Chapter 10

MULTILINEAR INTERVAL
SYSTEMS: THE MAPPING
THEOREM

In this chapter we deal with robust stability problems where the uncertain interval
parameters appear multilinearly in the characteristic polynomial coefficients. We
introduce the Mapping Theorem which reveals a fundamental property of the image
set of such systems. This property allows us to effectively approximate the image
set evaluated at an arbitrary point in the complex plane by overbounding it with
a union of convex polygons; moreover the accuracy of this approximation can be
increased as much as desired. A computationally efficient solution to the robust
stability problem can then be obtained by replacing the multilinear interval family
with a test set consisting of a polytopic family. We also show how various worst case
stability and performance margins over the interval parameter set can be estimated
from this polytopic test set. These include gain and phase margins, H., norms,
absolute stability under sector bounded nonlinear feedback, and guaranteed time-
delay tolerance.

10.1 INTRODUCTION

We begin by giving some examples of system models where parameters appear nat-
urally in a multilinear form. A function f(x, 2o, - - -, &, ) is multilinear (multiaffine)
if for each ¢ € [1,2,---,n], f is a linear (affine) function of z; when the #;, j # 7 are
held constant. We shall use the term multilinear loosely to include the multiaffine
case.

Multiloop Systems

Consider the signal flow graph of a multiloop system as shown in Figure 10.1.
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Figure 10.1. Signal flow graph

The closed loop transfer function is

C(S) — G1 GQG‘% + G1 G4
R(s) 14+G1GyHy 4+ GoG3Hy + GGGy + Gy Hy + GGy

We see that the numerator and denominator of the transfer function is a multilinear
function of the gains G; and H; of the branches. If these transfer functions contain
a vector of parameters appearing linearly in their coefficients then the closed loop
transfer function coefficients will be multilinear functions of these parameters. This
situation is, of course, not peculiar to this example and 1t is true that multilinear
dependence holds generically in signal flow graphs.

State Space Models

Consider the state space equations of a system
z = Az + Bu.

The characteristic polynomial of the system, which determines whether it is stable
or not is

8(s) = det [s] — A].

It can be easily seen that the coefficients of the characteristic polynomial are mul-
tilinear functions of the entries a;; of the matrix A. State space equations are
frequently written with the states denoting physical variables such as currents,
voltages, positions and velocities. It will therefore often be the case that distinct el-
ements of the matrix A represent independent physical parameters. More generally,
if uncertain parameters appear in multiple locations in the matrix A but have a
“rank-one” structure the characteristic polynomial will once again be a multilinear
function of these parameters.
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Matrix Fraction Description with Interval Elements

Suppose that G(s) = N(s)D~1(s) and C(s) = D;!(s)N.(s) represent matrix frac-
tion descriptions of a plant and controller connected in a feedback loop. The char-

acteristic polynomial of the closed loop system is
8(s) = det [D.(s)D(s) + N.(s)N(s)]

If C(s) is fixed and G(s) contains parameter uncertainty it may be reasonable to
model this by allowing the elements of D(s) and N(s) to be independent interval
uncertain polynomials. Tt is now straightforward to verify that §(s) is a multilin-
ear function of the polynomials in D(s) and N(s) and consequently a multilinear
function of the interval coefficients.

The point of the above examples 1s to show that multilinear parameter depen-
dencies occur in a wide variety of system models. This is fortunate for us. Even
though robustness issues in the general nonlinear dependency case are quite difficult
to handle, efficient techniques are available for multilinear systems. A key result is
the Mapping Theorem which will allow us to determine robust stability in a com-
putationally effective manner. It will also allow us to determine various worst case
stability margins and performance measures (robust performance) in the presence
of parameter uncertainty.

10.2 THE MAPPING THEOREM

The Mapping Theorem deals with a family of polynomials which depend multilin-
early on a set of interval parameters. We refer to such a family as a Multilinear
Interval Polynomial. The Mapping Theorem shows us that the image set of such
a family is contained in the convex hull of the image of the vertices. We state and
prove this below.

Let p = [p1,p2,- - -, p1] denote a vector of real parameters. Consider the polyno-
mial

8(s,p) := 80 (P) + 61(P)s + 62(p)s” + -+ 6, (p)s” (10.1)

where the coefficients §;(p) are multilinear functions of p, i = 0,1, - -n. The vector
p lies in an uncertainty set

The corresponding set of multilinear interval polynomials 1s denoted by

A(s) :={é(s,p) : peIl}. (10.3)
Let V denote the vertices of II, 1.e.,
Vi={p : p=pf or p=p;, i=12,--1} (10.4)

and
Ay (s) :={6(s,p) : p€V}:={vi(s),vals), - -vp(s)}. (10.5)
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denote the set of vertex polynomials. Let A(s) denote the convex hull of the vertex
polynomials {v(s), v3(s), - - -v(s)}:

i=k
A(S) = {ZA{U{(S) 0< <L = 1’2...]9}.
i=1

The intersection of the sets A(s) and A(s) contain the vertex polynomials Ay (s).

The Mapping Theorem deals with the image of A(s) at s = s*. Let T(s*)
denote the complex plane image of the set T(s) evaluated at s = s* and let co P
denote the convex hull of a set of points P in the complex plane.

Theorem 10.1 (Mapping Theorem)
Under the assumption that é;(p) are multilinear functions of p

A(5*) € co Av(s*) = A(s*) (10.6)
for each s* €.

Proof. For convenience we suppose that there are two uncertain parameters p :=
[p1, p2] and the uncertainty set II is the rectangle ABC'D shown in Figure 10.2(a).
Fixing s = s*, we obtain 8(s*, p) which maps II to the complex plane. Let A’, B,
C’, IV denote respectively the complex plane images of the vertices A, B, C, D
under this mapping. Figures 10.2(b,c,d,e) show various configurations that can arise
under this mapping. Now consider an arbitrary point [ in IT and its complex plane
image I’. The theorem is proved if we establish that I’ is a convex combination of
the complex numbers A, B", €', . We note that starting at an arbitrary vertex,
say A, of IT we can reach I by moving along straight lines which are either edges of
IT or are parallel to an edge of II. Thus, as shown in Figure 10.2(a), we move from
A to E along the edge AB, and then from E to I along E'F' which is parallel to the
edge AD. Because 6(s*,p) is multilinear in the p; it follows that the complex plane
images of AB, EF | and C'D, which are parallel to edges of II, are straight lines,
respectively A’ B’ E'F', C"D). Moreover, F’ lies on the straight line A’B’, F’ lies
on the straight line D', and I' lies on the straight line E' F’. Therefore, I’ lies in
the convex hull of A’B'C'D'.

The same reasoning works in higher dimensions. Any point in IT can be reached
from a vertex by moving one coordinate at a time. In the image set this corresponds,
because of multilinearity, to moving along straight lines joining vertices or convex
combinations of vertices. By such movements we can never escape the convex hull
of the vertices. The second equality holds by definition. &

We point out that the Mapping Theorem does not hold if IT is not an axis-parallel
box since the image of the edge of an arbitrary polytope under a multilinear mapping
is in general not a straight line. The Mapping Theorem will also not hold when
the dependency on the parameters 1s polynomial rather than multilinear, because
of the same reason.
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Figure 10.2. Proof of the Mapping Theorem
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Example 10.1. Consider the multilinear interval polynomial
6(s,p) = p1@Q1(s) + p2@2(s) + p1p2@s(s) + Qa(s)
with
Qi(s) =—65+2, Qa(s) =-bs—1, Qs(s) =10s+3, Qa(s) =T7s+5.
The parameter set p varies inside box IT depicted in Figure 10.3(a). The image set

A(s*,p) of the family at s* = j1 is shown in Figure 10.3(b). The convex hull of
the image set A(s*) is also shown. This shows that

A(s*,p) € co Ay(s*,p) = A(s*).

The four corners of the polygon in Figure 10.3(b) are the vertices of the image.
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Figure 10.3. Parameter space, image set, and convex hull (Example 10.1)

This theorem shows us that the image set of the multilinear family A(s) can always
be approximated by overbounding it with the image of the polytopic family A(s).
This approximation is extremely useful. In the next section we show how it allows
us to determine robust stability and stability margins quantitatively.
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10.3 ROBUST STABILITY VIA THE MAPPING THEOREM

As we have seen in earlier chapters, the robust stability of a parametrized family of
polynomials can be determined by verifying that the image set evaluated at each
point of the stability boundary excludes the origin. The Mapping Theorem shows
us that the image set of a multilinear interval polynomial family is contained in the
convex hull of the vertices. Obviously a sufficient condition for the entire image set
to exclude zero is that the convex hull exclude zero. Since the image set A(s*) is
overbounded by the convex hull of Ay (s*), this suggests that the stability of the
multilinear set A(s) can be guaranteed by solving the easier problem of verifying
the stability of the polytopic set A(s). We develop this idea in this section.

As usual, let §, an open set in the complex plane, be the stability region. In-
troduce the set of edges E(s) of the polytope A(s):

B(s) = {i(s) + (1= Nogls) : ui(s),o5(5) €AV}, (10.7)
To proceed, we make some standing assumptions about the families A(s) and A(s).
Assumption 10.1.
1) Every polynomial in A(s) and A(s) is of the same degree.
2) 0 ¢ A(sg) for some sy € 9S.
3) At least one polynomial in A(s) is stable.

Theorem 10.2 Under the above assumptions, A(s) is stable with respect to S of
A(s) and equivalently E(s) is stable with respect to S.

Proof. Since the degree remains invariant, we may apply the Boundary Crossing
Theorem (Chapter 1). Thus, A(s) can be unstable if and only if 0 € A(s*) for
some s* € 8. By assumption, there exist sy € 38 such that

0¢ A(sp) = co E(sg).
By the Mapping Theorem
A(s*) C A(s") = co E(s*).

Therefore, by continuity of the image set on s, 0 € A(s*) must imply the existence
of § € 08 such that 0 € E(s). This contradicts the stability of A(s) and of E(s).

This theorem is just a statement of the fact that the origin can enter the image
set A(s*) only by piercing one of the edges E(5). Nevertheless the result is rather
remarkable in view of the fact that the set A(s) does not necessarily contain, nor is it
contained in, the set A(s). In fact the inverse image of E(s) in the parameter space
will in general include points outside II. The theorem works because the image set
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A(s") is overbounded by A(s) at every point s* € S. This in turn happens because
the Mapping Theorem guarantees that A(s*) is “concave” or bulges inward.

The test set A(s) or its edges E(s) are linearly parametrized families of polyno-
mials. Thus, the above theorem allows us to test a multilinear interval family using
all the techniques available in the linear case.

Example 10.2. Consider the multilinear interval polynomial

6(s,p) = p1Q1(s) + p2Q2(s) + p1p2Q3(s)

where
1 € [1a2]a D2 € [3a4]

and

Qi(s) = st 443534+ 6.257 4+ 3.55 4+ 0.6,
Q-(s) = s* + 5% + 0.325 + 0.038s + 0.0015,
Qs(s) = s* + 3.5s° + 3.56s” + 1.18s + 0.12.

The edges of this system are,
E(s) ={E;(s), ¢=1,234}
with

Ei(s) = [Ap7 + (1= X)pi] Qi(s) 4+ p3 Qa2(s) + [Apy + (1= X)pi] p3 Qs(s)
= A [py Q1(s) +p5 Qa(s) + pi ps Qs(s)]
+(1=A) [pFQ1(s) + p3 Q2(s) + pf 3 Q3(s)]
Es(s) = [Ap7 4 (1= N)pf] Qu(s) +pF Qa(s) + [Ap7 + (1= N)pf] pf Qa(s)
=X [pT Q1(s) + 13 Q2(s) + py pT Qs(s)]
+(1 =) [P Q1(5) + pF Q2(5) + pi pF Qs(s)]
Es(s) = py Q1(s) + [Aps + (1= XN)pd] Q2(s) + [Apy + (1 = Npd ] p7 Qs(s)
= A [pr Q1(5) + 12 Q2(5) +pi Py Qs(s)]
+(1 =) [p7 Q1(5) + 3 Qa(5) + p1 pf Qs(s)]
Ea(s) = pf Qu(s) + [Aps + (1= M)pF] Q2(s) + [Apy + (1 — X)pd | pf Qs(s)
= X [pf Q1(s) + p3 Qa(s) + pp; Qs(s)]
+(1 =) [pFQ1(s) + 1F Qa(s) + p¥ 1T Qs(s)] .

The stability of E(s) can be tested simply by applying the Segment Lemma (Chap-
ter 2). Here, all edges in E(s) are found to be stable.
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Bounded Phase Condition

An alternative way of stating Theorem 10.2 is to use the Bounded Phase Condi-
tion. Let ® A (s*) equal the angle subtended at the origin by the points Av(s*).
Obviously, the stability of E(s) is equivalent, under the Assumptions 10.1, to the
origin being excluded from A(s*) for all s* € 9S, and this in turn is equivalent to
the condition that the phase spread be less than = radians. Accordingly we have
the following theorem.

Theorem 10.3 Under the assumptions 10.1, A(s) is stable with respect to S if
<I>AV(5*) <, for all s € 08S. (10.8)

Example 10.3. Let us return to Example 10.2 and determine the robust stability
of this multilinear interval polynomial by applying the Bounded Phase Condition.
We first construct the set of vertex polynomials corresponding to the vertices of the
parameter space box II = [pr, pa].

vi(s) = 7s* + 17.85% + 17.845% + 7.154s + 0.9645
vo(s) = 11s* + 32.65° + 34.72s + 14.194s + 1.9245
v3(s) = 9s* +22.35° + 21.72s* + 8.372s + 1.086
va(s) = 14s* + 40.65° 4+ 42.165” + 16.592s + 2.166.

The maximum phase difference over the vertex set at each frequency w is computed

as follows: (o) ()

v Jw . Vi Jw

dx = sup ar —~ — inf ar —.
Ay 7::2,5,4 8 vi(jw) i=234 & v (jw)

The plot of the above phase function for all w is shown in Figure 10.4. We find that

the maximum phase difference over the vertex set does not reach 180° for any w.

Thus we conclude that the given multilinear polynomial family is Hurwitz stable.

10.3.1 Refinement of the Convex Hull Approximation

Since the stability of the set A(s) or E(s) is only a sufficient condition for the
stability of A(s), it can happen that E(s) is unstable but A(s) is stable. In this
case the sufficient condition given by the theorem can be tightened by introducing
additional vertices. We illustrate this in the accompanying figures. Consider the
multilinear polynomial

Qu(s) + P1Q1(s) + p2Q2(s) + p1p2Qs(s)

where
Qo(s) = s* + 5% +25* +5+2,
Qi(s) =2s* +35° +4s* +s5+1,
Q2(s) = 1.5s* + 1.5s> + 3s% + 5 + 0.5,
Qs(s) = 3s* +0.55° + 1.5s* + 25 + 2
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Figure 10.4. Maximum phase difference (Example 10.3)

and the parameter p varies within the box shown in Figure 10.5.

16

P2, /\2 4 /\2 4
1 1 — 1
M, II,
, | IL 0.5 -
| Hl | 2
0 P 0 0.5 Ay 0 0.5 Ay

Figure 10.5. Additional vertices in parameter space

As shown in Figure 10.5 one may introduce additional vertices in the parameter
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space. The corresponding image sets at w = 0.85 are shown in Figures 10.6, 10.7,
and 10.8. We see that this amounts to decomposing the parameter box as a union
of smaller boxes:

I = | JII;. (10.9)

If V; and E;(z) denote the corresponding vertices and edges, we have
t ¢
co A(z*) C | JAvy (z") = [ Jeo Ei(2") (10.10)
i=1 i=1

and therefore the stability of the set of line segments [ J2, E;(z) would imply that
of A(z). We can see from Figures 10.7 and 10.8 that the nonconvex set [ J/2, E; (z*)
approximates A(z*) more closely as the number t of polytopes II; increases. It
is clear therefore that the sufficient condition given here can be improved to any
desired level of accuracy by checking the stability of smaller convex hulls.

1 1

05F 8 05F 8

on on

E 0 E 0

-0.51+ B 0.5+ B

-1 | | | -1 | | |
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Real Real

Figure 10.6. Image set and convex hull (w = 0.85)

10.4 MULTILINEAR INTERVAL SYSTEMS

In this section we consider system transfer functions which are ratios of multilinear
interval polynomials. We call such systems multilinear interval systems. Our ob-
jective is to analyze feedback control systems containing such multilinear interval
plants. In addition to determining robust stability, we are interested in calculating
various types of stability and performance margins for such systems. Let M(s)
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Figure 10.7. Image set and convex hull (2 partitions) (w = 0.85)
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Figure 10.8. Image set and convex hull (4 partitions) (w = 0.85)

denote a transfer function which depends on the uncertain, interval, independent

parameters q and r:

M(s) = M(s, q,x) = ]lvjiz ;1)) (10.11)
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We assume that N (s, q) and D(s,r) are multilinear interval polynomials and q and
r lie in axis parallel boxes Q@ and R respectively. Let

N(s) :={N(s,q) :q€Q}
D(s) :={D(s,x) :r € R}

M(s) := {%EZ’,?)) qEQ,rE R} = 38

Now, suppose that the multilinear interval plant we have described is part of a
control system. For robustness studies, it is important that we obtain an assessment
of the worst case stability margins and performance measures of the system over
the uncertainty set IT := Q x R. We shall show here that by using the Mapping
Theorem we can replace the family M(s) by a polytopic family M(s) which has the
property that any worst case stability or performance margin that is calculated for
the family M(s) serves as a corresponding guaranteed margin for the family M(s).
The advantage that we gain is that worst case stability and performance margins
can be evaluated easily and exactly for the family M(s) since it is polytopic.

and write

Construction of M(s)
Let Vo denote the vertex set of Q, Ny (s) the corresponding vertex polynomials
Ny (s):={N(s,q) :q € Vg}
and N(s) the convex hull of Ny (s):
N(s) := {AN;(s) + (1 = N)N;(s) : N;(s), N; (s5) € Ny(s), Ae€[0,1]}.

In an identical manner we can define the sets Vi, Dy(s) and D(s). Now we can
introduce the transfer function sets

o3
and N
M) = 5

From the Mapping Theorem we know that at every point s* € € the image sets of
N(s) and D(s) contain the image of the vertices and are overbounded respectively
by the images of the polytopic families N(s) and D(s) respectively:

Nv(s*) C N(s*) C N(s%)
Dy (s*) C D(s*) C D(s*).
As usual we assume that 0 ¢ D(s*) so that the above sets are well-defined. From

the above it follows that the image set of M(s) contains the image of the vertices
My (s) and is also overbounded by the image of M(s).
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Lemma 10.1
My (s*) C M(s") C 1\7[(5*)

This result suggests that by substituting the multilinear interval family M(s) by
the polytopic family 1\7[(5) in a control system we can calculate a lower bound on
the worst case stability margin or performance margin of the system. To state
this more precisely suppose that M(s) € M(s) is part of a feedback control sys-
tem. We will assume that the order of the closed loop system, i.e. the degree of
the characteristic polynomial, remains invariant over M(s) € M(s) and also over
M (s) € M(s). As usual let S denote a stability region that is relevant to the system
under consideration.

Theorem 10.4 Under the assumption of invariant order, robust stability of the
control system holds with M(s) € M(s) if it holds with M(s) € M(s).

The proof of this result follows immediately from the image set bounding property
of the set M(s) evaluated at points s* on the stability boundary 85, which is stated
in the Lemma above. The result holds for arbitrary stability regions with Hurwitz
and Schur stability being particular cases.

Suppose now that we are dealing with a continuous time control system and that
we have verified the robust Hurwitz stability of the system with M(s) € M(s). The
next important issue is to determine the performance of the system in some suitably
defined meaningful way. The usual measures of performance are gain margin, phase
margin, time-delay tolerance, H., stability or performance margins, parametric
stability radius in the parameter p and nonlinear sector bounded stability margins
as in the Lur’e or Popov problems treated in Chapter 8. Let pu refer to one of these
performance measures and let us assume that increasing values of p reflect better
performance. Let p* denote the worst case value of y over the set M(s) € M(s),
p denote the worst case value of y over M(s) € M(s) and ji denote the worst case
value of g over the vertex set M(s) € My (s). Then it is obviously true that

p<pt <

Since 1\7[(5) is a polytopic set, we can calculate p exactly. As in the Mapping
Theorem, this lower bound can be increased by subdividing the box IT into smaller
boxes. On the other hand, i can be calculated very easily because it is the minimum
of p evaluated over the vertex points. By subdividing the box II, this upper bound
can be decreased and the gap between the upper and lower bounds can be reduced
to arbitrarily small values by introducing additional vertices to refine the convex
hull approximation. Thus the worst case performance over the parameter set II,
also known as robust performance, can be accurately determined. In the following
section we 1llustrate this procedure for estimating worst case performance in greater
detail with numerical examples.



446  MULTILINEAR INTERVAL SYSTEMS: THE MAPPING THEOREM  Ch. 10

10.5 EXAMPLES

We illustrate the procedure for calculating robust stability and performance margins
by examples.

10.5.1 Parametric Stability Margin

For a given uncertainty set II, we can verify robust stability using the Mapping
Theorem. In applications, it is of interest to know how large IT can be without losing
stability. This problem can also be solved using the convex hull approximation. We
illustrate this with an example.

Example 10.4. Consider the discrete time feedback system as shown Figure 10.9.

Figure 10.9. Discrete-time feedback systems (Example 10.4)
Pi(z) z— 2y Ci(z)  z+1.29
P(z):= = and C(z) = =
) Py(z)  (z=p1)(z —p2) (<) Cs(2) z—0.5
and let the set of system parameters p = [zq, py, p2] vary in a box whose size varies
with a dilation parameter € as follows:

w0 €[z, 501 =10.5—¢,0.5+
pr€lpr.pfl=[10-¢10+]
p2 €[ps,pf] = [-1.0—¢,—1.0+ 4.

The characteristic polynomial of the system is

8(z,p) = 2+ (0.6 —p; — 102),22 + (L.29+ 0.5p1 + 0.5ps + p1ps — 20)%
—05p1p2 — 12920

We see that the coefficients are multilinear functions of p. Therefore Theorem 10.4
may be applied. We verify that the following member of the family is Schur stable:

§(z,p=1[0.5,1,—1]) = 2 + 0.52% — 0.21z — 0.145.

We would like to determine the largest sized box for which we have closed loop
stability. This can be regarded as the worst case parametric stability margin ¢* of
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the family. Using a simple bisection algorithm, we find that a lower bound € on the
the parametric stability margin €* is 0.125 as shown in Figure 10.10.

On the other hand we can get an upper bound € from the vertices. This gives
€ = 0.125, which is the same as the lower bound, and thus the true value in this
case.

300
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200 - :

e=0.125 —
150+ .
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100+~ a
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€

Figure 10.10. Maximum phase difference (Example 10.4)

10.5.2 Robust Gain, Phase, Time-delay and H_ Stability Margins

In this section we focus on a control system example and show how robust perfor-
mance measured in each of the above ways, over a multilinear parameter set, can
be estimated from the polytopic overbounding method discussed earlier.

Example 10.5. Consider the control system block diagram shown in Figure 10.11.

Let
_h(s) s+l .
= ) =1 and P(s):

_ ) s+ p

- Ps(s) T 24 pas+4

F(s):
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m

_(?é% £(s) P(s) Q(s)

Q1 (s) 5+ps
Q2(s) 2 +3s+pas+0.1

where
p €[2.9,3.1] = [pl_,pﬂ po € [1.9,2.1] =: [pz_,p;]
ps €[4.9,5.1] =: [p5, p¥] pa € [1.9,2.1] =: [py, pi].

The family of characteristic polynomials is
A(s,p) = {F2(s)P2(5)Q2(s) + Fi(s)Pi(s)Q1(s) = p € I}
where the parameter space box is given as
O:={p:p€p;,pf] i=1234}.

Now we construct the 16 vertex polynomials corresponding to the vertex set V of
II:

Ay(s)={v(s,p) : peV}={v(s) =vi(s,p), i=1,2,---,16}.
The vertex polynomials v;(s) can be written down by setting p to a vertex value.
For example:

vi(s) = v(s,pf . pd, p¥,pT)
=(5+2)(s* +pfs+4)(s° + 35" +pfs +0.1)+ (s + V(s +pf)(s +pd) .

VE(s) Vi¥(s)

Similarly, we can write va(s), - - -, v16.

(a) To determine the worst case upper gain margin L* over the parameter set, we
replace the vertex polynomials as follows:

Vi(s, L) =V (s) + 1+ L)V;N(s), i=1,2,---,16.

Now find the maximum phase difference over the entire set of vertex polyno-
mials Ay (jw) for a fixed w with a fixed L:

Vi(jw,L) . Vi(jw, L)
P w,L) = sup arg ———=~ — inf arg ———=
AV( ) i,i;épk & Vi(jw, L) ik 8 Vi(jw, L)
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DEGREE

where k is an arbitrary integer, 1 < k < 16, and ¢ = 1,2,---,16. Then a
lower bound L on the worst case gain margin is obtained by determining the
largest real positive value of L such that all the edges connecting the vertices
in Ay (s) remain Hurwitz. Equivalently, by the Bounded Phase Condition we
have

L:ngfo {L : sgp@Av(w,L):BO }

Figure 10.12 shows that the maximum phase differences over the vertex set
for each frequency w for L = 0.

25

20+ :

10+ .
— (I)AV(W,L)

0 L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

W

Figure 10.12. ®A (w, L) vs. w (L = 0) (Example 10.5(a))

The figure shows that the maximum phase difference over vertices ® A (w,L)
does not reach 180° for any w. This means that a larger value L is allowed.
Figure 10.13 shows the plot of the maximum phase difference over the vertices
and over all frequency in terms of L. From this we find that for L = 0.658
there exists a frequency w that results in <I>Av(w, L) = 180°. Therefore,

L~ 0.658
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On the other hand, we can determine an upper bound on L* by finding the
smallest gain margin over the vertex set. This turns out to be L = 0.658
which is the same as L, and therefore the exact margin in this case.
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Figure 10.13. sup, ®A (w, L) vs. L (Example 10.5(a))

(b) To determine the worst case phase margin #* we modify each vertex polynomial
as follows:

Vi(s,0) = VP (s) + VN (s), i=1,2,---,16.

Then a lower bound € on #* can be obtained by finding the largest value of #
such that the Bounded Phase Condition is satisfied. Equivalently,

0 = inf {6 psup P (w,0) = 180°}.

#>0

Figure 10.14 shows the plot of the maximum phase difference over the vertices
and over all w in terms of §. From this, we find that for § = 31.6273° there
exists w that results in ® A (w,0) = 180°. Thus,

6 ~ 31.6273°.
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On the other hand, from the vertex systems we also get an upper bound
0 =~ 31.6273°, which is the same as for @, and hence 31.6273° is the true
margin in this case.
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Figure 10.14. sup, ® A (w,0) vs. ¢ (Example 10.5(b))

(¢) To determine the worst case time delay margin 7%, we replace each vertex
polynomial as follows:

Vi(s,T) = VP (s) + e 1TV N(s), i=1,2,---,16.

A lower bound T" on T™ is obtained by selecting the largest value of T' such
that the Bounded Phase Condition is satisfied. Equivalently,

Z:%gfo{T : sgpq)Av(w,T) =180 }
Figure 10.15 shows that at 7" = 0.56 there exists w that results in ® o (w,T') =
180°. Thus we have

T =0.56 sec.
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Figure 10.15. sup, ® A (w,0) vs. T" (Example 10.5(c))

(d) To determine the worst case Ho, stability margin, let us consider the case of
additive perturbation where the H., uncertainty block is connected around
the two cascaded interval plants as shown in Figure 10.16.

_ﬁrD—* F(s) P(s) Q(s)

Figure 10.16. A multilinear interval system with H., uncertainty (Exam-

ple 10.5(d))
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DEGREE

Then from 1

[Fe) A+ FePERENT <5

oQ

we have the condition that

Fy(s)Po(5)Qa(s) + Fi(s)PL(8)Q1(s) + B¢’ F1 (5) Pa(5)Q2(5)

= Fi(s)P1(s)Q1(s) + [1 + Bel? 2—8] Fa(s)Pa(s)Q2(s)

is Hurwitz for all 8 € [0,27) and p € II. Thus, the vertex polynomials can be
written down as:

Vi(s,3,0) = VN (s) + [L + B F(s)] VP (s), i=1,2,--,16.

40

35+ :

Figure 10.17. sup, ® o (w,$,0) vs. 0 for 5 =0.1,0.2,0.3. (Example 10.5(d))

A lower bound 8 on the worst case H, stability margin 5* is obtained by se-
lecting the largest positive value of 5 such that the Bounded Phase Condition
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is satisfied for all 6 € [0,27). Equivalently,
B= égfo {ﬁ : sgpsgp@Av(w,ﬁ, ) = 180°} .
Figure 10.17 shows the maximum phase difference over the vertices and over all
frequency for every fixed 8. From Figure 10.18 we find that for any 8 < 0.49,
o (s
Fi(s)Pi(s)Q1(s) + [1 + Be’? #ES;] Fa(s)Pa(s)Q2(s)
is Hurwitz for all 0 € [0, 27).
300
250+
200 -
I R
)
g 150
i)
a
100 sup,, @Av(w,ﬁ, 0) —
50 5

0 L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
p

Figure 10.18. sup, ¢  (w,f,0) vs. f.(Example 10.5(d))

Thus, the lower bound on the worst case I, stability margin is
B~ 0.49.

Now we can find an upper bound 3 by determining the H, stability margins
of the vertices and it turns out to be 8 &~ 0.49. From these bounds we see
that

8% = 0.49.
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Remark 10.1. Similar calculations can be used to estimate the size of the sector
containing nonlinear gains for which a multilinear interval system remains absolutely
stable. In other words, once we replace the multilinear family by the polytopic
family M(s), we may use the Lur’e, Popov or Circle Criterion to determine lower
bounds on the size of the Robust Absolute Stability Sector. From the vertex systems
we can find an upper bound on this sector. Exercise 10.1 deals with this type of
problem:.

Remark 10.2. Our definition of the multilinear interval system M(s) assumes
that the numerator and denominator parameters q and r are independent. This
restriction can be relaxed by replacing M(s) by a linear fractional transformation
F(M(s)) for all M(s) € M(s). We simply construct the polytopic family M(s) and
replace the set F/(M(s)) by the set F(M(s)). From the image set bounding property
of M(s) and the fact that linear fractional transformations preserve boundaries it

follows that at every point s* € €:

F(M(s%)) C F(M(s™)).

It 1s easy to see from the above that all the results and calculations derived in this
chapter carry over to the set F(M(s)). Since linear fractional transformations are
a large class of transformations; this allows us to handle all sorts of dependencies
in a convenient way. This is explored in Exercise 10.2.

10.6 EXERCISES

10.1 For the system given in Example 10.5, estimate the size of the sector containing
nonlinear gains for which the entire multilinear family of closed loop systems remains
robustly absolutely stable. Estimate the sectors using respectively the

a) Lur’e criterion
b) Popov criterion

¢) Circle criterion.

10.2 In the feedback system shown below in Figure 10.19.

Let n Lo 5
s+ a s
G(S)—ma 01(5)—5_1_—3a Ca(s) = I
with the nominal values o =1, 8" = —5.

a) Find a controller Cy(s) that stabilizes the nominal closed loop system.

b) With the controller obtained in a), let « € [l — ¢, 1+ ¢ and € [-5—e. -5+
¢]. Find the maximum value of ¢ for which the closed loop system remains
robustly stable.
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> C%(S)

+~_F\ s Ci(s) s G(s) >

Cz (5) -«

Figure 10.19. Feedback system (Exercise 10.2)

10.3 Consider the feedback system shown in Figure 10.20.

T?ee~ C(s) s Pi(s) s Po(s) >

Figure 10.20. Feedback system (Exercise 10.3)

Let

6= 4 Pl =2 Palo) =
and let the parameters range over
q0 € [0.5,1.5], pg € [0.5,1.5], ¢1 €[1.5,25], p; €]0.5,1.5].
a) Verify that the closed loop system is robustly stable.
b) Construct the polytopic system M(s).

¢) Using the polytopic system M(s), estimate the maximum guaranteed gain mar-
gin measured at the loop breaking point “x”.

d) Likewise estimate the maximum guaranteed phase margin at “x”.

10.4 In the the feedback system of Exercise 10.3, suppose we want to expand the
range of allowable parameter variations by letting the parameters vary as

Q0 €105 —¢€,1.54+¢, py€[0.5—¢ 1.5+ ¢,
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g €[15—¢25+¢, p €[05—¢15+¢.

What is the maximum value of € for which the polytopic system M(s) does not lose
robust stability?

10.5 Suppose that unstructured additive uncertainty is introduced into the system
in Exercise 10.3 as shown in Figure 10.21:

T?_‘ C(s) P(s) Q(s) >

Figure 10.21. Feedback system with additive H,, uncertainty (Exercise 10.5)

Estimate the maximum additive H,, uncertainty that the closed loop system can
tolerate, by using the polytopic system M(s).

10.6 Suppose that unstructured perturbation is applied to the system in Exer-
cise 10.3 in a multiplicative form as shown below in Figure 10.22.

J—~ A
}cf#c@ P(s) [ Q) |-+ G

Figure 10.22. Feedback system with multiplicative H., uncertainty (Exer-
cise 10.6)

<

Find the maximum multiplicative H., stability margin possessed by the closed loop
system.

10.7 Suppose that a time-delay block, e™*7 is inserted at “x” in the feedback
system of Exercise 10.3 (see Figure 10.20). Find a lower bound in the the time-
delay that can be robustly tolerated by the closed loop system, using the polytopic
system M(s).
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10.8 Consider the feedback system shown below in Figure 10.23.

T%‘ C(s) s Pi(s) s Pa(s) >

Figure 10.23. Feedback system (Exercise 10.8)

Let | 5
. s+ o
C(s) = Pi(s) = E

5+60
P. =\
2(5) 715+ Y%

and

oy € [1:2]7 60 € [LQ]; S [1a5]
@y € [LQ]; bo € [1a3]a Yo € [6a 10]

a) Verify that the closed loop system is robustly stable.
b) Construct the polytopic system M(s).

¢) Using the polytopic system M(s), find the maximum guaranteed gain margin
measured at the loop breaking point “x”.

d) Similarly estimate the maximum guaranteed phase margin measured at the

point “x”.

10.9 In the the feedback system of Exercise 10.8, suppose we want to expand the
range of allowable parameter variations by letting the parameters vary as

ar €E[l—€24¢€), fo€[l—€24¢, 11 €[1—¢5+¢,

ag€[l—€,24¢, §e[l—€63+¢, 7 €[6—¢10+ €.

Calculate the maximum value of ¢ for which the polytopic system 1\7[(5) remains
robustly stable?

10.10 Consider the feedback system shown below (Figure 10.24):
Let

s+ Gy P2(5)2—5+60

(s)=2, (o) s>+ ars+ag’ 5+ 7



Sec. 10.7. NOTES AND REFERENCES 459

T?e~ C(s) s Pi(s) s Po(s) >

Figure 10.24. Feedback system (Exercise 10.10)

with

ay € [3,6], oy € [1,2], 60 € [1,2]
Yo € [4’6]5 60 S [3a5]

a) Check whether the closed loop system is robustly stable.
b) Construct the polytopic system M(s).

¢) Using the polytopic system 1\7[(5), estimate the maximum guaranteed gain mar-
gin at the loop breaking point “x”.

d) Estimate the maximum guaranteed phase margin at “x”.

10.11 In the the feedback system of Exercise 10.10, suppose we want to expand
the range of allowable parameter variations by letting the parameters vary as

ar €[3—€6+¢], ap€[l—€¢24¢, bpe[l—c2+¢,
706[4_€a6+€]a 606[3_€a5+€]'

Evaluate the maximum value of ¢ for which the polytopic system M(s) remains
robustly stable?

10.7 NOTES AND REFERENCES

The Mapping Theorem was stated and proved in the 1963 book of Zadeh and
Desoer [243]. Tt was effectively used in parametric stability margin calculations
by deGaston and Safonov [80] and Sideris and Sanchez-Pena [210]. The mixed
uncertainty stability margin calculations given in Section 10.3 were developed by
Keel and Bhattacharyya [133, 134].

Vicino, Tesi and Milanese [230] gave an algorithm for calculating parametric
stability margins in the case of nonlinearly correlated parameter dependence. In
Hollot and Xu [118], Polyak [190] and Anderson, Kraus, Mansour and Dasgupta [10]
conditions under which the image set of a multilinear interval polynomial reduces
to a polygon are investigated.



