Chapter 3

THE STABILITY BALL IN
COEFFICIENT SPACE

In this chapter we develop procedures to determine maximal stability regions in the
space of coeflicients of a polynomial. The central idea used is the Boundary Crossing
Theorem and its alternative version the Zero Exclusion Theorem of Chapter 1. We
begin by calculating the largest ¢, stability ball centered at a given point in the
space of coefficients of a polynomial. Explicit formulas are developed for the Schur
and Hurwitz cases by applying the Orthogonal Projection Theorem. Following
this, we present the graphical approach of Tsypkin and Polyak to calculate the
largest £, stability ball, in coefficient space, for arbitrary p. Then we deal with the
robust Hurwitz and Schur stability of a family of disc polynomials, namely complex
polynomials whose coefficients lie in prescribed discs in the complex plane.

3.1 INTRODUCTION

In considering robust stability with respect to parametric uncertainty, one is natu-
rally led to formulate the following problem: Given a stability region in the complex
plane and a nominal stable polynomial, find the largest region of a prescribed shape
in the coefficient space around the nominal polynomial where the stability property
is maintained. In this chapter we present some neat solutions for the left half plane
(Hurwitz stability) and the unit circle (Schur stability) considering both real and
complex coefficients. Our development, however, will clearly show that a general an-
swer can be formulated by invoking the Boundary Crossing Theorem of Chapter 1,
at least when the region of interest can be associated with a norm. This will always
be assumed in this chapter. We remark that Kharitonov’s Theorem (Chapter 5)
deals essentially with a special case of this problem when the stability region is the
left-half plane and the coefficient uncertainty is interval. We start by calculating
the largest 4, stability ball in the space of coefficients of a real polynomial, treating
both Hurwitz and Schur stability.
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3.2 THE BALL OF STABLE POLYNOMIALS

Recall the Boundary Crossing Theorem of Chapter 1. Let the stability region S be
any given open set of the complex plane €', 8 its boundary, and U° the interior
of the closed set = C'— §. Assume that these three sets &, 98, and U° are
nonempty. For any given n, the set P, of real polynomials of degree less than or
equal to n 1s a vector space of dimension n 4+ 1 and as usual we identify this with
R"*! to which it is isomorphic. Let || - || be an arbitrary norm defined on P,. The
open balls induced by this norm are of the form,

B(P,(s),r) ={P(s) € P, : [|P(s) — P,(s)|| < r}. (3.1)
With such an open ball is associated the hypersphere,
S(Po(s),r) ={P(s) € Pn = [[P(s) = Po(s)|| = r}, (3.2)

which is just the boundary of B(P,(s),r). Now, as mentioned in Chapter 1, the
subset of P, consisting of all polynomials 6(s) which are of degree n and which have
all their roots in § is an open set. As a direct consequence, given a polynomial 6(s)
of degree n with all its roots contained in &, there exists a positive real number
¢ such that every polynomial contained in B(6(s), €) is of degree n and has all its
roots in 8. In other words, letting d°(-) denote the degree of a polynomial, we have
that e satisfies the following property:

Property 3.1.

18(s) —é(s)|| <e = { gzg(s?as:a?l its roots in S.

As in the proof of the Boundary Crossing Theorem, it is then possible to consider,
for the given stable polynomial §(s), the subset of all positive real numbers having
the Property 3.1:

Rs:={t : t >0, t satisfies Property 3.1}.
We have just seen that Rs is not empty. But obviously the elements of Rs satisfy
ty € Rs and 0<t; <ty =, € Rs.
Therefore Rs 1s in fact an interval

(0, p(8)] where: p(8) = sup t.
tERs

Clearly, p(6) has to be finite and p(6) also satisfies Property 3.1 (that is why we
closed the interval on the right). We have just proved the existence and uniqueness
of a real number p(é) characterized by :

1. p(é) satisfies Property 3.1.
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2. No real r greater than p(0) satisfies Property 3.1.
We now give a precise characterization of p(4).

Theorem 3.1 Given a polynomial §(s), of degree n, having all its roots in S, there
exists a positive real number p(8) such that:

a) Every polynomial contained in B(8(s), p(8)) has all its roots in S and is of
degree n.

b) At least one polynomial on the hypersphere S(6(s), p(8)) has one of its roots in
08 or is of degree less than n.

¢) However, no polynomial lying on the hypersphere (even those of degree < n)
can ever have a root tn U°.

Proof. Clearly a) is true since p(6) satisfies Property 3.1. We now prove b) and
¢). Since no real r greater than p(é) satisfies Property 3.1, then for every n > 1
there exists a polynomial of degree less than n or with a root in 4 = C' — &,
say 7y (s), contained in the ball B(8(s), p(6) + +). Being contained in the closure
of B(6(s),p(6) + 1) which is a compact set, this sequence must then contain a
convergent subsequence 74,)(s). Let y(s) be its limit. Then y(s) is necessarily
lying on the hypersphere S(6(s), p(6)), and it is also necessarily of degree less than
n or with a root in if; otherwise the existence of p(y) would contradict the fact that
v(s) is the limit of a sequence of polynomials of degree less than n or with a root
.

To proceed, we need to invoke Rouché’s Theorem (Theorem 1.2, Chapter 1).
Suppose that there is a polynomial lying on S(é(s), p(8)) say v(s), which is of degree
n but has at least one root s, in {/°. A consequence is that the set of polynomials
of degree n with at least one root in the open set U is itself open. Thus it would
be possible to find a ball of radius € > 0 around 7(s) containing only polynomials of
degree n and with at least one root in Z{°. This would then result in a contradiction
because since 7(s) lies on the hypersphere S(6(s), p(8)), the intersection

B(y(s),€) N B(6(s), p(6))

1s certainly nonempty.
On the other hand suppose that this polynomial y(s) with at least one root in
U° is of degree less than n. For € > 0 consider the polynomial,

7e(s) = €6(s) + (1 = €)y(s).

It is clear that v.(s) is always of degree n and is inside B(6(s), p(8)) since

[16(s) = ve(s)l| = (L = e)[[é(s) = v(s)[| < p(6)-

This means that v,.(s) has all its roots in §.Now, a straightforward application of
Rouché’s theorem shows that for € small enough ~.(s) also has at least one root in
U’ and this is again a contradiction. &
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Of course, this result can be applied to a number of situations depending on the
region S of interest and on the norm || - || chosen on P,,. Below we consider the two
cases of Hurwitz and Schur stability with the Euclidean norm. In both these cases
a neat expression can be given for the corresponding p(é).

3.3 THE REAL /, STABILITY BALL

On P, , the usual inner product and the associated Euclidean norm are defined as
follows. If

P(s)=po+ps+-+pns",

and

R(s)=rog+ris+- - +r,s",
then the inner product of P(s) and R(s) is given by

< P(s), R(s) >=poro + pir1+ -+ patn = Zpﬁr
=0

The Euclidean norm of a polynomial P(s) is then:
|1P(s)I[5 =< P(s), P(s) >=pi +pi ++ -+ 1.

We can now look at the left-half plane case.

3.3.1 Hurwitz Stability

For this case we first have to introduce some subspaces of P,,. Let Ay be the subset
of all elements P(s) of P, such that

P(0) = 0.

Ay is a subspace of dimension n generated by the basis vectors

Dually, let A,, be the subset of all elements P(s) of P,, that are of degree less than
n, that is such that p, = 0. A, is also a subspace of dimension n, generated by the
basis vectors

1J5J5J"'J5 y &

Finally, for each real w > 0, we can consider the subset A, of all elements of P,
which are divisible by s +w?. Equivalently, A, is the set of all elements of P,, that
have +jw and —jw among their roots. A, is also a subspace. It is of dimension
n — 1 and is generated by the basis vectors

52 _|_w2’53 +w25j.”J5n—1+w25n—3jsn+w25n—2.
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It is to be noted however that the A, s are only defined when n > 2; we will assume
this in what follows, but will explain what happens when n < 2.

Now, since (P, || - ||2) is a Euclidean vector space, it is possible to apply the
Projection Theorem. For any element P(s) of P, and for any subspace V, there is
a unique vector mp(s) in V at which the distance between P(s) and all elements of
V 1s minimized; 7p(s) is nothing but the orthogonal projection of P(s) on V, and
||[P(s) — mp(s)|| is called the distance from P(s) to the subspace V. Given then a
Hurwitz stable polynomial

8(s) =80+ 615+ 6287 446,57,

we let dy, d,, and d,, denote the distances from &(s) to the subspaces Ag, A, and
A, respectively. Finally let us define
dmin := Inf d,,.
w>0
Applying Theorem 3.1 here tells us that the radius p(é) of the largest stability
hypersphere around é(s) is characterized by the fact that every polynomial in
B(é(s),p(8)) is stable and of degree n whereas at least one polynomial on the hy-

persphere S(é(s),p(8)) is of degree less than n or has a root on the imaginary axis.
In fact we have the following result.

Theorem 3.2 The radius of the largest stability hypersphere around a stable poly-
nomial 6(s) is given by

p(8) = min(do, dy, dmin ) (3.3)

Proof. Let
r = min(d,, dy,, duin )-

Clearly the open ball B(6(s), ) centered at 6(s) and of radius » cannot contain
any polynomial having a root which is 0 or purely imaginary or any polynomial of
degree less than n. From our characterization of the stability hypersphere given in
Theorem 3.1 above we deduce that p(é) > r necessarily. On the other hand from
the definition of r we can see that any ball centered at é(s) and of radius greater
than » must contain at least one unstable polynomial or a polynomial of degree less
than n. Thus, necessarily again, p(é) < r. As a consequence we get that

p(8) = r =min(d,, d,, dmin )-

In (3.3) it is very easy to prove that
d0:|60|, and dn :|6n|

The main problem then is to compute dmin. In the following we will show how
d, can be obtained in closed-form for any degree n. We will then show how
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dmin = inf,>od, can also be computed very easily by carrying out two similar
minimizations over the finite range [0,1]. Therefore let §(s) be an arbitrary stable
polynomial of degree n. As usual separate §(s) into odd and even parts:

8(s)=6g+ 615+ -+ 8,5 = &VN(s) + %)
S—— S——

even degree terms  odd degree terms
Theorem 3.3 The distance d,, between §(s) and A, is given by:

i)n=2p:
o [6° (w)]? [6°(w))?
d‘”_1+w4—|—~~~—|—w4p 14wt A1 (3.4)

Zl) n=2p+1:
o _ [0 + [8°(w))?

d;, = :
Yool 4wt 4w

(3.5)

Proof. We know that P, is a vector space of dimension n + 1. A, on the other
hand is of dimension n — 1 and is generated by the following elements:

2 3 _
s7 4wl st s, st wls? o st Fwish Tl (3.6)

Therefore A is of dimension 2. Let pi(s) and pa(s) be an orthogonal basis for
AL Let v¥(s) denote the orthogonal projection of §(s) on A, . By definition of the
orthogonal projection, 6 — 1% is an element of A} and we can write

6 — U‘g} = a1 + Ao Po. (37)

Taking the inner product of both members of (3.7) with p;(s) and p2(s) successively
and remembering that p;(s) and pa(s) are orthogonal to each other as well as to
any element of A, we get

<bp > <b,p» >
ap = ————— and oy = ———— (3.8)
[l []” [Ip=|l?
But the definition of the orthogonal projection also implies that
dy, =16 — v ||, (3.9)

Thus,combining (3.7), (3.8), (3.9) and again taking into account the fact that p;(s)
and ps(s) are chosen to be orthogonal, we get

d2 _<6,p1 >2 <6Jp2 >2

117 1P

It just remains for us to find pi(s) and ps(s).



Sec. 3.3. THE REAL ¢, STABILITY BALL 127

1) n=2p: In this case we can choose

pi(s) = 1 —w?s* +wist + .-

pa(s) = s —w?sd +wis® + -

(_1)pw2p52p’
(_1)(17—1)(_‘,2(1?—1)521?—1'
One can check very easily that p;(s) and ps(s) are orthogonal to each element

g
of (3.6) and also orthogonal to each other. Moreover they satisfy

_|_
_|_

<p1,6 > =6Ww)
< ps,6 > :6°(w)

and

PP =1+w +w®+ - 4w
ol = 14wt 40 4 -+ =D,

The expression in (3.4) for d’ then follows from (3.10) and the properties
above.

il)n=2p+1: In this case p;(s) remains unchanged but pa(s) becomes
pa(s) = s —w?s® Fwls® o 4 (=Pl (L )p gt
p1(s) and pa(s) have then the same properties as when n is even except that
lpa|l” = llpall* = 14w 40+ o

and therefore we have the expression in (3.5) for d2 when n is odd. Moreover,
the formula in (3.7) tells us exactly what the projection v¢ (s) is:

v5 (s) = 8(s) — aipi(s) — cvapa(s).

&
Having this expression for d,,, the next step is to find:
dmin = inf d,,.
w>0

A simple manipulation will show that there is no need to carry out a minimization
over the infinite range [0, c0). We will consider the case when n = 2p, but a similar
derivation holds if n is odd.

First 1t is clear that

dfmn:min< inf d?, inf dzi>
we[0,1] wel0,1] «

We have

2

|6‘°‘((.u)|2 = (60 — S gt -+ (—1)”62pw2p)
|(SO(CU)|2 = ((S] — 63(.«12 + 65(.«14 + -4 (—1)[)_1 62p_1w27’_2)2
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which yields:

NN 1
" (a) = 5 [62 = Bapoow” + 6apsts 4 (= 1P 0]
of 1 ? 1 2 4 -1 2p—212
6\ S )| = = [Pt = bapsts® + 0 se® o (1T 6T

Now
o [y — Bapma? + Bypaw® - (=1 ow?]”
1+ ﬁ + wl—s + -4+ #

by [2pm1 — b2p_50” + 6wt + -+ (1P 1w

gt et o

_|_

This last expression however is nothing but:

[62p — G2p—2w? + Gop_sw? + - + (—1)p50w2p]2
T+t 4 wd 4wt
[62p—1 — O2p_sw? + Oap_sw® + -+ (—1)”_151w2p_2]2
+ Tfwt+ws 4+ Fwdr-D

d2

€|~

and we can see that d4 has exactly the same structure as d2.
Can d*% be considered as the “d”” of some other polynomial? The answer is yes.

Consider ¢'(s) = s™6 (1;), the “reverse” polynomial which in our case is

1
6/(5) = 52176 (g) = (Szp + 62p_15 + 62p_252 + -4 625217—2 + 515217—1 + 6052p.
Then
8" (@) = 6lyen(Jw) = b2p — bopnw® + 8op_ae® + -+ (= 1) o™
0 6taald
& (w) = M =89y 1 — 52p_3w2 + 62p_5w4 4o+ (_1)17—151{#217—2.

Jw

Thus we see that in fact d% corresponds to d? computed for §'(s). Suppose now that

you have a subroutine DMIN (8) that takes the vector of coefficients ¢ as input and
returns the minimum of d2 over [0, 1]. Then the following algorithm will compute
dinin by simply calling DMIN two times:

1. Set QI (60,6],"',67,,).
2. First call: dy = DMIN($).
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3. Switch: set § = (6,,80-1,- - -, b0).
4. Second call: ds = DMIN(§).
5% dmin = min(dl, dz)

Moreover, d2 as given in (3.4) or (3.5) is a rational function of relative degree 0 with
no real poles and therefore is extremely well behaved in [0, 1]. As a consequence the
subroutine DM IN is not particularly hard to implement.

Incidentally, we already knew that the two polynomials 6(s) and §’(s) = s 6 (%)
are stable together (i.e. one is stable if and only if the other one is stable). The
development above tells us that moreover p(§) = p(é’).

In the case when n = 1, then the subspaces A, are not defined. However, if we
apply the formula in (3.5) anyway, we find that

d? =624+67, Yw>0. (3.11)

Therefore, dy,iy itself is given by the same expression, and when we compute p(4),
we find
[p(8)]7 = min(52, 62,62 + 87) = min(63, 6.

Thus even if we apply our formula for n = 1 we get the correct answer for p(é).
The same argument holds in the trivial case n = 0.

The Monic Case

In some applications it can happen that the leading coefficient 1s fixed and not
subject to perturbation. Consider the situation where we are given a stable monic
polynomial

B(s)=Bo+ s+ -+ Pugs"H+s"

and we want to find the closest monic polynomial with a root at jw. For convenience,
the general distance d,, that we computed in Theorem 3.2 will now be denoted
d[6(s)], to stress the fact that it applies to the polynomial §(s) which is of degree
n. Along the same lines, the distance for a monic polynomial of degree n will be

denoted by d”[3(s)]. We then have the following result.

Theorem 3.4 The distance d”[3(s)] from the monic polynomial of degree n to the
affine subspace of all monic polynomials with a root at jw is gwen by

T2 [3(s)] = 1 [B(s) — 57 — w?sm )

Proof. We know that A, is a vector space of dimension n — 1 generated by the
basis
s24w? P Fwls, s Fwish T2

The generic element of A, can be written as the linear combination

A (52 —|—w2) + /\2(53 —|—w25) o A (5" + w25n—2).
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Now, the generic monic polynomial of A, must satisfy A,_; = 1 and therefore can
be written as,

A(s? +w?) + (s +w?s) + -+ (5" +wis" ).

As a consequence, the distance that we are looking for can be expressed as

d;y[8(s)] =
inf 13(s) — A1 (s? + w?) — Aa(s® +w?s) — - — (5" + w?s" ).
A1,A2, An_2
But this can be rewritten as
d'[8(s)] =
inf I(B(s) — s" —w?s™™2) = M (s +w?) — -+ = Ay_a(s" 71 4 w?s" 73|
A1,A2, 0 An—2
But since 3(s) — s —w?s"~% is a polynomial of degree less than or equal to n — 1,

this last infimum is nothing but

d’7[B(s) — " —w?s" 7).

An example of the above calculation follows.

Example 3.1. Consider the Hurwitz polynomial
8(s) 1= 6 4+ 495 4+ 1555”7 + 2805 + 331s* + 2665" + 1455° + 5257 + 115° + 57,

and the problem of calculating p(é) for it.

All coefficients are subject to perturbation If we assume that all coefficients
of §(s) including the leading coefficient are subject to perturbation, we need to
apply Theorem 3.2 which deals with the stability margin for nonmonic polynomials.
Consequently, we have

, @+ @)

d: =
w 14w+ Wi

where p = 4 and
§°(w) = 6 — 155w? + 331w®* — 145w° + 11w®
6% (w) = 49 — 280w® + 266w* — 52w’ + w®.
In order to compute dp,;, analytically we first compute real positive w’s satisfying

d(d.,)
dw

=0.

With these real positive ws we evaluate d,,. Then we have
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w dy,
3.2655 1.7662
1.8793 6.8778
1.6185 6.5478
0.7492 27.7509
0.4514 13.0165

From this, we have

dnin = 1I;f3 d, = 1.7662 at w = 3.2655

dg=6 and d, =1.

Therefore, p(6) = min(dg, d,, dmin) = 1. Figure 3.1 shows the plot of d,, with respect
to w. The graphical solution agrees with the analytical solution given earlier. This
means that as we blow up the stability ball, the family first loses degree, then
acquires a jw root at w = 3.2655, and subsequently a root at the origin.

0 L H L
0 1 2 3 3266 4 5 6 7 8

rad/sec

Figure 3.1. d,(w) vs. w (all coefficients perturbing) (Example 3.1)
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The leading coefficient is fixed Now let us assume that the leading coefficient
of the polynomial family remains fixed at the value 1:

B(s) := 6+ 49s + 15557 + 280s> + 331s* + 2665° + 1455° + 525" + 11s° + 5°.
Then we need to apply Theorem 3.4. We have
2 8()nms = A2 [A(s) — 8° —w?s7] i= & [a(s)]
and

po P el
w 1—|—w4—|—-~—|—w16 1—|—w4—|—-~—|—w12

where
“(w) = 6 — 155w” + 331w?* — 145w° + 11u°

O(w) =49 — 280w? + 266w* + (_52 4+ wz)w6
= 49 — 28007 + 266w* — 525 + w5,

o
o

As before, we first compute real positive w’s satisfying

d(d.,)

o =0.

With these real positive w’s we evaluate d,,. Then we have

w d,,
6.7639 8.0055
3.9692 20.6671
2.0908 6.5621
0.7537 27.8492
0.4514 13.0165

From this, we have

donin = inf d,, = 6.5621 at w = 2.0908.

Therefore, p(é) = min(do, dmin) = 6. Figure 3.2 show the plot of d,, with respect
to w. The graphical solution agrees with the analytical solution given earlier. This
means that as the family is enlarged it first acquires a root at the origin and sub-
sequently a jw root at w = 2.0908.

3.3.2 Schur Stability

In this section we calculate the ¢5 stability ball in coefficient space for Schur stability.
Let P(z) denote a generic real polynomial of degree n and P,, denote the vector
space over the reals of polynomials of degree n or less. We start by introducing the
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0 L L : L L L L L
0 1 2 3 4 5 6 7 8

rad/sec

Figure 3.2. d,(w) vs. w (leading coefficient fixed) (Example 3.1)

relevant subspaces of P,,. Let Ayq be the subset of all elements P(z) of P, with a
root at » = +1. A4y is a subspace of dimension n and a basis for Ay, is the set

z—1,2(2=1),2(z = 1), 2"z = 1).
It is easy to see that Ail is generated by the polynomial,
P+1(z):1—|—z—|—z2—|—~~~—|—z”. (3.12)

Let A_y be the subset of all elements P(z) of P, with a root at z = —1. A_; is
also a subspace of dimension n and a basis is the set

241 z(z4+ 1), 2%z + 1), - 2"z + 1),
AL, is generated by the polynomial,
P_l(z):1—z—|—z2—~~~—|—(—1)"z". (3.13)

For each 0 < 8 < &, we can introduce the set Ay of all polynomials in P,, with a
pair of roots at ¢/? and e=7?. A, is also a subspace of dimension n — 1, and a basis
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for Ay is given by

22— 22c0804+1,2(2" —22c0s0+ 1), 2% (2 —22cos 0+ 1), - - 2" (27 — 22 cos 0 + 1).
(3.14)
It is easy to verify that a basis for Ay is given by:

qg(2) = 1+ (cos @)z + (cos 20)z” 4 - -+ (cos (n — 1)8)2" ! + (cos nf)2"
43(z) = (sin@)z + (3in 20)2% + - - -+ (sin (n — 1)8)2" ! + (sin nd)z".

Now let
P(z) =py+piz+pz”+- 4 pp2"”

be a real Schur polynomial of degree n. Let dy1, d_, and dy designate the distances
from P(z) to the subspaces Ay, A_y, Ay, respectively, and let us define

doin = inf dy.
o<o<r

Just as in the continuous case we have the following theorem.

Theorem 3.5 The radius of the largest stability hypersphere around a Schur poly-
nomial P(z) of degree n is given by:

p(P) =min(dy1,d_1, dmin).

The distances from P(z) to the subspaces Ay, and A_y, are respectively:

b < PELPaE > _ 1P
¥ [P (2] Vv +1

and
L I<PE P > P

1P~ ()] Va+T

The distance dg between P(z) and the subspace Ay is given by:

o _ Mllas(2)I° = 204 < ¢5(2), 75(2) > +A3[lgg (2)|I?

= llas (112 Mlg5 ()12 — < g4(2), 45 (=) >*
where
M =< qa(2), P(2) >= Re[P(e’")]
Ay = < g5(2), P(2) >= Im[P(e"")]
and

n

llgp(2)II” = Y cos” k0 =

k=0

N | =

[zn:(l + cos 2]6’9)]

k=0
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_n+1 (sm (n+1) )
2 sin @
Il = Z(me % [Z 1_coszke]
k=0 k=0
_n+ 1 sin(n + 1)6
2 ~ sinf

< q35(2), 43 (= Z cos k6)(sin k6) lz sin 2/96’]
k:

sin (n + 1)6) |

| —

sin @

(sin nf) (

Proof. The proof is exactly similar to the Hurwitz case and uses the Orthogonal
Projection Theorem. We know that A} is generated by ¢}(z) and ¢2(z). The
formula that results is slightly more complicated due to the fact that ¢j(z) and
q2(z) are not orthogonal to each other. However one can easily compute that the
denominator of dj is
sin? (n + 1)0

sin? 0

4

(n+1)?—

[ )

For the discrete time case also it is of interest to consider the case of monic polyno-
mials, and to compute the distance dy1, d_; and dg from a given monic polynomial

Q)=qo+qz+ +gu 12"+ 2"

to the set of all monic polynomials with a root at z = 1, or z = —1, or a pair of
roots at €/? e=3% respectively. We have the following theorem.

Theorem 3.6 The distances diq, d_; and d}[Q(2)] are given by,

7, - lewl
NG
i, =12c)

Q)] =dj~! [Q(z) — 2" 4+ 2cos0" " — z"‘z] .

The proof of this result is left to the reader, but it basically uses the same ideas as
for the Hurwitz case. We illustrate the use of the above formulas with an example.
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Example 3.2. Consider the Schur stable polynomial
§(2) :=0.1+02z+042" +0.32° + 2*
and the problem of computing p(8) for it.

All coefficients are subject to perturbation Let us assume that all coefficients
of 6(z) including the leading coefficient are subject to perturbation. Then we need
to apply Theorem 3.5. Consequently, we have

5 _ Mllgs (NP = 2020 < ¢5(2), 43 (2) > +A%]lqz (2)|”
o — .
s ()17 llgs (DI = < 45(2), g5 (2) >*

where

A1 = Re[6(e?)]

=0.14+0.2cosf +0.4cos26 4+ 0.3 cos38 + cos 48
Ay = Im[6(e?)]

= 0.2sinf + 0.4s1n 26 + 0.3 sin 36 + sin 46

5 1 sin 56
lab (a7 = 3+ (cosao) (222)

sin @
5 1 sin(56)
2 2 _ Y _ ~
I = 5 - pleosto) (Z200)
1

<)) > = gtsinao) ()

2 sin ¢
The graph of dy is depicted in Figure 3.3. We find that

drin = Inf dy = 0.4094.
0<<T
Since

6V
dy = = 0.8944
* V5

d_, = LGl 0.4472,

V5

we have the first encounter with instability at z = ¢/?, § = 1.54, and

p(é) = min(d-l—l;d—l; dmin) = 0.4094.

The leading coefficient is fixed  Write

B(z) := 0.1+ 0.2z +0.42” + 0.32% + 2*.
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1.2

0.2 : 4

- 1.54

0 L L L L L L
0 0.5 1 1.5 2 25 3

0

Figure 3.3. dy vs. 6 (non-monic discrete polynomial: Example 3.2)

Applying Theorem 3.6 which deals with the stability margin for monic polynomials,
we have

dj [B(2)]n=4

dp[B(z) — z* + 2cos02° — 27,5
= dy[(:3+2cos0)z® — 627 + .22 + 1]p=s.

Now

(]2 = Mllgs (NI = 2M s < 45(2), 45(2) > + Al (2)II°
llap ()17 [laz ()N)? = < gp(2), 25 (=) >*
where

Ay =1+ .2cos8 — .6cos26 4 (.34 2cos8) cos 30
Ay = .2siné — 0.6sin 26 + (0.3 + 2 cos §) sin 30

1 sin 46
lab ()7 = 2+ gcos30) (27

sin 6

llga (2)|I” = 2 — .5(cos 36) (Sin49>

sin 6
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< ¢H0(), 2(2) > = B(sin 30) (m 46) .

sin @

The graph of dy is shown in Figure 3.4.

0.2F |

0 L L
0 0.5 1 1.5 2 25 3

Figure 3.4. dy vs. § (monic discrete polynomial: Example 3.2)

We find that
dmin = 1nf dy = 0.4987.
0<8<n

Also

; |B(1)|

dyy = ——=2% =1

+1 \/Z

V4

Therefore,

p(é) = min(g+1 ;3—1 ) dmin) == 04987



Sec. 3.4. THE TSYPKIN-POLYAK LOCUS: ¢, STABILITY BALL 139

3.4 THE TSYPKIN-POLYAK LOCUS: ¢, STABILITY BALL

In this section we consider the problem of determining the Hurwitz stability of a
ball of polynomials specified by a weighted £, norm in the coefficient space for an
arbitrary positive integer p. The solution given here was developed by Tsypkin
and Polyak and is graphical in nature. It is based on a complex plane frequency
domain plot and is therefore particularly suitable for computer implementation.
Three cases are considered in some detail : p = oo (interval uncertainty), p = 2
(ellipsoidal uncertainty) and p = 1 (octahedral uncertainty). As we shall see the
fundamental idea underlying the solution is, once again, a systematic use of the
Boundary Crossing Theorem.
Let us parametrize the real polynomial

A(s)=ag+ars+ -+ a,s” (3.15)
by its coefficient vector a = [ag,aq,- -+, a,]. We consider a family of polynomials
A(s) centered at a nominal point a° = [a3,a?, - -+, al] with the coefficients lying in

the weighted ¢, ball of radius p,

kel

B,(a% p):=<a : lz

k=0

ak—ag

”] ' <pg¢- (3.16)

673

In (3.16) af > 0 are given weights, 1 < p < oo is a fixed integer, p > 0 is a
prescribed common margin for the perturbations. The case p = oo corresponds to

the boz
ap — dg

et o |22 <), )

We assume that @) > 0. For a; = o the set B,(a’, p) is a ball with radius p in
ly,-space. For p =1 the set By(a°, p) is a weighted diamond. Since there is a one to
one correspondence between the point a and the corresponding polynomial A(s), we
loosely refer to the set B,(a”, p) as an £, ball of polynomials. Robust stability will
mean here that a ball of prescribed radius in a certain norm contains only Hurwitz
polynomials of degree n. Our objective in this section is to derive a procedure
for checking whether or not all polynomials in the ball B,(a’, p) are Hurwitz for a
prescribed value of p and also to determine the maximal p which guarantees robust
stability.
Write Ag(jw) = Un(w) + jwVa(w) where

£33

Up(w) = a8 — ang + a2w4 - (3.18)

Volw) = a(f — agw2 + a2w4 — (3.19)
Let g be the index conjugate to p:

4+ =1 (3.20)
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For 1 < p < oo introduce
Sp(@) = [0f + (a6 )1 + (gt +--]F (3:21)
Tp(w) = [of + (aaw?)? + (asw®)? +-- 7 (3.22)
For p = 1 define
S1(w) = max oz,
T)(w) := max azw®~!
k od
and for p = oo define
Soo (W) 1= ag + aaw? + - -+, Too (W) := a1 + azw? + . (3.23)
Now, for each p let
z(w) = , y(w) = 3.24
s T 20

and
2(w) = z(w) + jylw).

In the procedure developed below we require the frequency plot of z(w)

(
= z(w

3.25)
)+

Jy(w) as w runs from 0 to co. This plot is bounded and its endpoints z(0), z(oco)

are given by

0

2(0) = Z_Z
0
n
1)z 2>
(-1 e n even
z(o0) =
no1 Oy
(—1)—= o M odd
0
a
y(0) = o
0
(_1)g—12n:11 n even
o0) =
y(o0) o
(—I)Ta—", n odd

Now, in the complex plane we introduce the £, disc with radius p:

Dolp)i={z=a+jy : ol +1yl')F <p}.

(3.26)

(3.27)
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Theorem 3.7 Each polynomial in the ball B,(a%, p) is Hurwitz stable if and only
if the plot of z(w):

A) goes through n quadrants in the counterclockwise direction,
B) does not intersect the £, disc with radius p, D,(p), and

C) its boundary points z(0), z(c0) have coordinates with absolute values greater
than p.

Conditions B and C are respectively equivalent to the requirements
z(@)]” + |y@)P]7 > p,  forall 0 <w < oo (3.28)

and
() > p, YO >p, [x() > p,  |y(o0)] > p. (3.29)
We also remark that condition C may be replaced by the equivalent:

ag > pag, al > pay,, a > pay, al_ | > pan_i. (3.30)

From this theorem it is clear that the maximal p preserving robust Hurwitz stability
of the ball B,(a’, p) can be found by finding the radius of the maximal £, disc
that can be inscribed in the frequency plot z(w) without violating the boundary
conditions in (3.29).

Proof.

Necessity. Assume that all polynomials in B,(a’, p) are Hurwitz. Then Aq(s) is
also Hurwitz, and 1t follows from the monotonic phase property of Hurwitz polyno-
mials discussed in Chapter 1 with S(w) = S,(w), T(w) = T,(w) that condition A
must hold. To show that condition C must also hold we observe that a necessary
condition for a polynomial A(s) = > ._, ars® with ag > 0 to be Hurwitz is that
ap, >0, k=0,1, - If we choose a;, = a} — pay, for some k and a; = a?, for i # k it
follows that the corresponding polynomial A(s) lies in B,(a°, p), is therefore Hur-
witz and hence ap >0 or af /oy, > p. With k =0,1,n— 1 and n we get (3.29) and
(3.30).

Suppose now that condition B fails. Then there exists 0 < wy < 0o such that

2(wo) = 2(wo) + julwn) € Dy(p) (3.31)

We complete the proof of necessity of Condition B by showing that under these
conditions B,(a", p) contains an unstable polynomial. We treat the three cases
1 < p< oo, p=1and p = oo separately. In each case a contradiction is developed
by displaying a polynomial A;(s) € B,(a’ p) which has a root at s = jwy and is
therefore not Hurwitz. Write z(wo) = o, y(wo) = %o.
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Case 1. 1< p< .
In this case the condition z(wy) = #(wy) + jy(wo) € Pp(p) is equivalent to

2ol + [yo P < 7. (3.32)

Now write Sy := Sp(wp), Zp = Tp(wp) and consider the polynomial A;(s) with

coefficients ai defined as follows:

q

ab; = as; — (=1)'zoS, ? avlwo , t=0,1,---
1 0 H s .
Aoip1 = Aoi41 — (= 1) yOT a2z+1""0 ) i=0,1,--
Then
1_ 0P
Z B — 9% | _ |$0|p50—q Z (akw’g)q = |z
k even Yk k even
at —a? | _ _
5 [t <t 5 oty = p
k odd k k odd
so that . ,
~|al —a?
S = o + ol <
Qg

k=0

Thus A;(s) € B,(a", p). But

A (jwo) = Ug(wp) — 205, ? Z ozkwo Wo

k even
. (k=1)q 1
+jwo V()((-do — Yol Z ozkwo ? "‘)0_
E odd
= [Un(wo) — 205y (wo)] + jwo [Vo(wo) — yoTp (wo)]
=0.

Hence A;(s) has the imaginary root jwy and is not Hurwitz.

Case 2: p=1.

Here
n o1 0
ar —a
0 — . k k
Bi(a ,p)—{a.§ % — G gp}
Qg
k=0
S1(wp) = max akwg = apwy
k even
_ E—1 . t—1
Ti (wg) = max agwp = ol

k odd

(3.33)

(3.34)
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and the condition z(wg) € Dy (p) is equivalent to
2ol + lyo| < p- (3-35)

Now construct the polynomial A;(s) =3 ,_, ajs* with

ap =al, k#m, k#t (3.36)
al, = al, — (—1) % zoam (3.37)
-
af =al = (=1)"7 yoay. (3.38)
Then
n 1_,0
Z (0 — )| |zl + yo| < p (3.39)
k=0 Xk
so that 4;(s) € By (a°, p). However
A1 (jWQ) = [UO(Wo) — l‘051 ((.d())] + j(.do [VO(WO) — yoﬂ ((.d())] =0. (340)

Hence Aj(s) has the imaginary root jwo, i.e. 4; is not Hurwitz.

Case 3: p=oco.

In this case we have

a ~ o]
Bm(ao,p):{a:ug/}, k:0,1,2~~~} (3.41)
o
and
Seo (W) = ag + aow” + -+, Too(w) = a1 + azw” + - - (3.42)
The €., disc is given by
Doolp) ={z=x+jy:|x|<p, |yl <p} (3.43)
and Condition B is violated if and only if
lzal <p, Il < p (3.44)

Now consider the polynomial A;(s) = Y ._, ats* with the coefficients chosen as

a, = aj — (—1)%1‘00%, k even (3.45)
ap, = ajy — (=1) = Yo, k odd. (3.46)
Then
@ — | oy — @i

o = |xo| < p, k even, o

= |w| < p, kodd (3.47)
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so that A4;(s) € B (a’ p). But
Al (jWQ) = [UO(WQ) - xOSoo (Wo)] + ij [VO(WQ) - yOToo (Wo)] =0. (348)

showing that A;(s) has an imaginary axis root and is therefore not Hurwitz.
Thus we have shown for all 1 < p < oo that the assumption that B does not hold
leads to a contradiction. This completes the proof of necessity of the conditions A,

B and C.

Sufficiency. Suppose now that conditions A, B and C hold but there exists a
polynomial A(s) = >°,_,ars® € B,(a’,p) which is not Hurwitz. Consider the

convex combination A4,(s) = Ado(s) + (1 — A)A(s), 0 < A < 1. The leading
coefficient a}) of A,(s) is positive since a® > 0, @, > a2 — pa,, > 0 while ¢} =
Aad + (1 = Na,, 0 < A< 1. The roots of Ay(s) are then continuous functions
of . Since Ag(s) is Hurwitz and A(s) is not, by the Boundary Crossing Theorem
of Chapter 1 there exists some A, 0 < A < 1 such that A5 (s) has a root on the
imaginary axis. Moreover since Ay(s) and A(s) are in the convex set B,(a’, p) it
follows that Ax(s) is also in B,(a”, p).

Denote the coefficients of A;5(s) as @, and its imaginary root as jwg. We can
write

= ._ 0
ay = ay + py o,

where

P

<p.

[Z ||
k=0

Writing
A(jwo) 2 Ulwo) + jwoV(we) = 0
1t follows that

U(wo) = Uolwo) + Y (=1)% v,

k even

_ (k=1) _
Viwe) = Volwo) + > (1) 7 meagwi™.
k odd

If wo = 0 then U(0) =0, 0= Up(0) + oo, a) = |[Up(0)] = |po]an < pag, and
this contradicts condition C. If wg # 0, then A(jwg) = 0 implies that

U(wo) =0, V(wg) = 0. (3.49)
From U(wo) = 0, we have

Uo(wo)l = | D (=D *peaeect

k even
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1

[ Z (akwg)q] (Holder's inequality)

k even

< l > el

k even

1

=[§Zumﬂp&ww

k even

Similarly, from V(wg) = 0, we have

k—1
Volwo)l = [ Y (=)= pragwf ™
k odd
3
< Z luel” | T (wn).
k odd

Hence

3=

bt [l Vo)l
o)l + Iowo)"}F = |0 + mw'p]

1

[ P
<[5 e 3 ur]

|k even k odd

_ 1

n P

- [ ]

| k=0
<p.

which shows that condition B is violated. Thus the assumption that A(s) is non-
Hurwitz leads to a contradiction. This completes the proof of sufficiency and of the
theorem. &

Discussion

(1) Tt is useful to interpret the above theorem in terms of the complex plane image
of the ball of polynomials A(s) € B,(a’, p). For all A(s) € B,(a’, p) the set
A(jw) =U(w) + jwV(w) is described by the inequality

vawwmm 1%§%

Sp(w)
and the conditions of the Theorem specify that this set should not contain

the origin for all w > 0. This coincides with the Zero Exclusion Theorem of
Chapter 1.

' ‘ Viw) = Vo(w)
Tp(w)

(2) The assumption ag >0, k = 0,1,-- -, n may be dropped although in this case
the frequency plot z(w) will be unbounded for vy = 0 or v, = 0.
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(3) If conditions B and C hold but A fails then the nominal polynomial A%(s) is
not Hurwitz. In this case all polynomials in B,(a’, p) have the same number
of roots in the open left half-plane as the nominal polynomial Ag(s).

4) If prnax 1s the radius of the largest £, disc inscribed in the plot z(w) with z(wg
P
being a point of contact and conditions A; B and C hold, then the polynomial
A (s) constructed in the proof is the critical polynomial that destroys stability.

(5) The theorem requires us to generate the plot of z(w) for 0 < w < oo, verify
that it goes through n quadrants in the counterclockwise direction, avoids the
£, disc Dp(p) and ensure that the endpoints z(0) and z(oo) lie outside the
square of side 2p centered at the origin in the complex plane. Obviously this
is ideally suited for visual representation, with the complex plane represented
by a computer screen.

Summary of Computations

We summarize the results of the theorem for the special cases p = 1, p = 2 and
p = oo in terms of what needs to be computed.

In the case p = 1, z(w) is given by

0 0,,2 4
Ay — AoWw* + Qg™ — - - -

r(w) =

k
Maxy even XpW

af — afw? + aPwt — - -

y(w) - maxy dd @pwh=!

and the plot should not intersect the rhombus |z|+ |y| < p.

When p = 2, z(w) is given by
2(w) = ad — ajw? + afw?t — - - ’

2 2, 44 2,8 1L ..3%
(af + agw? +agwd + )2

0 0,,2 0, ,4
ay — azwW”~ + agw™ — - -

(07 + o + o + )

ylw) =

ST

and this plot must not intersect the circle |z|> + |y|? < p?.

When p = oo, the frequency plot z(w) = z(w) + jy(w) is given by

0 0,,2 0, 4
Ay — AW~ + Agw™ — - -+

)
ap + aw? + agwt + - -
a?—agw2+agw4—~~

@y + agw? + agwt + - -

z(w) =
y(w) =
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and must not intersect the square || < p, |y| < p.
We illustrate the above Theorem with an example.

Example 3.3. Consider the polynomial

A(s) =

s + 14s° +80.25s* + 251.25s” + 502.255” + 667.25s + 433.5.

With the choice of

we have the fo

The required
Figures 3.5, 3.

20

15

10

Imag

3.6252

a=1[0.1, 1.4, 5.6175, 15.075, 25.137, 33.36, 43.35]

llowing stability margins:

p=1, p = 3.6252
p=2, p=2.8313
p = 00, p = 1.2336.

plot of z(w) and the discs Dy(p),P2(p) and Py (p) are shown in
6, and 3.7.

L Z(O) -

N

-10 -5 0 5 10

Real

Figure 3.5. Tsypkin - Polyak locus: ¢; stability margin (Example 3.3)
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20 :

2(0)

15¢ 7 |

Imag

2.8313

Real

Figure 3.6. Tsypkin - Polyak locus: ¢, stability margin (Example 3.3)

3.5 ROBUST STABILITY OF DISC POLYNOMIALS

In this section we consider an alternative model of uncertainty. We deal with the
robust stability of a set Fp of disc polynomials, which are characterized by the fact
that each coefficient of a typical element P(s) in Fpp can be any complex number
in an arbitrary but fixed disc of the complex plane. The motivation for considering
robust stability of disc polynomials is the same as the one for considering robust
stability of the £, ball of polynomials: namely it is a device for taking into account
variation of parameters in prescribed ranges. We let & be the stability region of
interest and consider n 4 1 arbitrary discs D;, 2 = 0,---,n in the complex plane.
Each disc D; is centered at the point 3; and has radius 7; > 0. Now, let Fp be the
family of all complex polynomials,

(z2) =80+ 612+ 48,47,

such that
6, €D;, forj=0,---,n. (3.50)



Sec. 3.,5. ROBUST STABILITY OF DISC POLYNOMIALS 149

200 2(0) i
151 e i
10+ X _

H (o)

5- i

12335 ... 4. Delp)

0 T
-10 5 0 5 10
Real

Figure 3.7. Tsypkin - Polyak locus: £, stability margin (Example 3.3)

In other words every coefficient ¢; of the polynomial 6(z) in Fp satisfies
16 = Gi| <75 (3.51)
We assume that every polynomial in Fp is of degree n:
0&D,. (3.52)

Figure 3.8 illustrates an example of such a family of complex polynomials. Each
disc D; describes the possible range of values for the coefficient 6;. The problem
here is to give necessary and sufficient conditions under which it can be established
that all polynomials in Fp, have their roots in §. This problem is solved for both
Hurwitz and Schur stability . For example, we prove that the Hurwitz stability of
Fp is equivalent to the stability of the cenier polynomial together with the fact
that two specific stable proper rational functions must have an H.,-norm less than

1.
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A
Imag

Ty

Real

Figure 3.8. Disks around the coefficients (5;, 53;)

3.5.1 Hurwitz Case
Let g(s) = Zg:)) where n(s) and d(s) are complex polynomials such that the degree

of n(s) is less than or equal to the degree of d(s) and such that d(s) is Hurwitz. In
other words g(s) is a proper, stable, complex, rational function. The H.,-norm of
g(s) is then defined as

n(jw)
d(jw)
Now, let 3(s) be the center polynomial, that is the polynomial whose coefficients
are the centers of the discs D;:

B(s)=Po+ s+ -+ Bas". (3.54)

Construct polynomials 71 (s) and y»(s) as follows:

[|9]]0o := sup : (3.53)

wER

Y1(8) i=1g —jris — 1y 57 —|—j7°353 + 7yt —jr555 -
Yo (8) = 1o + jris — ros” — jras® +rast 4 jrss® — -

and let g1(s) and g2(s) be the two proper rational functions

g1(s) = E((j)), g2(s) = 7;(—(5)) (3.55)
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The main result on Hurwitz stability of disc polynomials is the following.

Theorem 3.8 Fach member of the family of polynomials Fp s Hurwitz of and only
of

1) B(s) is Hurwitz and,

2) lgilloe <1 and [lgsllo < 1.

For the proof we first need to establish two simple lemmas. The first lemma char-
acterizes proper, stable, complex rational functions with H,,-norm less than 1 and
is useful in its own right.

Lemma 3.1 If g(s) = Z‘(jg 15 a proper stable complex rational function with
deg(d(s)) = q, then ||g||cc <1 tf and only if the following hold:

al) Ing| <|d,],
b1) d(s)+ e'?n(s) is Hurwitz for all 6 in [0, 27).

Proof. Condition al) is obviously necessary because when w goes to infinity, the
ratio in (3.53) tends to the limit
hand follows from the Boundary Crossing Theorem and Rouché’s theorem on ana-
lytic functions (Chapter 1) since |d(jw)| > e/ n(jw)| = |n(jw)|.

For sufficiency suppose that conditions al) and bl) are true, and let us assume
by contradiction that ||g||.c > 1. Since |g(jw)| is a continuous function of w and

Z—q‘. The necessity of condition bl) on the other
q

since its limit, as w goes to infinity, is ‘Z—" < 1, then there must exist at least one
q

w, in IR for which

n(jw,) _

d(jw,)

But this implies that n(jw,) and d(jw, ) differ only by a complex number of modulus
1 and therefore it is possible to find 6, in [0,27) such that:

l9(jwo)| =

n(jw,) + e d(jw,) = 0
and this obviously contradicts condition b1). &

Now, using the definition of 3(s) given in (3.54), it is easy to see that a typical
polynomial é(s) in Fp can be written as:

8(s) = B(s) + Y _ zres* (3.56)
k=0
where the z;, k = 0,---, n, are arbitrary complex numbers of modulus less than or

equal to 1.
The next lemma gives a first set of necessary and sufficient conditions under
which stability of Fp, can be ascertained.
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Lemma 3.2 The family of complex polynomials Fp contains only Hurwilz polyno-
mials if and only if the following conditions hold:

a2) B(s) is Hurwitz,

b2) For all complex numbers zq,- -, z, of modulus less than or equal to one we
have:

n k
‘ D b—o SkTES <1

f(s)

Proof. We start by proving that conditions a2) and b2) are sufficient. Here again,
if (s) is known to be stable, and if condition b2) holds then a straightforward
application of Rouché’s theorem yields that any polynomial 6(s) in (3.56) is also
Hurwitz.

Conversely, it is clear again from Rouché’s Theorem, that condition a2) is nec-
essary, since f(s) is in Fp. Thus, let us assume that 3(s) is stable and let us prove
that condition b2) is also satisfied.

To do so we use the characterization derived in Lemma 3.1. First of all, remem-
ber that one of our assumptions on the family Fp is that the n** disc D,, does not
contain the origin of the complex plane (see (3.52)). This implies in particular that
for any complex number z, of modulus less than or equal to 1:

‘ (o)

ZnTn n
<— <1 (3.57)

P |3
Now let us assume by contradiction that condition b2) is not satisfied. In this case
there would exist at least one set {zp,- - -, z, }, of n4+1 complex numbers of modulus

less than or equal to one, for which:

‘ > =0 2 TS
0(s)
Condition (3.57) shows that condition al) of Lemma 3.1 is always satisfied with

> 1. (3.58)

‘ oQ

B(s) =d(s) and szrksk = n(s).

Now (3.58) implies by Lemma 3.1 that for this particular set {zg,---, 2,} it is
possible to find at least one real 6, in [0, 27) such that:

kel

B(s) + el Z zprps’ s unstable. (3.59)

k=0

However if we let 2, = /o2, for k = 0 to k = n, then all the complex numbers
7}, also have modulus less than or equal to one, which implies that the polynomial
in (3.59) is an element of Fp and this contradicts the fact that Fp contains only
Hurwitz polynomials. &
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We can now complete the proof of Theorem 3.8.
Proof of Theorem 3.8 Let us start with Lemma 3.2 and let us consider condi-
tion b2). Let zp, - -+, 2, be n + 1 arbitrary complex numbers of modulus less than
or equal to 1, and let,
n(s) .= zorg + 2178+ -+ 2y Tns".

We can write

n(jw) = Z ()t = Z g Ik, (3.60)

k=0 k=0

For all k in {0,- -, n} it is possible to write

2, = e’ where t, €[0,1], and 6 € [0,2m). (3.61)

Using (3.60) and (3.61), we see that
n(jw) = Ztkrkej(€k+k%)wk, (3.62)
k=0

Therefore we always have the following inequalities:

If w > 0 then |n(jw)| < Zrkwk (3.63)
k=0
and,
k=n
If w<0 then |n(jw)| < Z(—l)krkwk. (3.64)
k=0

However, it is clear that the upper bound in (3.63) is achieved for the particular
choice of zj, determined by ¢, = 1,0, = —k7%, for which n(s) =71 (s).

On the other hand the upper bound in (3.64) is also achieved for the particular
choice t = 1,0, = k%, leading this time to n(s) = v2(s).

As a direct consequence, condition b2) is then satisfied if and only if condition
2) in Theorem 3.8 is true, and this completes the proof of the theorem. &

3.5.2 Schur Case
We again consider the family of disc polynomials Fp, defined in (3.51) and (3.52).

This time the problem is to derive necessary and sufficient conditions for Schur
stability of the entire family. In this case we call g(z) = % a proper, stable,

complex rational function if n(z) and d(z) are complex polynomials such that the
degree of n(z) is less than or equal to the degree of d(z) and if d(z) is Schur (i.e.
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d(#) has all its roots in the open unit disc). The H.,-norm of g(z) is then defined

as: ()
d(el?)

[|9]loc == sup . (3.65)

Aef0n.2m)

Again, let the center polynomial be:

B(z) = fo+ Prz+ -+ " (3.66)
Then we have the following main result on Schur stability of disc polynomials.

Theorem 3.9 The family of complex disc polynomials Fp contains only Schur
polynomaals if and only if the following conditions hold:

1) B(z) is Schur, and
2) The following inequality holds,

k=n
ry < 1nf ).
S o<, dut 1)

To prove this result, we need the following lemma which is completely analogous to
Lemma 3.2.

Lemma 3.3 The family of complex polynomials Fp contains only Schur polyno-
mials if and only iof the following conditions hold:

a8) B(z) is Schur,

b3) For any complex numbers zq,- -+, z, of modulus less than or equal to one we
have: ., .
‘ D k=0 KTk ‘ <l
CICON

Proof. The sufficiency of conditions a3) and b3) is quite straightforward and
follows again from Rouché’s Theorem. The necessity of condition a3) is also clear.
Thus assume that 3(z) is stable and suppose by contradiction that for some set

{20, +, zn} of complex numbers of modulus less than or equal to 1, we have,
S o wTEZE ‘
=r=l | >1. 3.67
=57 2 00
Let .
n(z) = Z ERCTLE (3.68)
k=0
It is clear that as A — 0:
— 0.
A=)
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Therefore, by continuity of the norm, it is possible to find A, in (0,1) such that

] o .

Since the unit circle is a compact set, we deduce from (3.69) and the definition of
the H., norm in (3.53), that there exists 6, in [0,27) for which:

[Aon(e?®)] = [8(e%).
Thus it is possible to find a complex number of modulus one, say ¢/?, such that:
Ble'?) + e A, n(e’?) = 0. (3.70)
Therefore, the polynomial
Bz) + €/ Aon(2),

is not Schur, and yet as is easy to see, it belongs to Fp. Thus we have reached a
contradiction. &

Proof of Theorem 3.9 To prove Theorem 3.9, we just need to look at condi-
tion b3) of Lemma 3.3.
For any complex numbers z; of modulus less than or equal to one, we have the

following inequality:

oo ke | Dol (3.71)

per?) 18(e7%)|

If we consider the continuous function of # which appears on the right hand side
of this inequality, then we know that it reaches 1ts maximum for some value 8, in
[0,27). At this maximum, it suffices to choose z; = e=##% to transform (3.71) into
an equality. It follows that condition b3) is satisfied if and only if this maximum is
strictly less than one, and this is equivalent to condition 2) of Theorem 3.9. &

3.5.3 Some Extensions

We focus on the Hurwitz stability case below, but similar results obviously hold for
the Schur case.

1) Case of real centers: In the case where the discs D; are centered on the
real axis, that is when §(s) is a polynomial with real coefficients, then g;(s)
and g»(s) have the same H.,-norm, and therefore one has to check the norm
of only one rational function.

2) Maximal Hurwitz disc families:  Consider a stable nominal polynomial
Bo(s) =g+ Bis+ -+ Brs",
and let rq, - - -, , be n 41 fixed real numbers which are greater than or equal

to 0. Using our result, it is very easy to find the largest positive number
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€max Of all positive numbers ¢ such that the family of disc polynomials whose
coefficients are contained in the open dises with centers 37 and of radii er;, is
entirely stable. To do so let:

4 5

Y1(8) = ro — jris — ros? + jras® +rast — jrss® — o)
Yo (8) = 1o + jris — ros? — jras® +rgst 4 grss® — -

and form

v (s
0(s) = ﬁi((s))’ 9:(s) = po(s)
Now, if [|91]|cc =m1 and ||g2]|cc = 72, then

) ( 11 )
€max = min | —, — | .
m 12

The quantities n; and 7, can of course be found from the polar plots of ¢; (jw)
and gs(jw) respectively.

We illustrate the above results with an example.

Example 3.4. Consider the nominal polynomial
Bo(s) = (2—33.5) + (1.5 — j6)s + (9 — j27)s” + (3.5 — j18)s™ + (=1 — j11)s*

Suppose that each coefficient é; perturbs inside a corresponding disc with radius 7;
and
7“0:2, 7“1:1, 7“2:8, 7“3:3, 7”421.

We want to check the robust Hurwitz stability of this family of disc polynomials.
We first verify the stability of the nominal polynomial. It is found that 5°(s) has
roots at

—0.4789 — j1.5034, —0.9792 + j1.0068, —0.1011 + j0.4163, —0.0351 — j0.3828 .
and 1s therefore Hurwitz. Now form

1(s) =rg— jris — o524 jras® 4 ryst
:2—j5—852—|—j353—|—54
Yo(s) =rg+ jris — P87 — jr3s® +14s
=24 js—8s? — 5353 + 51,

4

and

_n) o = 1208
mE= Gy 0= GGy

From the frequency plot of ¢;(jw) (Figure 3.9) we can see that ||g; ||, ||g2]| > 1. Thus
the condition of Theorem 3.8 is violated. Therefore, the given disc polynomial family
contains unstable elements.
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A gz(jw) : |
5] ]
a gl(jw)

-1 -0.5 0 0.5 1 1.5 2

Real

Figure 3.9. ¢i(jw) and g¢2(jw) (unstable family: Example 3.4)

Now suppose we want to proportionally reduce the size of the discs so that the
resulting smaller family becomes robustly stable. We compute

[[g1]|cc = 2.0159 := 1 and ||ga||ec = 1.3787 := 1

and we have L1
€Emax = MIN (—, —> = 0.4960 .
Th 72
We now modify the radii of discs to 7; = epqay7; for 2 = 0,1,2,3,4. Consequently,

41(5) = 0.9921 — j0.4961s — 3.9684% + j1.48825% + 0.49615"
4o (5) = 0.9921 + j0.4961s — 3.96845% — j1.4882° + 0.4961s*,
" () 1)
- Yiis Y248
gi1(s) = = :
=) 76
Figure 3.10 shows that [|¢1]|cc < 1 and ||¢g2]|sc < 1 which verifies the robust stability
of the disc polynomial family with the adjusted disc radii.

and  go(s)
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05r- :
o0
g 0

-0.5F .

Real

Figure 3.10. §:(jw) and §-(jw) (stable family: Example 3.4)

3.6 EXERCISES

3.1 Calculate the radius of the Hurwitz stability ball in the coefficient space for
each of the polynomials

(s+2)(s*+s+1)
(s+ 1)(s* + 25+ 2)
(

g) (s+2)(s* + 25+ 2)
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considering both the cases where the leading coeflicient is fixed and subject to
perturbation.

3.2 Derive a closed form expression for the radius of the Hurwitz stability ball for
the polynomial ass® + a;s + ag.

3.3 Calculate the radius of the Schur stability ball in the coefficient space for the
polynomials

a) z2%(z 4 0.5)

b) (2 — 0.5)°

¢) z(z* + 2+ 0.5)

d) 2(= + 0.5)( — 0.5)
2(z2 — 2+ 0.5)
Z*(z+0.5)

¢)
f)

considering both the cases where the leading coefficient is fixed and where it is
subject to perturbation.

3.4 Consider the feedback system shown in Figure 3.11. The characteristic poly-

ag + oz

+ Po+ Bz + B22°

Figure 3.11. Feedback control system

nomial of the closed loop system is

8(z) = (ag + Go) + (on + 51)z + o2
= 60 + 612 + 6222

with nominal value ]
60(,2) =5 2+ 22,

Find emax so that with 8; € [6 — ¢, 8 + ¢] the closed loop system is robustly Schur
stable.
Answer: €,,, = 0.17.
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3.5 Consider the feedback system shown in Figure 3.12.

ng +n2

+ do—I—dlZ—i-dzZz

D)

Figure 3.12. Feedback control system

Assume that the nominal values of the coefficients of the transfer function are
[ng:n?] - [—1,2] and [dO;dladZ] = [_1a_2a8]'

Now let
ni €nf —e,nl +¢ and d; €[dj —¢ dj + ]

and find ¢,,,, for robust Schur stability.
Answer: €y, = 1.2.

3.6 Consider the third degree polynomial P.(s) given by
P.(s)= (5 - rejaTW) (s+7) (5 - rej%) :
In other words, the roots of P.(s) are equally distributed on the left-half of the

circle of radius » in the complex plane. Now, let m(r) be the sum of the squares of
the coefficients of P,(s). One can easily compute that

m(r) :2(1—1—\/§r—|—2r2—|—\/§r3—|—r4).

We consider the normalized polynomial,

Compute
p(r) = inf d,(6,),

w>0
for increasing values of r and plot p(r) as a function of r.

3.7 In the Schur case consider the third degree polynomial P, (z) given by

P.(z) = (z - rejQTw) (z - rej%r) (z—r).
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In other words, the roots of P, (s) are equally distributed on the circle of radius r
in the complex plane. Again, let m(r) be the sum of the squares of the coefficients
of P.(z), and consider the normalized polynomial,

Compute

p(r) = inf dy(6,),

for increasing values of » (0 < r < 1) and plot p(r) as a function of r.

3.8 The purpose of this problem is to calculate the distance d,(P) for different
choices of norms on P,,, the vector space of all real polynomials of degree less than
or equal to n.

As usual we identify P,, with IR”*'. Let ||-|| be a given norm on P,,. For a fixed
w > 0, we denote by A, the subspace of P,, which consists of all polynomials é(s)
which satisfy: 6(jw) = 0 . Let P(s) be an arbitrary but fixed element of P,,. We
then define,

= ] P — 4.
4.(P)= inf ||P o
1) Compute d, (P) when || - || is the £o, norm || - [|oo, that is,

[[6g + 615+ -+ 6,8 ||oo = max |6 .
0<k<n

2) Compute d,, (P) when || - || is the ¢4 norm || - ||1, that is,

n

[|160 + 618+ -+ 6,87 |1 = Z|5k|

k=0

3) More generally, compute d,,(P) when || -|| is the £, norm || - ||, (1 < p < +00),
that is,

n 2
180 + 815+ + 625"l = (Zléklp) '
k=0

Hint: In all cases use the following result of Banach space theory, which plays an
essential role in the study of extremal problems. Let X be an arbitrary Banach
space and let || - || denote the norm on X. Let also M be a closed subspace of X.
Then for any fixed x in X we have,

inf [lz —m||= max |< " z>|
meM r*e ML
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where “max” indicates that the supremum is attained and where ML is the anni-
hilator of M, that is the subspace of X* which consists of all linear functionals z*
which satisfy,

Y meM, <z m>=0.

Note that in general for 1 < p < +o0,
(R[] [lp)" = (R™ I - )

where ¢ is the conjugate of p which is defined by

3.9 Repeat Exercise 3.8, but this time to calculate dp(P) where 6 € (0,7) and
do(P) = inf [P~ ],

Here A, designates the subspace of P,, consisting of all polynomials §(s) which are
such that §(e/?) = 0.

3.10 Prove the distance formulas in Theorems 3.6.

3.11 Consider the standard unity feedback control system with transfer functions

(i(s) and C(s) in the forward path. Let

Pot+pis

0= ohtw

and C(s) =1.

Determine the stability margin in the space of parameters (pg, p1, qo) assuming the
nominal value (pd, p{, ¢3) = (1,1,2).

3.12 Using the Tsypkin-Polyak locus calculate the weighted ¢, ¢5 and £, stability
margins in the coefficient space for the polynomial

§(s) = s+ 65" + 1357 + 125 +4
choosing the weights proportional to the magnitude of each nominal value.
3.13 For the nominal polynomial
(s) =s>+5s" +(3—j)s +6-2j

find the largest number €,,,, such that all polynomials with coefficients centered at
the nominal value and of radius ¢,,,x are Hurwitz stable.
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3.14 Consider a feedback control system with the plant transfer function

ng+nis+ - +n,_15" "+ n,s"
G(s) =
do+dis+ - +dy_15"1 4 dps”
and the controller transfer function
b b o by ST by, 5T
C(S): ot 015+ + 18 + S .
Ao+ ars+ A+ apo18" T+ 4y 8T

Let §(s) be the closed loop characteristic polynomial with coefficients

8:=[ 60 8 0 Gngmet Gnam |
and let @ :=[bg by -+ bm ao @ --- apn]”. Then we can write 6 = M,z where
- dy o -
dy dy L
d2 d1 - no N
d2 o
M, =
d’ﬂ n’ﬂ
d, Ny

MpeR(n+m+1)><2(m+1)
Prove that z stabilizes the plant if there exists ¢ such that
d(é, My) < p(8)

where p(6) is the Euclidean radius of the largest stability hypersphere centered at &
and d(é, M,) is the Euclidean distance between § and the subspace spanned by the
columns of M,.

3.7 NOTES AND REFERENCES

The ¢, stability hypersphere in coefficient space was first calculated by Soh, Berger
and Dabke [214]. Here we have endeavored to present this result for both the Hur-
witz and Schur cases in its greatest generality. The calculation of the £, stability ball
is due to Tsypkin and Polyak [225]. These calculations have been extended to the
case of complex polynomials by Kogan [149] and bivariate polynomials by Polyak
and Shmulyian [191]. A simplified proof of the Tsypkin-Polyak locus has been given
by Mansour [170]. The problem of ascertaining the robust stability of disc poly-
nomials was formulated and solved in Chapellat, Dahleh and Bhattacharyya [61].
Exercise 3.14 is taken from Bhattacharyya, Keel and Howze [34].



