as usual. Let A(-) denote the
eigenvalues of the matrix (-). We will suppose that the nominal matrix A is stable.

This means that A(4) C S.

Definition 12.1. The stability radius, in the field K, of A with respect to the
perturbation structure (D, ) is defined as:

u:inf{HAH:Ae]K’”,A(AJrDAE)mu;éw}. (12.44)

The operator norm of A is most often measured by its maximum singular value,
denoted &(A):
1Al = a(A).

In this case it can easily be established by continuity of the eigenvalues of A+ DAFE
on A, and the stability of A, that

Il

E.

=
—

u 5(A): A €KX and A(4+DAE)NU £ 0}
= inf {o(A): A €K™ and A(4+DAE)NOS £ 0}

= inf inf{5(A): A €K™ and det(s] — A— DAE) = o} (12.45)

= inf inf F(A):ACK™ and det |(I —AEGI—A)""'D| =0
SE e ———
G(s)

= inf inf {#(A): A €K™ and det[I - AG(s)] = 0}.
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For a fixed s € 08, write G(s) = M. Then the calculation above reduces to solving
the optimization problem:

inf{(r(A) A €K™ and det[I — AM] = o}. (12.46)

When A is allowed to be a complex matrix, it can be shown easily that the solution
to this optimization problem is given by

F(A) = [a(M)]"L. (12.47)

When A is constrained to be a real matrix the solution is much more complicated
due to the fact that M is a complex matrix. In the following subsections, we give
the calculation of p for the complex and real cases. These are called the complex
matriz stability radius and real matriz stability radius respectively.

12.5.1 The Complex Matrix Stability Radius

Consider the case where (A, D, E) are regarded as complex matrices, K =C, and A
is a complex matrix. In this case, we denote p as pi- and call it the complex matrix
stability radius.

The theorem given below shows how pe can be determined. The proof is an im-
mediate consequence of equations (12.45)-(12.47) above. As before, let the transfer
matrix associated with the triple (A4, D, E) be

G(s) = B(sI — A)™'D. (12.48)
Theorem 12.3 If A is stable with respect to S, then

1

_ 12.49
sup;eas [|G(s)l] )

He =

where ||G(s)|| denotes the operator norm of G(s) and, by definttion, 07 = oo.
When ||A]| = (A), the complex matrix stability radius is given by

1

SDrers S (12.50)

Ho =
The special case of this formula corresponding to the case where D and E are
square, and D = E = I, is referred to as the unstructured matrix stability radius.
In this case,

1
fe = B 12,51
Wbcas TT— A7 120
In the case of Hurwitz stability, (12.49) becomes
1
(12.52)

AR TET
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12.5.2 The Real Matrix Stability Radius

In this section we give the results on the matrix stability radius problem when A,
D, E are real matrices and A is constrained to be a real matrix. The main result
shows that the real matrix stability radius can be computed by means of a two-
parameter optimization problem. Let o3(-) denote the second largest singular value
of the matrix (-), and Re[G(s)] and Im[G(s)] denote the real and imaginary parts
of the matrix G(s).

Theorem 12.4 The real matriz stability radius s given by

. . Re[G(s)] —~ Im[G(s)]
o=t it ([ ATl oty ) 125

The proof of this formula is rather lengthy and is omitted. An important feature
of this formula is the fact that the function

7 ([ 7—E{elﬁ[((5;)(]s)] ‘%i?é%f ) D (12.54)

is unimodal over v € (0, 1].
We conclude this section with a simple example which emphasizes the funda-
mental difference between the complex and real stability radii.

12.5.3 Example
Example 12.5. Let

A:[_Ol _13], D:[_OB], E=[1 0].

This triple could describe a linear oscillator with small damping coefficient B > 0
and perturbed restoring force 1. The associated transfer function

-B
Gs)=FE(jwl — A" ' D= ——— .
(s) = Bljwl = 4) 1—w? + jBw
The real stability radius is easily seen to be,
1
HRrR = B

To compute the complex stability radius we determine
32

. 2
|G(jw)|” = (1—w?)? + B%W?’

If B < /2, asimple calculation shows that |G(jw)|? is maximized when w? = 1— %2

so that
Een(-%)
=1——.
B2 4

pne =
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Now regarding B as a parameter we can see that pe i1s always bounded by 1 whereas
g can be made arbitraridy large by choosing small values of B. This suggests that
complexifying real parameters could lead to highly conservative results. On the
other hand it is also necessary to keep in mind that as B tends to 0 and pg tends to
o0, the poles of G(s) approach the imaginary axis, indicating heightened sensitivity
to unstructured perturbations.

12.6 TWO SPECIAL CLASSES OF INTERVAL MATRICES

In this section, we consider two special classes of interval matrices namely nonneg-
ative matrices and the so-called Metzlerian matrices for which stronger results can
be stated.

12.6.1 Robust Schur Stability of Nonnegative Matrices

Definition 12.2. A nonnegative matriz is a real matrix whose entries are non-
negative. Similarly, the matrix is said to be a nonnegative interval matriz if every
element is nonnegative throughout their respective intervals:

A={AeR™:0< a; < ajj < a?'j, for all 4,5} . (12.55)

Using the lower and upper bound matrices

an g, af, - df,
A7 = AT = : ,
G Ay G oaf,
we can represent a typical element of A by the notation:
0<A” <A<AT. (12.56)

The following definition and properties will play an important role throughout the
section.

Definition 12.3. A real square matrix P is called a nonsingular M -Matriz if the
following two conditions are satisfied:

a) pi; > 0 for all ¢ and p;; <0 for all ¢ # j.
b) P=' >0 (P~! is nonnegative).
Property 12.1.

A) Let @ € R™" with @ > 0. The matrix Al — @ is a nonsingular M-matrix if
and only if p(Q) < A where p(-) is the spectral radius of the matrix (-).

B) The matrix P with p;; > 0 for all ¢ and p;; < 0 for all i # j is a nonsingular
M-matrix if and only if all the leading principal minors of P are positive.
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C) The characteristic polynomial of an M-matrix is antiHurwitz. Equivalently, all
the eigenvalues of an M-matrix have positive real parts.

D) For X, Y e R**" if 0 < X <Y, then p(X) < p(Y).

The proofs of these properties may be found in the matrix theory literature referred
to in the notes and references section of this chapter.

Let A(«) denote the « dimensional leading principal submatrix of A which
consists of the first « rows and columns of A.

Theorem 12.5 A nonnegative matric A € R**™ is Schur stable for all A €
[A™, AT] if and only if p(AT) < 1. FEquivalently, all leading principal minors of
I — At det[I — AT ()], are positive for oo = 1,--- n.

Proof. Necessity follows trivially since AT € [A~, AT] and Schur stability of
A is equivalent to p(A) < 1. To prove sufficiency, we use Property 12.1. Since
A7 < A< AT, we know that p(A4) < p(At) from Property 12.1.D. Therefore, the
nonnegative matrix A is Schur stable for all A € [A~, A*] if and only if p(AT) < 1.
Moreover, from Property 12.1.A we also know that I — At is a nonsingular M-
matrix since p(At) < 1. From Property 12.1.B, this is also equivalent to all the
leading principal minors of I — A%, det[] — AT («)], being positive. &

12.6.2 Robust Hurwitz Stability of Metzlerian Matrices

An extremal result also holds for the case of Hurwitz stability of Metzlerian matrices

defined below:

Definition 12.4. A matrix A is called a Metzlerian matriz if a;; < 0 for all 7 and
a;; > 0 for all ¢ # j. Similarly, an interval matrix A is said to be a Metzlerian
interval matriz if every matrix A € A 1s a Metzlerian matrix.

We have the following theorem.

Theorem 12.6 A Meizlerian matriv A € R™*™ is Hurwitz stable for all A €
[A=, A*] if and only if AT is Hurwitz stable. An equivalent condition is that all
leading principal minors of — At are positive, i.e. det[-AT(a)] >0 fora =1,---,n.

Proof. All we have to prove is that A € [A~, AT] is Hurwitz stable if and only
if —At is an M-matrix. The necessity of this condition is obvious because the
stability of A € [A~, A*] implies that of A*. Therefore — A is antiHurwitz and
consequently, —AT is an M-matrix. From Property 12.1.B, all the leading principal
minors of —At must be positive.

To prove sufficiency assume that —A* is an M-matrix. From the structure of the
matrix —A, one can always find A > 0 such that A\J—(—A4) > 0 forall A € [A~, A*].
We have

AL — (A — (=A%) = —AT
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and since — At is a nonsingular M-matrix it follows from Property 12.1.A that
p(AI + AT) < A
We also know from Property 12.1.D that
0< A+ A<+ AT
implies that
p(AL+ A) < p(AL + AF)

Thus
p(AI+ A) < A

and therefore from Property 12.1.A we conclude that — A is an M-matrix. Therefore
by Property 12.1.C A is Hurwitz stable. &

In the next subsection, we show that a much simpler solution can be obtained
for the real stability radius problem if the interval matrix falls into one of these two
classes.

12.6.3 Real Stability Radius

From the previous subsection, we know that the real stability radius of a matrix is
obtained by first solving a minimization problem involving one variable and next
performing a frequency sweep. However, for the case of both nonnegative and
Metzlerian matrices, a direct formula can be given for their respective real stability
radii.

Consider the real nonnegative system matrix A with A > 0 and with p(A4) < 1
and subject to structured perturbations. The real matrix stability radius with
respect to the unit circle is defined by

pr =inf{||JA||: A(A+ DAE)YNU £ 0, A+ DAE >0} (12.57)

where the condition A + DAFE > 0 is imposed in order to ensure nonnegativity
of the entire set. The calculation will depend on the well known Perron-Frobenius
Theorem of matrix theory.

Theorem 12.7 (Perron-Frobenuis Theorem)
If the matriz A € R"™" is nonnegative, then

a) A has a positive eigenvalue, v, equal to the spectral radius of A
b) There is a positive (Tight) eigenvector associated with the eigenvalue r;
¢) The eigenvalue v has algebraic multiplicity 1.

The eigenvalue r will be called the Perron-Frobenius eigenvalue.
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Theorem 12.8 Let A be Schur stable. Then the real stability radius of the non-
negative system is given by

1
HE = G (BE(I— A)-'D)

Proof. A+ DAF becomes unstable if and only if p(4 + DAFE) > 1. Hence from

the definition of the real stability radius, we have

pur = inf {||A]|: p(A+ DAE) > 1, A+ DAE >0}
= inf{[|A]|: p(A+ DAE)=1, A+ DAE>0}.

From Theorem 12.7 it follows that A + DAFE > 0 is unstable if and only if its
Perron-Frobenius eigenvalue (spectral radius) r > 1. Therefore we have

pr = inf{a(A): A, (A+ DAE) =1 for some i}

inf {5(A) : det[I — A — DAC] = 0}

inf {#(A) :det [ - AE(I - A)~'D] =0}
1

T G(EI-A)ID)

A similar result holds for Hurwitz stability (see Exercise 12.1).

12.6.4 Robust Stabilization

Using the results obtained for nonnegative and Metzlerian matrices above, here we
consider the problem of designing a robust state feedback controller for an interval
state space system.

Let us first consider the discrete time system

(k4 1) = Ax(k) + Bu(k) (12.58)
y(k) = C(k)

where A € [A~, AT] while the matrices B,C are fixed. Note that in this problem
neither A~ nor AT is necessarily nonnegative.
Let
u(k) = v+ Ka(k) (12.59)

so that the closed loop system is given by
z(k+1) = (A+ BK) z(k) + Bu(k). (12.60)
S—_— —’
A

The following theorem provides a solution to this problem.
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Theorem 12.9 The feedback control law (12.59) robustly stabilizes the system (12.60)
and A, remains nonnegative for all A € [A=, AT] if and only if

A"+BK >0 and At +BK >0

and AY + BK is Schur stable. Equivalently all the leading principal minors of the
matriz I — (AT + BK) are positive.

The proof of this theorem is a direct consequence of Theorem 12.5 and is omitted
here.

Example 12.6. Consider the unstable interval discrete system

[0.5,06] 0 0.5 0
v(k+1)= 1 0.5 1 z(k)+ | 0 | u(k).
05 0 [-0.2,-0.1] 1

Suppose that we want to robustly stabilize the system by state feedback
u(k) = v(k) + Kz(k)

where K = [ky k2 k3]. Then the requirements A= + BK > 0 and AT + BK > 0
lead to

054k >0
ks >0
—0.24 k3 >0

and the requirement that all the leading principal minors of I — (A* + BK) be
positive leads to

—0.25k; — 0.9k — 0.2k3 4 0.095 > 0.

Therefore, we select

K=1[000.3].

A result similar to the previous theorem can be stated for the Hurwitz case and
is given without proof:

Theorem 12.10 The feedback control law w(t) = Fa(t) robustly stabilizes the sys-
tem

z(t) = Az(t) + Bu()

and the closed loop mairiz A+ BF is a Metzlerian matriz for all A € [A=, AT] if
and only if
A~ +BF and At + BF

are Metzlerian and AT + BF is Hurwitz. Equivalently all the leading principal
minors of —(AT + BF') are positive.
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12.7 EXERCISES

12.1 Using the result in Theorem 12.8, derive the real stability radius formula for
Metzlerian matrices with respect to the Hurwitz stability region.
Answer: The term (I — A) in Theorem 12.8 is replaced by —A.

12.2 Consider the matrix

| —24p -34+p
A(p)—[ S ]

Estimate the stability radius in the space of the parameters p; by using the result in
Theorem 12.1. Assume that the nominal values of the parameters p; are zero. (You
may choose () = I for a first estimate then optimize over @ as in Section 12.4.1.)

05 14p 0
A=| 0 05 p

P3 0 0.25

12.3

Let p; vary in the interval [0, ¢]. Find the maximum value of ¢ such that the interval
matrix A remains Schur stable.

12.4
-1 T+p1 pa ]
A= 0 -2 Ps
D2 ps =3

Find the maximum value of ¢ such that the interval matrix A remains Hurwitz
stable for all p; € [0, €].

12.5 With
—1 1 0
Ay = 0o -2 0
1 1 -3
and
1 0
D=0 1 E:[é ? 8]
0 0
let

A=Ay + DAE.
1) Find the real matrix stability radius.

2) Find the complex matrix stability radius.
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12.6 Consider Exercise 12.5, find the real stability radius subject to the restriction
that the matrix A remains Metzlerian.

12.7 Consider the discrete time system:

0O 1 0 0
v(k+1)= 0 0 1 Ja(B)+ | 0 | uk)
P P2 Ps 1

where
Y41 € [_2;2]; P2 S [1a3]a Ps S [_3a_1]~

Design a state feedback control law that robustly stabilizes the system.
Hint: Constrain the closed loop matrix to remain nonnegative.

12.8 Consider the following transfer function matrix:

1 1
s+1 s+2
G(s) =
1 1
s+3 s+4

Suppose that this plant is perturbed by feedback perturbations as shown in Fig-
ure 12.4:

Figure 12.4. Feedback system

Compute the complex matrix stability radius with respect to A.

12.9 In Exercise 12.8, suppose that all the entries of A perturb within the interval
[—¢,+¢€]. Compute the real matrix stability radius €y, such that the closed loop
system remains stable.

Hint: The characteristic equation of the closed loop system is multilinear in the
parameters. One can apply the Mapping Theoerm based technique to this charac-
teristic polynomial.
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12,10 Consider the following discrete time system:

1 0 p 1
vk+1)=|p -1 1 [z(k)+]| 2
1 P3 1 -1

where the parameters vary as
pE[l—el+e], pp€2—€¢24¢, pse[l—el+¢.

1) Find the state feedback control law such that the closed loop system poles are
assigned at 0.7 and —0.5 £ 50.3.

2) With this control compute the maximum value €y« such that the closed loop
system remains Schur stable.

12.8 NOTES AND REFERENCES

In 1980, Patel and Toda [185] gave a sufficient condition for the robust stability of
interval matrices using unstructured perturbations. Numerous results have followed
since then. Most of these follow-up results treated the case of structured perturba-
tions because of its practical importance over the unstructured perturbation case.
Some of these works are found in Yedavalli [238], Yedavalli and Liang [239], Mar-
tin [177], Zhou and Khargonekar [247], Keel, Bhattacharyya and Howze [139], Sezer
and Siljak [204], Leal and Gibson [159], Foo and Soh, [95], and Tesi and Vicino [219].
Theorem 12.1 and the formula for the gradients given in Section 12.4.1 are proved
in Keel, Bhattacharyya and Howze [139]. Most of the cited works employed either
the Lyapunov equation or norm inequalities and provided sufficient conditions with
various degrees of inherent conservatism. Using robust eigenstructure assignment
techniques, Keel, Lim and Juang [141] developed a method to robustify a controller
such that the closed loop eigenvalues remain inside circular regions centered at the
nominal eigenvalues while it allows the maximum parameter perturbation. The al-
forithm for determining the stability of an interval matrix is reported in Keel and
Bhattacharyya [138]. Hinrichsen and Pritchard [113] have given a good survey of
the matrix stability radius problem. The formula for the real matrix stability radius
is due to Qiu, Bernhardsson, Rantzer, Davison, Young, and Doyle [193] to which
we refer the reader for the proof. The results given in Section 12.5 are taken from
Hinrichsen and Pritchard [114] and [193]. The example in Section 12.5.3 is taken
from [113].

Some of the difficulties of dealing with general forms of interval matrices along
with various results are discussed in Mansour [168]. Theorem 12.5 is due to Shafai,
Perev, Cowley and Chehab [208]. A different class of matrices called Morishima
matrices is treated in Sezer and éiljak [205]. The proofs of Property 12.1 may
be found in the book by Berman and Plemmons [27] and [208]. The proof of
Theorem 12.7 (Perron-Frobenius Theorem) is found in the book of Lancaster and
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Tismenetsky [158, 27]. The real stability radius problem for nonnegative and Met-
zlerian matrices is credited to Shafai, Kothandaraman and Chen [207]. The robust
stabilization problem described in Section 12.6.4 is due to Shafai and Hollot [206].



