Chapter 7

THE GENERALIZED
KHARITONOV THEOREM

In this chapter we study the Hurwitz stability of a family of polynomials which
consists of a linear combination, with fixed polynomial coefficients, of interval poly-
nomials. The Generalized Kharitonov Theorem given here provides a constructive
solution to this problem by reducing it to the Hurwitz stability of a prescribed set of
extremal line segments. The number of line segments in this test set is independent
of the dimension of the parameter space. Under special conditions on the fixed
polynomials this test set reduces to a set of vertex polynomials. This test set has
many important extremal properties that are useful in control systems. These are
developed in the subsequent chapters.

7.1 INTRODUCTION

In attempting to apply Kharitonov’s Theorem directly to control systems we en-
counter a certain degree of conservatism. This is mainly due to the fact that the
characteristic polynomial coefficients perturb interdependently, whereas a crucial
assumption in Kharitonov’s Theorem is that the coefficients of the characteristic
polynomial vary independently. For example, in a typical situation, the closed loop
characteristic polynomial coefficients may vary only through the perturbation of
the plant parameters while the controller parameters remain fixed. We show by an
example the precise nature of the conservativeness of Kharitonov’s Theorem when
faced by this problem.

Example 7.1. Consider the plant:

S

G(s) = )

= h 34,5
dr(s) 1_S+a52+53,werea€[ 51,

and has a nominal value

a = 4.
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It is easy to check that the controller C(s) = ] stabilizes the nominal plant,

yielding the nominal closed-loop characteristic polynomial,
64(s) = 1+ 3s+ 3s% + 5s” + 5.

To determine whether C'(s) also stabilizes the family of perturbed plants we observe
that the characteristic polynomial of the system is

ba(s) = 14 3s+ (o — D)s? + (a + 1)s® + 5%

In the space (82, 683), the coefficients of s and s® describe the segment [R;, Ro]
shown in Figure 7.1.

b3

4.4 ¢

2.4 4 5o

Figure 7.1. A box in parameter space is transformed into a segment in coefficient
space (Example 7.1)

The only way to apply Kharitonov’s theorem here is to enclose this segment in
the box B defined by the two ‘real’ points Ry and R- and two ‘artificial’ points A
and A, and to check the stability of the Kharitonov polynomials which correspond
to the characteristic polynomial evaluated at the four corners of 5. But

6a,(5) = 14 3s +2.45% 4 65° + 5%,
1s unstable because its third Hurwitz determinant Hs is

6 3 0
Hi = 24 1 |=-18<0.
6

1
0
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Therefore, using Kharitonov’s theorem here does not allow us to conclude the sta-
bility of the entire family of closed-loop systems. And yet, if one checks the values
of the Hurwitz determinants along the segment [R;, R»] one finds

14+o 3 0 0
1 a—1 1 0
=10 14a 3 0
0 1 a—1 1
and
H1 —1+Oé
2
gz —goﬂ 4204 13 all positive for « € [3.4,5].
P — 9% —
Hy = Hj

This example demonstrates that Kharitonov’s theorem provides only sufficient con-
ditions which may sometimes be too conservative for control problems.

An alternative that we have in this type of situation is to apply the Edge Theo-
rem of Chapter 6, since the parameters of the plant are within a box, which is,
of course, a particular case of a polytope. However, we shall see that the solution
given by the Edge Theorem, in general, requires us to carry out many redundant
checks. Moreover, the Edge Theorem is not a generalization of Kharitonov’s Theo-
rem. An appropriate generalization of Kharitonov’s Theorem would be expected to
produce a test set that would enjoy the economy and optimality of the Kharitonov
polynomials, without any unnecessary conservatism.

Motivated by these considerations, we formulate the problem of generalizing
Kharitonov’s Theorem in the next section. Before proceeding to the main results,
we introduce some notation and notational conventions with a view towards stream-
lining the presentation.

7.2 PROBLEM FORMULATION AND NOTATION

We will be dealing with polynomials of the form

8(s) = Fi(s)Pi(s) + Fo(s)Pa(s) + - -+ Fp(8) P (). (7.1)
Write
F(s):=(Fi(s), Fa(s), -+, Fn(s))
P(s) := (Pi(s), Pa(s), -+, P(s)) 3

and introduce the notation

< F(s), P(s) >:= Fi(s)P1(s) + Fa(s)Pa(s) + - -+ Fin(s) P (). (7.4)
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We will say that £(s) stabilizes P(s) if 6(s) =< F(s), P(s) > is Hurwitz stable. Note
that throughout this chapter, stable will mean Hurwitz stable, unless otherwise
stated.

The polynomials F;(s) are assumed to be fixed real polynomials whereas P;(s)
are real polynomials with coefficients varying independently in prescribed intervals.
An extension of the results to the case where F;(s) are complex polynomials or

quasipolynomials will also be given in a later section.
Let d°(P;) be the degree of F(s)

Pi(s) :==pio+pi1s+-- '+pi,d0(P,)5dO(Pz)' (7.5)

and
Pi = [pi0,Pity oy Piaepo)- (7.6)
Let n = [1,2,-- -, n]. Each P;(s) belongs to an interval family P;(s) specified by the
intervals
pij €laig, figl iem j=0,---,d°(P). (7.7)
The corresponding parameter box is
Hi = {P7 eI Spi,j Sﬁi,ja jIO,l,,dO(PZ)} (78)
Write P(s) := [Pi(s), - - - Py (s)] and introduce the family of m-tuples
P(s) :=Pi(s) X Pa(s) x - x P, (s). (7.9)

Let
P = [P1,P2, **, Pm] (7.10)

denote the global parameter vector and let

II:=1I, xII, x ---x I1I,, (7.11)

denote the global parameter uncertainty set. Now let us consider the polynomial
(7.1) and rewrite it as &(s,p) or é(s, P(s)) to emphasize its dependence on the
parameter vector p or the m-tuple P(s). We are interested in determining the
Hurwitz stability of the set of polynomials

A(s) :={6(s,p) :p € IT}
= {< F(s), P(s) >: P(s) € P(s)}. (7.12)

We call this a linear interval polynomial and adopt the convention
A(s) = Fi(s)Pi(s) + Fa(s)Pa(s) + -+ Fn(s)P i (s). (7.13)

We shall make the following standing assumptions about this family.
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Assumption 7.1.

al) Elements of p perturb independently of each other. Equivalently, IT is an axis
parallel rectangular box.

a2) Every polynomial in A(s) is of the same degree.

The above assumptions will allow us to use the usual results such as the Boundary
Crossing Theorem (Chapter 1) and the Edge Theorem (Chapter 6) to develop the
solution. It is also justified from a control system viewpoint where loss of the degree
of the characteristic polynomial also implies loss of bounded-input bounded-output
stability. Henceforth we will say that A(s) #s stable if every polynomial in A(s) is
Hurwitz stable. An equivalent statement is that F(s) stabilizes every P(s) € P(s).

The solution developed below constructs an extremal set of line segments Ag(s) C
A(s) with the property that the stability of Ag(s) implies stability of A(s). This
solution is constructive because the stability of Ag(s) can be checked, for instance
by a set of root locus problems. The solution will be efficient since the number
of elements of Ag(s) will be independent of the dimension of the parameter space
IT. The extremal subset Ag(s) will be generated by first constructing an extremal
subset Pg(s) of the m-tuple family P(s). The extremal subset Pg(s) is constructed
from the Kharitonov polynomials of P;(s). We describe the construction of Ag(s)
next.

Construction of the Extremal Subset
The Kharitonov polynomials corresponding to each P;(s) are

(2
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Qi+ 1s+ Bias’ + Fias® + -
ajo+ i1+ Bios” +aias® + -
Bio+ i1s + aias® + Bizs” + -
Gio+ Bins+ aias® +aiss® +- -
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and we denote them as:
Ki(s) := {K}(s), KZZ(S), KZ»?’(S), Kf(s)}. (7.14)

For each P;(s) we introduce 4 line segments joining pairs of Kharitonov polynomials
as defined below:

Si(s) = {[K (), K7 (5)], [K (5), K2 ()], [K7 (s), K ()], [KP(s), Ki' ()]} . (7.15)

These four segments are called Kharitonov segments. They are illustrated in Fig-
ure 7.2 for the case of a polynomial of degree 2.
For each { € {1,---,m} let us define

PfE(s) =Ki(s) x - x Kizi(s) x Si(s) x Kipa(s) x -+ x K (). (7.16)
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&

Figure 7.2. The four Kharitonov segments

A typical element of PL(s) is

(51 (s), K3 (60, KT (), (1= M) (5) 4+ AR (3), K4 (9), -, K (5))
(7.17)
with A € [0,1]. This can be rewritten as

(1= ) (K3 ), 52 (5), - K (8), K G6), I ), K ()
A (K (5), K42 (s), -, K15 (5), BGE (3), KA (9), -+, K () - (7.18)
Corresponding to the m-tuple PL(s), introduce the polynomial family
Ag(s) = {< F(s), P(s) >: P(s) € Py(s)}. (7.19)
The set Al (s) is also described as

AL(s) = Fi(s)Ki(s) 4+ Fii(5)Kim1(s) + Fi(5)Si(s) + Fir (5)K141 (5) +
o o (5)Km (5). (7.20)

A typical element of AL(s) is the line segment of polynomials
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Fi(s)K] () + Fo(8) K52 (5) £+ -+ Fioa (5)K7 15 () + i () [(1 = MK (5) + AT ()]

+ Fipa (8)K1H (5) + -+ Fr(s) K3 (s) (7.21)

with A € [0, 1].
The extremal subset of P(s) is defined by

Pg(s) := U™, Ph(s). (7.22)
The corresponding generalized Kharitonov segment polynomials are
Ag(s) = U Ag(s)
= {< £(s), B(s) > : P(s) € Pu(s)}. (7.23)

The set of m-tuples of Kharitonov polynomials are denoted Pk (s) and referred to
as the Kharitonov vertices of P(s):

P (s) = Ki(s)xKa(s)x - -xK,,(s) C Pr(s). (7.24)
The corresponding set of Kharitonov verter polynomials is
Ag(s) :={< E(s),P(s) > : P(s) € Pg(s)}. (7.25)
A typical element of Ak(s) is
Fi(8) K] (8) + Fo(s) K32 (8) 4 -+ Fi(s) K (s). (7.26)

The set Pg(s) is made up of one parameter families of polynomial vectors. Tt is easy
to see that there are m4™ such segments in the most general case where there are
four distinct Kharitonov polynomials for each P;(s). The parameter space subsets
corresponding to PL(s) and Pg(s) are denoted by IT; and

HE = U;’;lﬂl, (727)

respectively. Similarly, let IIx denote the vertices of II corresponding to the
Kharitonov polynomials. Then, we also have

Ag(s) :={é(s,p) :p € g} (7.28)
Ak (s) :={o(s,p) : p € Ik} (7.29)

The set Pk (s) in general has 4™ distinct elements when each P;(s) has four distinct
Kharitonov polynomials. Thus Ak (s) is a discrete set of polynomials, Ag(s) is a
set of line segments of polynomials, A(s) is a polytope of polynomials, and

Ak (s) C Ag(s) C A(s). (7.30)

With these preliminaries, we are ready to state the Generalized Kharitonov Theorem
(GKT).
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7.3 THE GENERALIZED KHARITONOV THEOREM

Let us say that F(s) stabilizes a set of m-tuples if it stabilizes every element in the
set. We can now enunciate the Generalized Kharitonov Theorem.

Theorem 7.1 (Generalized Kharitonov Theorem (GKT))
For a given m-tuple F(s) = (F1(s), -, Fu(s)) of real polynomials:

I) E(s) stabilizes the entire family P(s) of m-tuples if and only if ' stabilizes every
m-tuple segment in Py(s). Fquivalently, A(s) is stable if and only if Ag(s)
15 stable.

II) Moreover, if the polynomials F;(s) are of the form
Fi(s) = s""(ais + b;)Ui(5)Qi(s)

wheret; > 0 is an arbitrary integer, a; and b; are arbitrary real numbers, U;(s)
is an anti- Hurwitz polynomial, and Q;(s) is an even or odd polynomial, then it
is enough that F(s) stabilizes the finite set of m-tuples Px (s), or equivalently,
that the set of Kharitonov vertex polynomials Ak (s) are stable.

III) Finally, stabilizing the finite set Px(s) is not sufficient to stabilize P(s) when
the polynomials Fy(s) do not satisfy the conditions in II). Equivalently, sta-
bility of Ak (s) does not imply stability of A(s) when F;(s) do not satisfy the
conditions in II).

The strategy of the proof is to construct an intermediate polytope Ag(s) of dimen-
sion 2m such that

Ap(s) C Aq(s) C A(s). (7.31)

In the first lemma we shall show that the stability of Ag(s) implies the stability
of Aj(s). The next two lemmas will be used recursively to show further that the
stability of Aj(s) implies the stability of A(s).

Recall that Kharitonov polynomials are built from even and odd parts as follows:

1{21 (S) — [(ieven,min (5) + I(Zpdd,min (5)
) __ greven,min ~odd,max
I{Z%(S) B [Xrieven max(S) + [xfodd min (5) (732)
K3 (s) = K" (s) + K779 (s)
Ki(s) = Komma(s) 4 Koddmax(g),
where
K min (s) =aio+ Bias”+azast+---
[reven max =8 : 2 ) 4 o
(5) = Bio + @i 28" + G5 48" + (7.33)

[rlodd mln(S) = ;s + 52',353 + ai,555 + -
[(;dd,ma)((s) — 677,15—1— 047:,353 +677,555 + -
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Now introduce the polytope Aj(s):

AI(S) = {Z E(S) ((1 _ /\i)I(fVen,min(S) + Ai[(fven,max(s)
i=1

(L= KT ) B (5))
(/\l)ﬂla/\Z)/'LZa"'a/\ma/'Lm): Ai €10,1], p; €0, 1]} (734)

Lemma 7.1 Aj(s) is stable if and only if Ag(s) us stable.

Proof. Tt is clear that the stability of Aj(s) implies the stability of Ag(s) since
Apg(s) C Aq(s). To prove the converse, we note that the degree of all polynomials
in Aj(s) is the same (see Assumption a2). Moreover, the exposed edges of Aj(s)
are obtained by setting 2m — 1 coordinates of the set

(/\1;/'L1;/\2aﬂ2a"'a/\ma/'tm)

to 0 or 1 and letting the remaining one range over [0, 1]. Tt is easy to see that this
family of line segments is nothing but Ag(s). Therefore, by the Edge Theorem it
follows that the stability of Ag(s) implies the stability of Aq(s). &

We shall also need the following two symmetric lemmas.
Lemma 7.2 Let B°(s) be the family of real even polynomials
B(s) = bg + bys® +bys® + - + by, 577,
where: bo € [0, yn], b2 € [wa, 0], bop € [Xap, Y2y ],

and define,

Ki(s) = o+ yos” +ogs* + -

Ko(s) = yo + To8” 4 yast 4+
Let also A(s) and C(s) be two arbitrary but fized real polynomials. Then,

A) A(s)+ C(s)B(s) is stable for every polynomial B(s) in B%(s) if and only if the
segment [A(s) + C(s) K (s), A(s) + C(s)Ka(s)] is stable.

B) Moreover if C(s) = s'(as + b)U(s)R(s) where t > 0, a and b are arbitrary
real numbers, U(s) is an anti- Hurwitz polynomial, and R(s) is an even or odd
polynomial, then A(s)+C(s)B(s) is Hurwitz stable for every polynomial B(s)
in B%(s) if and only if

A(s) + C(s)Kq(s), and A(s)+ C(s)Ko(s) are Hurwitz stable.
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Proof. Let us assume that A(s) + C(s)B(s) is stable for every polynomial B(s)
in [K(s), K5(s)], that is for every polynomial of the form,

B(s) = (1= NVK,(s) + AKs(s), A€ [0,1].

Let us now assume by way of contradiction, that A(s) 4+ C(s)P(s) was unstable
for some polynomial P(s) in B(s). Then we know that there must also exist a
polynomial ()(s) in B#(s) such that

A(s) + C(s)Q(s)

has a root at the origin or a pure imaginary root. Let us at once discard the case
of a polynomial Q(s) in the box B¢(s), being such that

A(0) + C(0)Q(0) = 0. (7.35)
Indeed, since Q(0) = ¢n belongs to [xn, yo], it can be written
qo = (1 = Nao + Ayo, for some A in [0, 1].
Then (7.35) would imply

A0) +C0) (1 — Nxg + Ayo) = A(0) + C(0) (1 — A)K1(0) + AK2(0))
=0,

which would contradict our assumption that A(s) + C(s)B(s) is stable. Suppose
now that A(s) + C(s)Q(s) has a pure imaginary root jw, for some w > 0. If this is

true then we have ) 4 C 0 — 0
‘lw) + % (w w) =
{ A% (W) + C(w)Q(w) = 0. (7.36)

Notice here that since (s) is an even polynomial, we simply have
QUw) = Q°(w) = Qeven (jw) = Q(w).
Now, (7.36) implies that for this particular value of w we have
A ()07 () = A7()C (@) = 0. (7.37)
On the other hand, consider the two polynomials
Bi(s) = A(s) + C(s)K1(s), and Ba(s) = A(s) + C(s)Ka(s).
We can write for 1 = 1,2

Bf(w) = (A4 CK;)*(w) = A%(w) + C° (w) K; (w)

and |
B! (w) = (A4 CK,;)°(w) = A°(w) + C°(w)K; (w).

2
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Thinking then of using the Segment Lemma (Chapter 2) we compute
BB () - B@)BE(e) = (470 + O @K )] (470) + ) Rao)
- <A(i (w) + C°(w) K (w)) (A" (W) + C°(w) K, (w)) ,

which can be written as
B2 () B () — BE()B2 ) = (Kafe) — K (w))(A°(@)C7 () — A°()C5()),
and therefore because of (7.37),
B () B () — B () By (@) = 0. (7.38)
Moreover, assume without loss of generality that
C(w) >0, and C°(w) <0, (7.39)
and remember that due to the special form of K (s) and K»(s) we have
Ki(w) € Qw) < Ky(w), for all w € [0, +x0).
Then we conclude from (7.36) and (7.39) that
Bl (w) = A°(w) + Co@)Ki (w

) <0< B
Bg((.d) = Ao(w) + CO(W)[(Q ((.d) S 0 S f(w) — AO(QJ) + Co(w)[ ((.d) (740)
But if we put together equations (7.38) and (7.40) we see that
{ B (w) B (w) — BS (w) B (w) = 0
Bi(w) B (w) <0
Bl (w)B3(w) <0

We see therefore from the Segment Lemma (Chapter 2) that some polynomial on
the segment [Bj(s), Ba2(s)] has the same jw root, which here again is a contradiction
of our original assumption that A(s)+C(s)B(s) is stable. This concludes the proof
of part A.

To prove part B, let us assume that C(s) is of the form specified and that
By (s) = A(s) + C(s)K1(s), and Ba(s) = A(s) + C(s)Ka(s),
are both Hurwitz stable. Then
Bi(s) — Ba(s) = s'(as + D)U(s)R(s) (K1 (s5) — K2(s)) . (7.41)

(
Since Ky (s) — Ko
the segment [B; (s

s) is even we conclude from the Vertex Lemma (Chapter 2) that
), Bs(s)] is Hurwitz stable. This proves part B.
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The dual lemma is stated without proof.
Lemma 7.3 Let B°(s) be the family of real odd polynomials
B(s) = bys + bys® +bss® + - + bypy g s
where: by € [z1,31], b3 €[r3,u3], -+, baprr € [Tapy1, Yapral,
and define,

Ki(s) = w154 yss® +ass® + -
[{2(5) = y15+x353 —|—y555 +

Let also D(s) and E(s) be two arbitrary but fized real polynomials. Then

a) D(s) + E(s)B(s) is stable for every polynomial B(s) in B°(s) if and only if the
segment [D(s) + E(s)K1(s), D(s) + E(s)K2(s)] ts Hurwitz stable.

b) Moreover if E(s) = s'(as + b)U(s)R(s) where t > 0, a and b are arbitrary
real numbers, U(s) is an anti- Hurwitz polynomial, and R(s) is an even or odd
polynomial, then D(s)+ E(s)B(s) is stable for every polynomial B(s) in B°(s)
of and only if

D(s) + E(s)K1(s), and D(s) + E(s)K2(s) are Hurwitz stable.
Proof of GKT (Theorem 7.1) Since Ag(s) C A(s), it is only necessary to
prove that the stability of Ag(s) implies that of A(s). Therefore, let us assume

that Ag(s) is stable, or equivalently that F(s) stabilizes Pg(s). Now consider an
arbitrary m-tuple of polynomials in P(s)

B(s) = (Pi(s), -+, Bn(s))

Our task is to prove that F(s) stabilizes this P(s). For the sake of convenience we
divide the proof into four steps.
Step 1 Write as usual

lDZ(S) :Pz’,even(s)‘|‘APZ'7(3(1(1(5)J i=1,---,m.

Since Ag(s) is stable, it follows from Lemma 7.1 that A;(s) is stable. In other
words,

Z E(S) ((1 _ Ai)l(;ven,min (S) 4+ Ai[(fven,max (5)
i=1
+(1 _ Ni)[(;dd,min (5) 4+ 7 [(Zpdd,max (S)) ’

1s Hurwitz stable for all possible

(7.42)

(M, Aoy o,y A i), allin [0, 1].
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Step 2 In this step we show that stability of Aj(s) implies the stability of A(s).
In equation (7.42) set

Dls) =5 Fils) (1= A (5) 4 A BET () o (1= g 17 ()

i=1

4 Arlpdd,maX(S)) +F, (S) ((1 _ )\m)[\/’rerzlen,min (5) + Am [{g@ven,max(s)) ’

and

We know from (7.42) that
D(s) + E(5) (1 = pin ) K V™0 (5) 4 g Kpp ™% (s))

is stable for all yi,,, in [0, 1]. But K29™"(s) and K2ddmax () play exactly the role of
K, (s) and K2(s) in Lemma 7.3, and therefore we conclude that D(s)+E(s) P, oad(s)
is stable. In other words

K3

m—1 . .
> Fi(s) ((1 — XK (5) 4 X K () 4 (1 — ) K™ (s)
i=1

+pi dedyma’((s)) + F(8) (1 = A ) KSVemmin (s) + A, Kgyemmax (s)) (7.43)

m

+Fm, (S)Pm,,odd (5)7

is stable, and remains stable for all possible values

(Ab/’tla/\ZaMZa"'a/\m): all in [Oal]a

since we fixed them arbitrarily. Proceeding, we can now set
m—1
Als)= 3" Fils) ((1 — XY (5) 4 A KTV (5) A (1 — ) KA (s)
i=1

11 K7 (5)) o P (5) Po o ()

and
C(s) = Fin(s).

Then we know by (7.43) that

)
A(s) + C(5) (1 = A KE0MIN (5) 4 A, KEYDmax ()
is stable for all A,, in [0,1]. But, here again, KS'*™™in(s) and K<™ (s) play
exactly the role of Ki(s) and K»(s) in Lemma 7.2, and hence we conclude that
A(5) + C(5) P even(s) is stable. That is

m—1 . .

Z E(S) ((1 _ Ai)l(fven,mln (S) + Az [(fven,max (S) + (1 _ /li)[(;)dd,mln (S)

i=1

i K7 (5)) - Fon(5) Pon o (5) + Fon(5) Pon e (5)
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E(S) ((1 _ Ai)l{;ven,min( ) 4+ A [reven max (5) 4+ (1 _ Mi)[{;dd,min (5)

i K7 (5) ) - B (5) P (5)
is stable, and this 1s true for all possible values

(/\IJ/'LI;/\QJ/'LZa'"a/\m—laﬂm—l): in [Oal]

The same reasoning can be carried out by induction until one reaches the point
where

Fi(s)P1(s) 4+ F2(s)Pa(s) + -+ Fin(8) P (),
1s found to be stable. Since
P(s) = (Pu(s), -+, Pn(s)) ,

was an arbitrary element of P(s), this proves that F(s) stabilizes P(s). Equivalently,
A(s) is stable. This concludes the proof of part I of the Theorem.

Step 3 To prove part II observe that a typical segment of Ag(s) is
63(5) = Fy(s)K{*(8) + -+ F(s)AK] (5) + (1= MK} ()] + -+ F () K (5).
The endpoints of this segment are

61(s) = Fr(s)K]" () + -+ Fu(s) K] (8) + -4 By () K3 (5)

bo(s) = Fy(s)KI*(s) 4 - -+ FI(S)I(;I (8) 4 -+ Fp(s)Kim(s).

The difference between the end points of this segment is

bafs) = 01(5) = 0a(s)
= R (5) - K5 (5]
)

If Fi(s) is of the form s"(as + b)U(s)R(s) where ¢t > 0, a and b are arbitrary real
numbers, U(s) are anti-Hurwitz, and R(s) is even or odd, then so is éy(s) since
KJ'(s) — Kl'(s) is either even or odd. Therefore, by the Vertex Lemma of Chapter
2, stability of the segment [6,(s), 62(s)] for A € [0,1] is implied by the stability of
the vertices. We complete the proof of part Il by applying this reasoning to every
segment in Ag(s).

Step 4 We prove part I by giving a counter example. Consider

P(s) = (1.5 —s—5",2+ 3s +vs”), where vy € [2,16],
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and
F(s) = (1,1 +s+s%).

Then
6,(8) := FL(8)Pi(s) + Fo(s)Po(s) = 3.5+ 4s+ (4 +7)s” + (3 + 7)s° +vs™.
Here Px(s) consists of the two 2-tuples
Pi(s) =1.5—5—5% Py(s) =2+ 3s + 257

and
Pi(s)=15—s—s% PJ(s)=2+43s+ 165"

The corresponding polynomials of Ak (s) are

85(s) = 3.5+ 4s + 657 + 5s® + 2s*,
b16(s) = 3.5+ 45+ 20s” + 195” 4 165

The Hurwitz matrix for é, is

3+y 4 0 0
v 4479 35 0
0 34+v 4 0
0 v 44735

H =

and the Hurwitz determinants are

Hy=3+7y

Hy =~ +3y+12

H; =057 —9y+16.5
H4 = 35H3

Now one can see that Hy, Hs are positive for all values of v in [2,16]. However Hj
and Hy are positive for v = 2, or ¥ = 16, but negative when, for example, v = 10.
Therefore it is not enough to check the stability of the extreme polynomials 6,(s)
corresponding to the couples of polynomials in Pk and one must check the stability
of the entire segment

(Pr(s), (AP2(s) + (1= NP (s)),  Ae[0,1],

which is the only element in Py for this particular example. This completes the
proof. &

An alternative way to prove step 2 is to show that if A(s) contains an unstable
polynomial then the polytope Ap(s) contains a polynomial with a jw root. This
contradicts the conclusion reached in step 1. This approach to the proof is sketched
below.
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Alternative Proof of Step 2 of GKT (Theorem 7.1)

If F(s) stabilizes every m-tuple segment in Pg(s), we conclude from Step 1 that
every polynomial of the form

35) = 3 Fis) (11— M7 () 4 MK
i=1
(L= ) K () g (s)) (7.44)
1s stable for all possible

(/\IJ/'LI;/\ZJ/'LZa"'a/\ma/'Lm)a AZE[OJl]J /’LZE[Oal]

To complete the proof of part I we have to prove that the stability of these polyno-
mials implies the stability of every polynomial in A(s).

If every polynomial in (7.44) is stable, F(s) will not stabilize the entire family
P(s) if and only if for at least one m-tuple

R(s) = (Ri(s), Ra(s), - -, R (s))
in P(s) the corresponding polynomial
8(s) = F1(s)Ra(s) + Fo(s)Ra(s) + - - 4 Fin(8) Rn (s)

has a root at jw* for some w* > 0. This last statement is a consequence of the
Boundary Crossing Theorem (Chapter 2). In other words, for this w* we would
have

8(jw*) = Fy(jw* )Ry (jw* ) + Fa(jw* )Ro(ju*) + - - -+ Fin (jw* )Ry (jw* ) = 0. (7.45)

Consider now one of the polynomials R;(s). We can decompose R;(s) into its odd
and even part

Ri(s) = RY™(s) + R2(s)
and we know that on the imaginary axis, R{V"(jw) and %Rfdd(jw), are, respec-

tively, the real and imaginary parts of R;(jw). Then the associated extremal poly-

nomials
[(ﬁven,min (S) g Even,max (5)
k3 ) k3

satisfy the inequalities

K dd,min (8), [{Z dd,max (S)

) 2

Kfven’mi” (jw) < Ry M (jw) < K7 (w), for all w € [0,00)
and

1 : 1 1
SR Gy < SRYM (Gu) < KM (jw),  forall w € [0,00).  (7.46)
J J J
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Using (7.46) we conclude that we can find A; € [0,1] and g; € [0, 1] such that

R?Ven(jw*) — (1 _ AZ)I{eVen,mln(jw*) + )\i[(fven,ma)((jw*)

K3

1 sk 1romin-* 1romax-*
ijdd(]w )=(1- ui);[&i dd, (jw )—l—ugﬁi dd, (Jw™). (7.47)

From (7.47) we deduce that we can write

RZ(]W*) — (1 _ /\i)I(fven,min(jw*) + /\i[(;even,maX(jw*)
(L= RS (oo™ ) g KD (o). (7.48)

K3

However, substituting (7.48) for every i = 1,-- -, m into (7.45), we eventually get
Z E(]W*) ((1 _ Ai)[(ieven,min (]w*) + /\i[(fven,max (]w*)
i=1

+(1 . Ni)[(;)dd,min (]w*) + 1 [(Zpdd,max (_](.d* )) =0

but this is a contradiction with the fact that every polynomial 8(s) in (7.44) is
stable as proved in Step 1.

Remark 7.1. One can immediately see that in the particular case m = 1 and
Fy(s) = 1, the GKT (Theorem 7.1) reduces to Kharitonov’s Theorem because
Fi(s) = 1is even and thus part IT of the theorem applies.

Comparison with the Edge Theorem

The problem addressed in the Generalized Kharitonov Theorem (GKT) deals with a
polytope and therefore it can also be solved by using the Edge Theorem. This would
require us to check the stability of the exposed edges of the polytope of polynomials
A(s). GKT on the other hand requires us to check the stability of the segments
Apg(s). In general these two sets are quite different. Consider the simplest case of an
interval polynomial containing three variable parameters. The 12 exposed edges and
4 extremal segments are shown in Figure 7.2. While two of the extremal segments
are also exposed edges, the other two extremal segments lie on the exposed faces
and are not edges at all. More importantly, the number of exposed edges depends
exponentially on the number of the uncertain parameters (dimension of p € II). The
number of extremal segments, on the other hand, depends only on m (the number
of uncertain polynomials). To compare these numbers, consider for instance that
each uncertain polynomial P;(s) has ¢ uncertain parameters. Table 7.1 shows the
number of exposed edges and number of segments Pg(s) for various values of m
and ¢. We can see that the number of exposed edges grows exponentially with the
number of parameters whereas the number of extremal segments remains constant
for a fixed m.
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Table 7.1. Number of exposed edges vs. number of extremal segments

m | ¢ || Exposed Edges | Extremal Segments

212 32 32
213 80 32
2 |4 192 32
3 |4 24,576 192

Remark 7.2. In some situations, not all the coefficients of the polynomials are
necessarily going to vary. In such cases, the number of extremal segments to be
checked would be smaller than the maximum theoretical number, m4™. With
regard to the vertex result given in part II, it can happen that some Fi(s) satisfy
the conditions given in part II whereas other F;(s) do not. Suppose Fi(s) satisfies the
vertex conditions in part II. Then we can replace the stability check of the segments
corresponding to PL(s) by the stability check of the corresponding vertices.

7.4 EXAMPLES
Example 7.2. Consider the plant
_Pi(s) st as’—25+p

Gls) = Py(s)  s*+283—s24+ys+1
where
a€e[-1,-2], gel05,1], y€]0,1].
Let Fi(s)
C(s) = 12
(5) FQ(S)

denote the compensator. To determine if C'(s) robustly stabilizes the set of plants
given we must verify the Hurwitz stability of the family of characteristic polynomials
A(s) defined as

Fi(s)(s® + as® — 25+ B) + Fu(s)(s* +25° — s + ys+ 1)

with o € [-1,-2], @ €[0.5,1], v € [0, 1]. To construct the generalized Kharitonov
segments, we start with the Kharitonov polynomials. There are two Kharitonov
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polynomials associated with P (s)

Ki(s) = K{(s) = 0.5 — 25 — s + 5°
K3 s)= Ki(s) =1—2s—2s" 4 §°

and also two Kharitonov polynomials associated with Pa(s)

Ki(s) = K3(s) =1 — 5425 4 &*
K2(s) = K5(s) = 14+ 5— 5% 4+ 25 4+ 5%

The set P (s) therefore consists of the 2 plant segments

A K] (s) 4 (1= M) K3(s)

: 1
910 A1 €10,1]
M Ki(s) + (1= A)K3(s)
w20) 1Az €[0,1].
The set PZ(s) consists of the 2 plant segments
Ki(s) .
R + (- )3 2 €0
K3
i (5) ‘g €00, 1.

K1) + (1 - A)K3()
Thus, the extremal set Pg(s) consists of the following four plant segments.
05(1+A)—2s—(1+A)s? +53

1— 52 +28 4 st

0.5(1+ X)) —2s — (1 + Ag)s? + 53
1+s—5%+2s% 454

:/\1 € [0,1]

Z/\z € [0,1]

0.5—2s—s? + 55 1—25—28% 4+ 55
1+ Azs — 52 + 283 + 52 1+ Ays — 52 + 283 + 52
Therefore, we can verify robust stability by checking the Hurwitz stability of the
set Ag(s) which consists of the following four polynomial segments.

Z/\3€[0,1], /\46[0,1]

Fi(s) (05(14+ A1) —2s — (L4 A1)s” +5°) + Fa(s) (1 — s +25° + s%)
Fl(s)(05(1—|—/\2 )= 25 — (14 Ay)s? —|—5)+F2(5)(1—|—5—52—|—253—|—54)
F1(5)( D—25—3 —|—5)—|—F2()(1+/\35—52—|—253—|—54)
F1(5)(1—25—25 —1—5)+F2(5)(1+/\45—52—|—253—|—54)

N E0,1]:i=1,23,4.

In other words, any compensator that stabilizes the family of plants P(s) must
stabilize the 4 one-parameter family of extremal plants Pg(s). If we had used the
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Edge Theorem it would have been necessary to check the 12 line segments of plants
corresponding to the exposed edges of A(s).

If the compensator polynomials F;(s) satisfy the “vertex conditions” in part II
of GKT, it is enough to check that they stabilize the plants corresponding to the
four Kharitonov vertices. This corresponds to checking the Hurwitz stability of the
four fized polynomials

Fi(s) (1—2s — 25" +5°) + Fa(s) (1 — s* +25° + %)

(s) (1 =25 — 252 +5°) + Fu(s) (1 + 5 — 57 +25° + 5*)
(5) (0.5 — 25 — 57 4+ 5%) + Fa(s) (1 + 5 — 57 + 25 + 5%)
(5) (0.5 — 25 — 57 4+ 8%) + Fo(s) (1 — 7 + 25° + 5?)

S

B
Fl S
B

Example 7.3. (Stable Example) Consider the interval plant and controller pair

_ Pi(s) a5+ ag
o PQ(S) o b252 —|—b15—|—bo

Fi(s)  s*42s+1
Fy(s) T 442834282+ s

G(s) and C(s) =

where the plant parameters vary as follows:
ay €10.1,0.2], ag €[0.9,1], by €]0.9,1.0], b €[1.8,2.0], b € [1.9,2.1].
The characteristic polynomial of the closed loop system is
8(s) = Fi(s)P1(s) + Fa(s)Pa(s).

From GKT, the robust stability of the closed loop system is equivalent to that
of the set of 32 generalized Kharitonov segments. To construct these segments, we
begin with the Kharitonov polynomials of the interval polynomials P (s) and Ps(s),
respectively:

Ki (s) =0.940.1s, Klz(s) =0.94 0.2s, Kf’(s) =1+0.1s, Kf(s) =14+0.2s
and

K3(s) =194 1.8s+ 57, K3(s) = 1.9+ 25 + 5%,
K3(s) = 2.1+ 1854 0.95%,  K2(s) = 2.1+ 25 + 0.952.

Then the corresponding generalized Kharitonov segments are
Fi(8)K(s) + Fa(s) (MK (s) + (1= NS (s))

and
Fi(s) (AK? (5) + (1 — A)K? (5)) + Fy(5) KL (s)
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where ¢, j,k € 4 x 4 x 4. For example, two such segments are
Fy(s)K{ (s) + Fa(s) (MK, (s) + (1 = M)K3(s)) = (s* + 25+ 1)(0.9+ 0.15)
+(s* +25% + 257 +5) (M1.9 + 1.85 4 57) + (1 — A)(1.9 + 25 + s%))
and
Fi(s) (AK{(s) + (1 = A K7 (s)) + Fa(s)K3 = (s* + 25+ 1)
(A(0.94 0.15) + (1 — A)(0.9+ 0.25)) + (s* + 25° + 25 + 5)(1.9 + 1.85 + 5°)

for A € [0, 1]. The stability of these 32 segments can be checked in a number of ways
such as the Segment Lemma (Chapter 2), Bounded Phase Conditions (Chapter 4)
or the Zero Exclusion Theorem (Chapter 1). In Figure 7.3 we show the evolution
of the image sets with frequency.

/ 4
i

Imag
=)

-0.5+

Real

Figure 7.3. Image set of generalized Kharitonov segments (Example 7.3)

We see that the origin is excluded from the image sets for all frequency. In addition,
since at least one element (a vertex polynomial) in the family is Hurwitz, the entire
family is Hurwitz. Thus, we conclude that the controller C'(s) robustly stabilizes
the interval plant.
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Example 7.4. (Unstable Example) Consider the interval plant and controller
pair

G(s)

2
- 28 - bQ;sz:sal g 4 O = 28 T f2;24f;521+5
where the plant parameters vary in intervals as follows:
a; €[0.1,0.2], ag €[0.9,1.5], by €]0.9,1.0], b €[1.8,2.0], by €[1.9,2.1].
The characteristic polynomial of the closed loop system is
8(s) = Fi(s)P1(s) + Fa(s)Pa(s).

From GKT, the robust stability of the closed loop system is equivalent to that of the
set of 32 generalized Kharitonov segments. We construct this set as in the previous
example. The image set of these segments are displayed as a function of frequency
in Figure 7.4.

150 7 7
s o 7
e
i, *
en
g 0
0.5+ 7
1k 7
-1.5+ 7
s g 05 0 0.5 ! 15
Real

Figure 7.4. Image set of generalized Kharitonov segments (Example 7.4)

From this figure, we see that the origin is ncluded in the image set at some fre-
quencies. Thus we conclude that the controller C'(s) does not robustly stabilize the
given family of plants G(s).
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Example 7.5. (Vertex Example) Let us consider the plant and controller

_ Fi(s) _ (3s+5)(s”+1)
T Fy(s)  s2(s—H)

_ Pi(s) _ ass’ +ais+ag
o PQ(S) o b252 +b15—|—b0

where the plant parameters vary as a5 = —67 and

ay € [248,250], ao € [623,626], by € [202,203], by € [624,626], bo € [457,458].

G(s) and C(s)

Then the characteristic polynomial of the closed loop system 1is
8(s) = F1(8)P1(s) + F3(s)Ps(s).
In this particular problem, we observe that
Fi(s) : (1st order)(even) and Fy(s) : s'(anti — Hurwitz).
This satisfies the vertex condition of GKT. Thus, the stability of the 16 vertex

x104

L4

Real x104

Figure 7.5. Image set of generalized Kharitonov segments (Example 7.5)

polynomials is equivalent to that of the closed loop system. Since all the roots of
the 16 vertex polynomials

Fi(s)Ki(s) 4+ Fo(s)Ki(s), i=1,2,3,4 j=1234
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lie in the left half of the complex plane, we conclude that the closed loop system is
robustly stable. Figure 7.5 confirms this fact.

7.5 IMAGE SET INTERPRETATION

The Generalized Kharitonov Theorem has an appealing geometric interpretation
in terms of the image set A(jw) of A(s). Recall that in Step 1 of the proof, the
stability of A(s) was reduced to that of the 2m parameter polytope As(s). Tt is
easy to see that even though Aj(s) is in general a proper subset of A(s), the image
sets are in fact equal:

A(jw) = Ap(jw).

This follows from the fact, established is Chapter 5, that each of the m interval
polynomials P;(s) in A(s) can be replaced by a 2-parameter family as far as its
jw evaluation is concerned. This proves that regardless of the dimension of the
parameter space II, a linear interval problem with m terms can always be replaced
by a 2m parameter problem. Of course in the rest of the Theorem we show that this
2m parameter problem can be further reduced to a set of one-parameter problems.
In fact, A(jw) is a convex polygon in the complex plane and it may be described
in terms of its vertices or exposed edges. Let JA(jw) denote the exposed edges of
A(jw) and Av(jw) denote its vertices. Then it is easy to establish the following.

Lemma 7.4
1) 0A(jw) C Ap(jw) 2) Ay(jw) C Ak(jw)
Proof. Observe that A(jw) is the sum of complex plane sets as follows:
A(jo) = Fy (7)1 () + B (1)P (i) + -+ P (i) P ().

Each polygon F;(jw)P; (jw) is a rectangle with vertex set F;(jw)K;(jw) and edge set
F;(jw)S;(jw). Since the vertices of A(jw) can only be generated by the vertices of
F;(jw)P;(jw), we immediately have 2). To establish 1) we note that the boundary
of the sum of two complex plane polygons can be generated by summing over all
vertex-edge pairs with the vertices belonging to one and the edges belonging to the
other. This fact used recursively to add m polygons shows that one has to sum
vertices from m — 1 of the sets to edges of the remaining set and repeat this over
all possibilities. This leads to 1). &

The vertex property in 2) allows us to check robust stability of the family A(s)
by using the phase conditions for a polytopic family described in Chapter 4. More
precisely, define

$5(A) = arg (;(A) ) : (7.49)
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and with 8,(jw) € A(jw),

¢t (jw) = sup ¢5,(Jw), 0<ot <
Si(jw)e Ax(iw)
¢~ (jw) = inf ¢5,(jw), —T<¢~ <0

§i(jw)e Ax(jw)

and
Pp, (Jw) =T (jw) — 67 (jw). (7.50)

Theorem 7.2 Assume that A(s) has at least one polynomial which is stable, then
the entire family is stable if and only if P o (jw) <7 for allw.

Example 7.6. Consider the plant controller pair of Example 7.3. We first check
the stability of an arbitrary point in the family, say, one of the Kharitonov vertices.
Next for each w, we evaluate the maximum phase difference over the following 16
Kharitonov vertices

Fi(s)Ki(s) + Fo(s)Ki(s), i=1,2,3,4; j=1,2,3,4

DEGREE

Figure 7.6. Maximum phase difference of Kharitonov vertices (Example 7.6)
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The result is plotted in Figure 7.6. It shows that the maximum phase difference
over these vertices never reaches 180° at any frequency. Thus we conclude that the
system 1s robustly stable which agrees with the conclusion reached using the image
set plot shown in Figure 7.3.

Example 7.7. For the plant controller pair of Example 7.4, we evaluate the max-

imum phase difference over the Kharitonov vertices at each frequency. The plot is
shown in Figure 7.7.
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Figure 7.7. Maximum phase difference of Kharitonov vertices (Example 7.7)

This graph shows that the maximal phase difference reaches 180° showing that the
family is not stable. This again agrees with the analysis using the image sets given
in Figure 7.4.

7.6 EXTENSION TO COMPLEX QUASIPOLYNOMIALS

The main statement, namely part I, of the Generalized Kharitonov Theorem also
holds when the Fj(s) are complex polynomials and also when Fj(s) are quasipoly-
nomials. We state these results formally below but omit the detailed proof which,
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in general, follows from the fact that the image set of the family A(jw) is still gen-
erated by the same extremal segments even in these cases. Thus all that is needed
is to ensure that the Boundary Crossing Theorem can be applied.

Consider the family of quasipolynomials

A(s) = Fi(s)Py(s) + Fa(s)Pa(s) + - -+ Fi(s)Pru(s). (7.51)

where P, (s) are real independent interval polynomials as before, but now
E(s) = (Fi(5), -+, Fn(s)),
is a fixed m-tuple of complex quasipolynomials, of the form
Fi(s) = FO(s) + e T Fl(s) + e TEF2(s) + - - -
with the FZ (s) being complex polynomials satisfying the condition
degree [F(s)] > degree [Fij (5)] . J#N0. (7.52)

We assume that every polynomial in the family

A"(s) := FY(5)Py1(s) + FY(s)Pa(s) + - -+ F(s)Pp(s) (7.53)

is of the same degree. Let Pg(s) and Ag(s) be as defined in Section 2. The above
degree conditions guarantee that the Boundary Crossing Theorem can be applied
to the family A(s). We therefore have the following extension of GKT to the case
of complex quasipolynomials.

Theorem 7.3 (Generalized Kharitonov Theorem: Complex Polynomials
and Quasipolynomials)

Let F = (Fi(s),- - -, Fin(9)), be a given m-tuple of complex quasipolynomials satisfy-
ing the conditions (7.52) above, and P;(s),1 = 1,2...m be independent real interval
polynomials satisfying the invariant degree assumption for the family (7.53). Then
F stabilizes the entire family P(s) of m-tuples if and only if F stabilizes every m-
tuple segment in Pg(s). Equivalently, A(s) is stable if and only if Ag(s) is stable.

The complex polynomial case is a special case of the above result obtained by
setting F/(s) =0,i=1,2,---,m; j # 0. We note that the vertex result, part I of
GKT, that holds in the real case does not, in general, carry over to this complex
quasipolynomial case. However in the case of complex polynomials the following
vertex result holds.

Corollary 7.1 (Theorem 7.3)
Under the conditions of Theorem 7.3, suppose that

F(s)=(Fi(s), -, F(s)),
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15 an m-tuple of complex polynomials such that

d

@argﬂ(jw)go, i=1,2,---,m.

Then F stabilizes the entire family P(s) of m-tuples if and only if F stabilizes every
m-tuple in Py (s). Equivalently, A(s) is stable if and only if the Kharitonov vertex
set Ag(s) is stable.

Proof. The proof follows from the fact that the difference of the endpoints of a
typical segment in Ag(s) is of the form

bo(s) = Fu()[K7(s) — KJ'(3)]

Since [K{’ (s) — K]!(s)] is real and odd or even, it follows that

d d
o arg &y (jw) = o arg Fy(jw) <0, i=1,2,--- m.
Therefore, by the Convex Direction Lemma for the complex case (Lemma 2.15,
Chapter 2), such segments are stable if and only if the endpoints are. These end-
points constitute the set Ag(s) and this completes the proof. &

The above results can be used to determine the robust stability of systems
containing time delay. The theorem can be further extended to the case where P;(s)
are complex interval polynomials by using Kharitonov’s Theorem for the complex
case given in Chapter 5. The detailed development of these ideas is left to the
reader.

Example 7.8. (Time Delay Example) Let us consider the plant and controller

P (s)
G =
(5) PQ(S)
. a8+ ag
o b252 + blS + bo
and
_ Fi(s)
C(s) = Fs)

B s+ 25+1
T st 42834+ 252 4+ 5

with a time delay of 0.1 sec where the plant parameters vary as

a €[0.1,02], ag€[0.9,1],
by €[0.9,1.0], by €[1.8,2.0], by € [1.9,2.1].
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Then the characteristic equation of the closed loop system is
8(s) = Fo(s)Pa(s) + e~ T Fy (s)Pi(s)

where T'= 0.1.

The robust stability of this time delay system can also be tested by GKT.
Figure 7.8 shows that the image set excludes the origin. Therefore, the closed
loop system is robustly stable. This fact is also verified by the Bounded Phase
Conditions as shown in Figure 7.9.
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Figure 7.8. Image set of generalized Kharitonov segments (Example 7.8)
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Figure 7.9. Maximum phase difference of Kharitonov vertices (Example 7.8)

We conclude this chapter by giving an application of the GKT to interval polyno-
mials.

7.7 o AND 9 HURWITZ STABILITY OF INTERVAL POLYNO-
MIALS

Let
h(s) = hy 4 his+hos’ 44 hys”,

and consider the real interval polynomial family of degree n:
I(s):= {h(s) thy <h;<hf, i= 0)1)...)71}

with the assumption 0 ¢ [A;, h;']. We consider the stability of the family Z(s) with
respect to two special stability regions.
First consider the shifted Hurwitz stability region (see Figure 7.10) defined for

for a fixed real number o > 0 by

S, :={s:5€C™, Re[s]<—o}.
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7 Im

Figure 7.10. Shifted Hurwitz stability region

We shall say that Z(s) is o- Hurwitz stable if each polynomial in Z(s) has all its roots
in S,. Introduce the set of vertezx polynomials of Z(s):

Vi(s) := {h(s) h; :h;" orhy =h7, i = 0,1,2,~~~,n}.
We have the following result.

Theorem 7.4 The family I(s) is o-Hurwitz stable if and only if the vertex poly-
nomials V(s) are o-Hurwitz stable.

Proof. We set s = —o + p and write
h(s) = g(p) = ho+hi(p—0) + ha(p— 0)* + -+ hy(p— o).

The o-Hurwitz stability of the family Z(s) is equivalent to the Hurwitz stability of
the real linear interval family

Gp) :={9) =ho+hi(p—0o)+ho(p—0)’+ - +h,(p—0)":
hi € [h7,h}], i=0,1,2,--- n}

2 ) e

Let Vi (p) denote the vertex set associated with the family G(p). We now apply
GKT to this family G(p) with

Fi=(p—o)y~"and P,=h;_y, i=0,1,2,--- n+1
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Since Fy = 1 1is even and Fy,....F,;11 are anti-Hurwitz it follows from part II of
GKT that it suffices to check the Hurwitz stability of the vertex set Vg (p). This
is equivalent to checking the o-Hurwitz stability of the V(s). &

Remark 7.3. The above lemma can also be used to find the largest value of o for
which the interval family Z(s) is o-Hurwitz stable. This value is sometimes called
the stability degree of the family and indicates the distance of the root set of the
family from the imaginary axis.

Using the above result we can derive a useful vertex result on o-Hurwitz stability
for the family of polynomials

A(s) = Fi(s)P1(s) + Fa(s)Pa(s) + - - -+ Fip(s)Py (s). (7.54)
Corollary 7.2 The family A(s), with F;(s) satisfying
Fi(s) = s A;(s)(a;s + by), i=1,---,m

with A;(s) antiHurwitz is o- Hurwitz stable for o > 0 if and only if the Kharitonov
vertex set of polynomials Ak (s) is o-Hurwitz stable.

The proof of this result follows from Part IT of GKT and is omitted.

Next let us consider a rotation of the complex plane obtained by setting s =
s'e’®. We define the rotated Hurwitz region (see Figure 7.11) by

Sp:={s: seC, Relse?’] <0}.

We say that the family Z(s) is - Hurwitz stable if each polynomial in Z(s) has all its
roots in Sy. Note that if the family is Hurwitz stable and is also f-Hurwitz stable
then its root set lies in the shaded region shown in Figure 7.11. The following
lemma establishes that Sy stability of Z(s) can also be determined from the vertex
set.

Theorem 7.5 The family I(s) is 0- Hurwitz stable if and only if the vertex polyno-
mials Vi(s) are 6-Hurwitz stable.

Proof. The result can be readily derived by first substituting s’ = se=/? in h(s)
and then applying GKT to test the Hurwitz stability of the resulting complez linear
interval family

Loho+ePhys’ + e ho(s') + -+ e h, (s, hy €[h7,hF], i=0,1,-- n.

2 ) k3

To apply GKT we set

F(s) = (@)=, B(s) = hi(s), i= 1,200t L
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Im]

Figure 7.11. Rotated Hurwitz stability region

and test the Hurwitz stability of the family in the s’ plane. This shows that the set
is Hurwitz stable if and only if the corresponding segments with only one coefficient
h; varying at a time, with the rest of the A;,j # 7 set to the vertices, are Hurwitz
stable in the s plane. Consider a typical such complex segment. The difference
between the endpoints of such a segment is a polynomial of the form

So(s') = (hF — b ) (s (7).

Now by applying the Convex Direction Lemma for the complex case (Chapter 2,
Lemma 2.15) we can see that

d .
7 8 So(jw) = 0.

Therefore such complex segments are stable if and only if the endpoints are. But
this is equivalent to the 8-Hurwitz stability of the vertex set V;(s). &

The maximum value 8* of 8 for which 6-Hurwitz stability is preserved for the
family can be found using this result. The above two results can then be used to
estimate the root space boundary of an interval polynomial family without using
the excessive computations associated with the Edge Theorem.
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7.8 EXERCISES

7.1 In a unity feedback system the plant transfer function is:

s + 15 + ag
53+ Bos® 4+ s + Gy

G(s) =

The nominal values of the plant parameters are

0 _ 0 _ 0 _
as =1 aj=95, ay=-2

Determine a feedback controller of second order that places the 5 closed loop poles

at —1, —2, =3, =2+ 27, —2— 2j. Suppose that the parameters of Gi(s) are subject
to perturbation as follows:

ay € [3:7]7 ap € [_3a _1]a 61 € [_6a _2]a 60 € [5a7]

Determine if the closed loop is robustly stable with the controller designed as above
for the nominal system.

7.2 Consider the two masses connected together by a spring and a damper as
shown in Figure 7.12:

Figure 7.12. Mass-spring-damper system

Assuming that there is no friction between the masses and the ground, then we
have the following dynamic equations:

Mci+b(d—g)+k(d_y):u

mj +b(y —d) + k(y — d) = 0.
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The transfer functions of the system are as follows:

u(s) _ (%%)
u(s) [52+(1+ﬂ) (%Hﬁ)]

i m
ds) _ <52 ! %5 ’ %>
u(s) e [52 + (1 + %) (%5 + %)] |

The feedback controller

Clo) = 2 + 22

with d.(s) = 52 + F15 4 Bo, ne,(s) = 615 + 6o, ney(s) = 715+ 70, is to be designed
so that the closed loop is stabilized. With nominal parameters m = 1, M = 2,
b =2, k = 3 determine the controller parameters so that the closed loop poles for
the nominal system are all at —1. Determine if the closed loop remains stable when
the parameters b and k suffer perturbations in their magnitudes of 50%. Determine
the largest [*° box centered at the above nominal parameter in the b, & parameter
space for which closed loop stability is preserved with the controller designed. Also,
use the Boundary Crossing Theorem of Chapter 1 to plot the entire stability region
in this parameter space.

7.3 In a unity feedback system

s§—2p
383 — pys? + 54 po

ag + 15 + ans?

Gls) = 52+ Bis+ By

and C(s) =

represent the transfer functions of the plant and controller respectively. The nomi-
nal values of the parameters [zg, py, p2] are given by [20,pd, pS] = [1,1,2]. Find the
controller parameters so that the closed loop poles are placed at [-1,—2, -3, -2 —
Jy—2+j]. Determine if the closed loop system that results remains stable if the pa-
rameters [zg, po, ps] are subject to a 50% variation in their numerical values centered
about the nominal, i.e. zy € [0.5,1.5], py € [0.5, 1.5], p» € [1, 3].

7.4 In the previous problem let the plant parameters have their nominal values
and assume that the nominal controller has been designed to place the closed loop
poles as specified in the problem. Determine the largest [ ball in the controller
parameter space & = [ag, a1, @2, Bo, f1], centered at the nominal value calculated
above, for which the closed loop system with the nominal plant remains stable.
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7.5 In a unity feedback system with

54 zg

ass” + ays + ag
5% + p1s+ po

s(s+5)

Assume that the nominal values of the plant parameters are

(z0,p0,p7) == (1,1,1).

Choose the controller parameters (ag, o1, as, 3) so that the closed loop system is
stabilized at the nominal plant parameters. Check if your controller robustly stabi-
lizes the family of the closed loop systems under plant parameter perturbations of

20%.

G(s) = and C(s) =

7.6 Consider the interval polynomial 5% 4+ a2s? 4+ a1 s + @y with
as € [15— €, 15+ €], ar € [10 — ¢, 10 + €], ag € [T—€,7+ €.

For each value of ¢ = 1,2,3,4,5, and 6 determine the maximum value o*(¢) for
which the family is ¢* Hurwitz stable. Plot a graph of € vs. ¢*(¢) to display the
result.

7.7 Repeat Exercise 7.6 this time computing the maximal value 6*(¢) for which
the family is 6*-Hurwitz stable.

7.8 Consider the unity feedback configuration with the plant and controller being

C(S):s—i—l s+ by

d Gis)=z ——
s+2 at (s) s2+ a5+ ag

where
ag € [2a4]a M € [2a4]a bo € [1a3]

Is this closed loop system robustly stable?

7.9 Consider the unity feedback system shown in Figure 7.13 where

r € Fl Uu P1 Yy
+ Fy Py

Figure 7.13. Feedback control system

F1(5)_252—|—45—|—3 and Pi(s) s> 4+ ays + ag

Fy(s) T 2435+ 4 Ps(s) - s(s? 4+ bys+ by)
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with
ad=-2 aS=1, =2 =1

Now let
ap €[l—e,14+¢, by €[2—¢2+¢
a1 €E[-2—¢€,-24¢, b e[l—el+¢

Find e, for which the system is robustly stable.
Answer: ¢, = 0.175

7.10 Referring to the system given in Figure 7.13 with

Fi(s) 25 +4s+3 and Pi(s)  s*+ais+ ag

Fy(s)  s2+43s+4 Py(s)  s(s? +bys+by)’

Let the nominal system be

Pl(s)  s7—254T
PY(s)  s(s2+8s—0.25)

Suppose that the parameters vary within intervals:

ar € [-2—€,—2+ €, ag € [T—¢€,7+ €]
bie8—e8+¢c,  bye[-025—¢—025+ .

Find the maximum value of € for robust stability of the family using GKT.
Answer: €., = 0.23

7.11 For the same configuration in Figure 7.13 with

Fy(s)  26427s and Pi(s) s+ ag
Fy(s) T 1T+ 2s Py(s) T 82 4 bys + by

with
ag € [-1.5,=0.5], b €[-2.5,—15], by €[-1.5,-0.5]

Show that the family of closed loop systems is unstable using GKT.

7.9 NOTES AND REFERENCES

The Generalized Kharitonov Theorem was proved by Chapellat and Bhattacharyya
in [58], where it was called the Box Theorem. The vertex condition that was given
in [58] dealt only with the case where the F;(s) were even or odd. The more general
vertex condition given here in part II of Theorem 7.1 is based on the Vertex Lemma
(Chapter 2). In Bhattacharyya [30] and Bhattacharyya and Keel [33] a comprehen-
sive survey of the applications of this theorem were given. In the latter papers this
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result was referred to as the CB Theorem. A special case of the vertex results of
part IT of GKT is reported by Barmish, Hollot, Kraus, and Tempo [15]. A discrete
time counterpart of GKT was developed by Katbab and Jury [130] but in this case
the stability test set that results consists of manifolds rather than line segments.
The results on o and #-Hurwitz stability are due to Datta and Bhattacharyya [78]
and Theorem 7.4 was applied in Datta and Bhattacharyya [77] for quantitative es-
timates of robustness in Adaptive Control. Kharitonov and Zhabko [147] have used
GKT to develop robust stability results for time-delay systems.



