Chapter 1

STABILITY THEORY VIA
THE BOUNDARY CROSSING
THEOREM

In this chapter we introduce the Boundary Crossing Theorem for polynomials. Al-
though intuitively obvious, this theorem, used systematically, can lead to many
useful and nontrivial results in stability theory. In fact it plays a fundamental role
in most of the results on robust stability. We illustrate its usefulness here by using
it to give extremely simple derivations of the Hermite-Biehler Theorem and of the
Routh and Jury tests.

1.1 INTRODUCTION

This chapter develops some results on stability theory for a given fixed polynomial.
This theory has been extensively studied and has a vast body of literature. Instead
of giving a complete account of all existing results we concentrate on a few fun-
damental results which will be used extensively in the remainder of this book to
deal with stability problems related to families of polynomials. These results are
presented in a unified and elementary fashion and the approach consists of a sys-
tematic use of the following fact: Given a parametrized family of polynomials and
any continuous path in the parameter space leading from a stable to an unstable
polynomial, then, the first unstable point that is encountered in traversing this path
corresponds to a polynomial whose unstable roots lie on the boundary (and not in
the interior) of the instability region in the complex plane.

The above result, called the Boundary Crossing Theorem, is established rigor-
ously in the next section. The proof follows simply from the continuity of the roots
of a polynomial with respect to its coefficients. The consequences of this result,
however, are quite far reaching, and this is demonstrated in the subsequent sections
by using it to give simple derivations of the classical Hermite-Biehler Theorem, the
Routh test for left half plane stability and the Jury test for unit disc stability.
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The purpose of this chapter i1s to give a simple exposition of these fundamen-
tal results which makes them particularly easy to learn and understand. Moreover
the Boundary Crossing Theorem will play an important role in later chapters deal-
ing with Kharitonov’s Theorem and its generalization, the stability of families of
polynomials, and in the calculation of stability margins for control systems.

Many results of stability theory extend far beyond the realm of polynomials. The
Hermite-Biehler Theorem, in particular, extends to a vast class of entire functions.
In the last section of this chapter some of these extensions are briefly overviewed,
with an emphasis on those results which are more directly related to problems in
control theory.

1.2 THE BOUNDARY CROSSING THEOREM

We begin with the well known Principle of the Argument of complex variable theory.
Let C be a simple closed contour in the complex plane and w = f(z) a function of
the complex variable z, which is analytic on C. Let Z and P denote the number of
zeros and poles, respectively, of f(z) contained in C. Let A¢ arg[f(z)] denote the
net change of argument (angle) of f(z) as z transverses the contour C.

Theorem 1.1 (Principle of the Argument)
Aqarg[f(z)] = 2a(Z — P) (1.1)
An important consequence of this result is the well known theorem of Rouché.

Theorem 1.2 (Rouché’s Theorem)
Let f(z) and g(z) be two functions which are analytic inside and on a simple closed
contour C in the complex plane. If

(=) < 1£(2)] (1.2)

for any z on C, then f(z) and f(2) + g(z) have the same number (multiplicities
included) of zeros inside C.

Proof. Since f(z) cannot vanish on C, because of (1.2), we have

Acarg[f(z) +g(2)] = A arg {f (2) [1 * ?E;] } .
e

= Ac arg[f(2)] + Ac arg [1 + W] . (1.3)
|

w=1+

Moreover, since

<1

9(2)
f(z)
for all z € C, the variable point

9(z)
f(z)
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stays in the disc |w — 1| < 1 as z describes the curve C. Therefore w cannot wind
around the origin, which means that

Ac arg [1 + %] =0. (1.4)

Combining (1.3) and (1.4), we find that
Acarg [f(2) +9(2)] = Ac arg[f(2)].

Since f(z) and g(z) are analytic in and on C the theorem now follows as an imme-
diate consequence of the argument principle. &

Note that the condition |g(2)| < |f(2)| on C implies that neither f(z) nor f(z)+g(z)
may have a zero on C. Theorem 1.2 is just one formulation of Rouché’s Theorem
but it is sufficient for our purposes. The next theorem is a simple application of
Rouché’s Theorem. It is however most useful since it applies to polynomials.

Theorem 1.3 Let

m

P(S) = pyg _|_p15_|_ ..._|_pn5" = H(S—Sj)tj, Pn # 0; (15)

Q(s) = (po + o)+ (1 +€1)S+"_'+(Pn +e,)s", (1.6)

and consider a circle Cy, of radius vy, centered at s, which is a root of P(s) of
multiplicity t,. Let vy be fized in such a way that,

0 <rp <minls, —s;|, for j=1,2,--- k—=1,k+1,--- m. (1.7)

Then, there exists a positive number €, such that |¢;| < ¢, fori=10,1,--- n, implies
that Q(s) has precisely ty, zeros inside the circle Cy.

Proof. P(s) is non-zero and continuous on the compact set C; and therefore it is
possible to find ¢, > 0 such that

|P(s)| > 6 >0, forallseCs. (1.8)
On the other hand, consider the polynomial R(s), defined by
R(s)=e€g+e1s+--+e,8". (1.9)
If s belongs to the circle Cy, then

IR < S 16 157] < S lej (I — sl + Isi])’
i=0 i=0

kel

< eZ(rk + |5k|)j .

i=0

M
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Thus if € 1s chosen so that € < ]f/[—’;, it 1s concluded that
|R(s)| < |P(s)| for all s on Cy, (1.10)

so that by Rouché’s Theorem, P(s) and Q(s) = P(s)+ R(s) have the same number
of zeros inside Cj,. Since the choice of i, ensures that P(s) has just one zero of

multiplicity ¢, at sy, we see that Q(s) has precisely ¢ zeros in Cj. &
Corollary 1.1 Fiz m circles Cy,---,C,,, that are parrwise disjoint and cenlered al
S1,89, Sy, respectively. By repeatedly applying the previous theorem, it s always

possible to find an € > 0 such that for any set of numbers {eq, -, ¢} satisfying
le;| <€ fori=0,1,---,n, Q(s) has precisely t; zeros inside each of the circles C;.

Note, that in this case, Q)(s) always has ¢; +¢2+- - -+%,, = n zeros and must remain
therefore of degree n, so that necessarily € < |p,|. The above theorem and corollary
lead to our main result, the Boundary Crossing Theorem.

Let us consider the complex plane C' and let & C C be any given open set.
We know that S, its boundary S together with the interior #° of the closed set
U = C' — & form a partition of the complex plane, that is

SUASUU°=C,  SNU =8SNdS=0aSnU° =1 (1.11)

Assume moreover that each one of these three sets 1s non-empty. These assumptions
are very general. In stability theory one might choose for § the open left half plane
C~ (for continuous-time systems) or the open unit disc D (for discrete-time systems)
or suitable subsets of these, as illustrated in Figure 1.1.

5251 Im Im Im Im
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Figure 1.1. Some typical stability regions
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Consider a family of polynomials P(A, s) satisfying the following assumptions.
Assumption 1.1. P(A,s) is a family of polynomials of
1) fixed degree n, (invariant degree),
2) continuous with respect to A on a fixed interval I = [a, b].
In other words, a typical element of P(A,s) can be written as
PO ) = polA) + PN+ pa(N)s" (1.12)

where pg(A), p1(A), - - - ,pn(A) are continuous functions of A on I and where p,, () # 0
for all A € I. From the results of Theorem 1.3 and its corollary, it i1s immediate
that in general, for any open set O, the set of polynomials of degree n that have all
their roots in O is itself open. In the case above, if for some t € I, P(t, s) has all
its roots in §, then it is always possible to find a positive real number « such that

forall ¢/ € (t—a,t+a)NI, P(t',s) also has all its roots in §. (1.13)
This leads to the following fundamental result.

Theorem 1.4 (Boundary Crossing Theorem)

Under the Assumptions 1.1, suppose that P(a,s) has all its roots in S whereas
P(b,s) has at least one root in U. Then, there exists at least one p in (a,b] such
that:

a) P(p,s) has all its roots in SU IS, and
b) P(p,s) has at least one root in OS.

Proof. To prove this result, let us introduce the set I of all real numbers ¢
belonging to (a, b] and satisfying the following property:

P for all ¢ € (a,t), P(t',s) has all its roots in S. (1.14)

By assumption, we know that P(a,s) itself has all its roots in S, and therefore as
mentioned above, it is possible to find o > 0 such that

forall ¢ €[a,a+a)NI, P(t,s) also has all its roots in S. (1.15)

From this it is easy to conclude that E is not empty since, for example, ¢ + %
belongs to E.
Moreover, from the definition of E the following property is obvious:

ty € E, and a < 1; <15, implies that ¢; itself belongs to F. (1.16)
Given this, it i1s easy to see that E is an interval and if

pi= fBEpt (1.17)

then it is concluded that E = (a, p].
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A) On the one hand it is impossible that P(p, s) has all its roots in S. If this were
the case then necessarily p < b, and it would be possible to find an « > 0 such
that p4+ a < b and

forall ¥ € (p—a,p+a)NI, P(t',s) also has all its roots in . (1.18)

As aresult, p+ 5 would belong to £ and this would contradict the definition
of pin (1.17).

B) On the other hand, it is also impossible that P(p, s) has even one root in the
interior of U, because a straightforward application of Theorem 1.3 would
grant the possibility of finding an « > 0 such that

forall ¢ € (p—a,p+a)NI, P(t',s) has at least one root in 4%, (1.19)

and this would contradict the fact that p — ¢ belongs to E for € small enough.

From A) and B) it is thus concluded that P(p, s) has all its roots in SUJS, and at
least one root in 9S. &

The above result is in fact very intuitive and just states that in going from one open
set to another open set disjoint from the first, the root set of a continuous family
of polynomials P(A,s) of fixed degree must intersect at some intermediate stage
the boundary of the first open set. If P(), s) loses degree over the interval [a, ],
that is if p, (A) in (1.12) vanishes for some values of A, then the Boundary Crossing
Theorem does not hold.

Example 1.1. Consider the Hurwitz stability of the polynomial
a1s+ag  where p:=Jag a].

Referring to Figure 1.2, we see that the polynomial is Hurwitz stable for p = pyg.
Now let the parameters travel along the path C and reach the unstable point p;.
Clearly no polynomial on this path has a jw root for finite w and thus boundary
crossing does not occur. However, observe that the assumption of constant degree
does not hold on this path because the point of intersection between the path C}
and the ay axis corresponds to a polynomial where loss of degree occurs. On the
other hand, if the parameters travel along the path C; and reach the unstable point
P2, there is no loss of degree along the path (5 and indeed a polynomial on this
path has s = 0 as a root at ag = 0 and thus boundary crossing does occur. We
illustrate this point in Figure 1.3(a). Along the path (s, where no loss of degree
occurs, the root passes through the stability boundary (jw axis). However, on the
path C} the polynomial passes from stable to unstable without its root passing
through the stability boundary.
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a1
P2 I
L
Qg
P1

Figure 1.2. Degree loss on C', no loss on C5 (Example 1.1)

Imag 1 Imag 1
boundary crossing
i
Real / Real
no boundary crossing
(a) (b)

Figure 1.3. (a) Root locus corresponding to the path Cy (b) Root locus corre-
sponding to the path C; (Example 1.1)
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The above example shows that the invariant degree assumption is important. Of
course we can eliminate the assumption regarding invariant degree and modify the
statement of the Boundary Crossing Theorem to require that any path connecting
P,(s) and P, (s) contains a polynomial which has a root on the boundary or which
drops in degree. If degree dropping does occur, it is always possible to apply the
result on subintervals over which p,(A) has a constant sign. In other words if
the family of polynomials P(},s) does not have a constant degree then of course
Theorem 1.4 cannot be directly applied but that does not complicate the analysis
terribly and similar results can be derived.

The following result gives an example of a situation where the assumption on
the degree can be relaxed. As usual let & be the stability region of interest.

Theorem 1.5 Let {P,(s)} be a sequence of stable polynomials of bounded degree
and assume that this sequence converges to a polynomial Q(s). Then the roots of

Q(s) are contained in SUIS.

In words the above theorem says that the limit of a sequence of stable polynomials
of bounded degree can only have unstable roots which are on the boundary of the
stability region.

Proof. By assumption, there exists an integer N such that degree[P,] < N for
all n > 0. Therefore we can write for all n,

Po(8) =pon +P1ns+ - pnas’ . (1.20)

Since the sequence {P,(s)} converges to Q(s) then Q(s) itself has degree less than
or equal to NV so that we can also write,

Qs)=qo+qs+ - +qvs". (1.21)
Moreover
linj Prn =¢qy, fork=0,1,---, N. (1.22)

Now, suppose that ((s) has a root s* which belongs to i/°. We show that this leads
to a contradiction. Since U° 1s open, one can find a positive number r such that
the disc C centered at s* and of radius r is included in &°. By Theorem 1.3, there
exists a positive number ¢, such that for |¢;| <€, for i = 0,1, -, N, the polynomial

(QO+60)+(Q1+€1)5+"'+(QN+€N)5N (1.23)

has at least one root in C C U°. Now, according to (1.22) it is possible to find an
integer ng such that

n>ny = |pen— x| <e fork=0,1--- N. (1.24)
But then (1.24) implies that for n > ng,
(0 +pon — @)+ (@1 +Prn—q)s+ -+ (av + Py —an)s” = Pals)  (1.25)

has at least one root in C C U°, and this contradicts the fact that P,(s) is stable
for all n. 3
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1.2.1 Zero Exclusion Principle

The Boundary Crossing Theorem can be applied to a family of polynomials to detect
the presence of unstable polynomials in the family. Suppose that §(s,p) denotes a
polynomial whose coefficients depend continuously on the parameter vector p € IR’
which varies in a set Q € IR' and thus generates the family of polynomials

A(s) :={6(s,p) : p € Q}. (1.26)

We are given a stability region & and would like to determine if the family A(s)
contains unstable polynomials. Let us assume that there is at least one stable
polynomial §(s, p,) in the family and every polynomial in the family has the same
degree. Then if é(s,ps) is an unstable polynomial, it follows from the Boundary
Crossing Theorem that on any continuous path connecting p, to p; there must
exist a point p. such that the polynomial é(s,p.) contains roots on the stability
boundary 08. If such a path can be constructed entirely inside €2, that is, if Q is
pathwise connected, then the point p. lies in 2. In this case the presence of unstable
polynomials in the family is equivalent to the presence of polynomials in the family
with boundary roots. If s* is a root of a polynomial in the family it follows that
8(s*,p) = 0 for some p €  and this implies that 0 € A(s*). Therefore the presence
of unstable elements in A(s) can be detected by generating the complex plane image
set A(s*) of the family at s* € S, sweeping s* along the stability boundary 98,
and checking if the zero exclusion condition 0 ¢ A(s*) is violated for some s* € 9S.
This is stated formally as an alternative version of the Boundary Crossing Theorem.

Theorem 1.6 (Zero Exclusion Principle)
Assume that the family of polynomials (1.26) is of constant degree, contains at least
one stable polynomial, and € s pathwise connected. Then the entire family is stable
of and only if

0¢ A(s"), forall s* €08.

The Zero Exclusion Principle can be used to derive both theoretical and computa-
tional solutions to many robust stability problems. It is systematically exploited in
Chapters 2-12 to derive various results on robust parametric stability.

In the rest of this chapter however we restrict attention to the problem of stabil-
ity determination of a fized polynomial and demonstrate the power of the Boundary
Crossing Theorem in tackling some classical stability problems.

1.3 THE HERMITE-BIEHLER THEOREM

We first present the Hermite-Biehler Theorem, sometimes referred to as the In-
terlacing Theorem. For the sake of simplicity we restrict ourselves to the case of
polynomials with real coefficients. The corresponding result for complex polyno-
mials will be stated separately. We deal with the Hurwitz case first and then the
Schur case.
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1.3.1 Hurwitz Stability

Consider a polynomial of degree n,
P(s) = po +pis+pas” + -+ s’ (1.27)

P(s) is said to be a Hurwitz polynomial if and only if all its roots lie in the open
left half of the complex plane. We have the two following properties.

Property 1.1. If P(s) is a real Hurwitz polynomial then all its coefficients are
non zero and have the same sign, either all positive or all negative.

Proof. Follows from the fact that P(s) can be factored into a product of first and
second degree real Hurwitz polynomials for which the property obviously holds. &

Property 1.2. If P(s) is a Hurwitz polynomial of degree n, then arg[P(jw)], also
called the phase of P(jw), is a continuous and strictly increasing function of w on
(=00, +00). Moreover the net increase in phase from —oo to 400 is

arg[P(+joo)] — arg[P(—joo)] = nw. (1.28)

Proof. If P(s) is Hurwitz then we can write

P(s) = pn H(s —s;), with s; = a; + 7b;, and ¢; < 0. (1.29)

i=1

Then we have,

arg[P(jw)] = arglpa] + Y _ arg[jw — a; — jbi]

i=1
= arg[p,] + Z arctan [w_a' ] (1.30)
i=1 ¢

and thus arg[P(jw)] is a sum of a constant plus n continuous, strictly increasing
functions. Moreover each of these n functions has a net increase of 7 in going from
w = —00 to w = 400, as shown in Figure 1.4. &

The even and odd parts of a real polynomial P(s) are defined as:

Peven(s) ::p0+p252 +p454+...
Podd(s) ::p15+p353 +p555+... . (131)

Define

Pe(w) = Peven(jw) = po —p2w2 +p4w4 N
Podd i
P(w) :%IZN —psw’ Hpswt —- (1.32)
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s-plane P(jw)-plane
Imag
e o, Re()=0
/s
Re()=0
f 1~
Lm0 N\ )=
Real Im()=0 Im()=0 / Ral
B+ 61 < s+ Re(=0
for wi < w2

Figure 1.4. Monotonic phase increase property for Hurwitz polynomials

P*(w) and P°(w) are both polynomials in w? and as an immediate consequence
their root sets will always be symmetric with respect to the origin of the complex
plane.
Suppose now that the degree of the polynomial P(s) is even, that is n = 2,
m > 0. In that case we have
PY(w) = py — pow” + paw® — -+ 4 (1) o™
Po(w) =p1 — psw’ + psw — -4 (= 1) g1 (1.33)

Definition 1.1. A real polynomial P(s) satisfies the interlacing property if
a) pam and pon,—1 have the same sign.

b) All the roots of P?(w) and P°(w) are real and distinct and the m positive roots
of P¢(w) together with the m — 1 positive roots of P°(w) interlace in the
following manner:

0< We 1 < Wo 1 < We 2 << We m—1 < Wo,m—1 < We m, - (134)

If, on the contrary, the degree of P(s) is odd, then n = 2m + 1,m > 0, and

Pe(w) =Po— P2w2 + p4w4 — et (_1)p72nmw2m
PO((.U) =p1— p3(.d2 _|_ p5w4 .. _|_ (_1)m,p2m’+1w2m’ (135)
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and the definition of the interlacing property, for this case, is then naturally modified
to

a) pam+1 and po, have the same sign.

b) All the roots of P°(w) and P°(w) are real and the m positive roots of P°(w)
together with the m positive roots of P°(w) interlace in the following manner:

0<we1 <woi <+ < Weme1 < Wome1 < Wem < Wom- (1.36)

An alternative description of the interlacing property is as follows: P(s) = P (s)+
Pedd(s) satisfies the interlacing property if and only if

a) the leading coefficients of P¢V*"(s) and P°44(s) are of the same sign, and

b) all the zeroes of P'*"(s) = 0 and of P°dd(s) = 0 are distinct, lie on the
imaginary axis and alternate along it.

We can now enunciate and prove the following theorem.

Theorem 1.7 (Interlacing or Hermite-Biehler Theorem)
A real polynomial P(s) is Hurwitz if and only if it satisfies the interlacing property.

Proof. To prove the necessity of the interlacing property consider a real Hurwitz
polynomial of degree n,

P(s)=po+p15+pas®+ -+ pas’.

Since P(s) is Hurwitz it follows from Property 1.1 that all the coefficients p; have
the same sign, thus part a) of the interlacing property is already proven and one
can assume without loss of generality that all the coefficients are positive. To prove
part b) it is assumed arbitrarily that P(s) is of even degree so that n = 2m. Now,
we also know from Property 1.2 that the phase of P(jw) strictly increases from
—n7w/2 to nw/2 as w runs from —oco to +oo. Due to the fact that the roots of
P(s) are symmetric with respect to the real axis it is also true that arg(P(jw))
increases from 0 to +n7/2 = m7 as w goes from 0 to +oo. Hence as w goes from
0 to 400, P(jw) starts on the positive real axis (P(0) = pg > 0), circles strictly
counterclockwise around the origin m# radians before going to infinity, and never
passes through the origin since P(jw) # 0 for all w. As a result it is very easy to
see that the plot of P(jw) has to cut the imaginary axis m times so that the real
part of P(jw) becomes zero m times as w increases, at the positive values

WR1, WR2, "'y WRm- (1~37)

Similarly the plot of P(jw) starts on the positive real axis and cuts the real axis
another m—1 times as w increases so that the imaginary part of P(jw) also becomes
zero m times (including w = 0) at

0’ Wz, Wiz, ", WIm-1 (138)
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before growing to infinity as w goes to infinity. Moreover since P(jw) circles around
the origin we obviously have

O<wr <wzi < WRa2 <wro < <WRm-1 <WIm-1<WRm- (1.39)

Now the proof of necessity is completed by simply noticing that the real part of
P(jw) is nothing but P?(w), and the imaginary part of P(jw) is wP°(jw).

For the converse assume that P(s) satisfies the interlacing property and suppose
for example that P(s) is of degree n = 2m and that pay,, pam—1 are both positive.
Consider the roots of P¢(w) and P?(w),

O<wl <wp < <wh g <wh g <ub (1.40)

From this, P¢(w) and P°(w) can be written as
P(w) = pam H(WZ - er),iz)
i=1

m—1
P°(w) = pam_1 H (w? — wf)”iz).
=

Now, consider a polynomial Q(s) that is known to be stable, of the same degree 2m
and with all its coefficients positive. For example, take Q(s) = (s + 1)*™. In any
event, write

Q(s)=qo+q1s + 9252 +-- 4 Q2m52m~
Since Q(s) is stable, it follows from the first part of the theorem that Q(s) satisfies

the interlacing property, so that Q°(w) has m positive roots w{ ;, -+, w!  and
Q°(w) has m — 1 positive roots wy |, ---, w! _,, and,
0< wgyl < wgyl << wgym_l < wgym_l <wl, (1.41)

Therefore we can also write:

m
Q°(w) = 2m H(WZ - Wg,iz)
i=1
m—1

Q°(w) = q2m-1 H (@’ —wl ).

Consider now the polynomial Py(s) := P (s) + sP24(s) defined by

P{(w) := (1= A)gam + Apam) H (& [ =NW! )+ A(W’Q,ﬂ)

PY(@) = (1= Ndom-1 + Apom-1) [] (aﬂ — A=)’ + /\(wiji)Q]).

i=1
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Obviously, the coefficients of P, (s) are polynomial functions in A which are therefore
continuous on [0,1]. Moreover, the coefficient of the highest degree term in Py(s)
is (1 — A)gam + Apan, and always remains positive as A varies from 0 to 1. For
A = 0 we have Py(s) = Q(s) and for A = 1, Pi(s) = P(s). Suppose now that P(s)
is not Hurwitz. From the Boundary Crossing Theorem it is then clear that there
necessarily exists some A in (0, 1] such that Py (s) has a root on the imaginary axis.
However, P,(s) has a root on the imaginary axis if and only if P§(w) and Py(w)
have a common real root. But, obviously, the roots of Pf(w) satisfy

whi = (1=l Pl (1.42)
and those of Py (w),
W= (1= Al At (1.43)
Now, take any two roots of Py(w) in (1.42). If { < j, from (1.40) w’e”iz < w’;jz, and
similarly from (1.41), wgf < wgyjz, so that
wg\’iz < wi‘)jz.

In the same way, it can be seen that the same ordering as in (1.40) and (1.41) is
preserved between the roots of Py(w), and also between any root of Pf(w) and any
root of P{(w). In other words, part b) of the interlacing property is invariant under
such convex combinations so that we also have for every A in [0,1]:

2 2

A2 A2 A A 2 A
0<we,1 <wo,1 <'”<we,m—1 <wo,m—1 <we,m‘ .

But this shows that, whatever the value of A in [0,1], Pf(w) and P{(w) can never
have a common root, and this therefore leads to a contradiction which completes
the proof. &

It is clear that the interlacing property is equivalent to the monotonic phase increase
property. If the stability region & is such that a stable polynomial does not have
the monotonic phase increase property, the interlacing of the real and imaginary
parts will in general fail to hold. However, even in the case of such a region & the
boundary crossing property must hold. This means that the transition from stability
to instability can only occur if the real and imaginary parts simultaneously become
zero at some boundary point.

A Frequency Domain Plot for Hurwitz Stability

The interlacing property of a polynomial can be verified by plotting either the
graphs of P¢(w) and P°(w) or the polar plot of P(jw) as shown below.

Example 1.2.

P(s) = 7 4+ 11 + 5257 + 1455° + 2665° + 331s* 4 2805 + 1555% 4+ 495 + 6.
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Then
P(jw) = P?(w) + jwP°(w)

with

Péw) = 11u® — 1450° + 331w* — 155w? + 6
Po(w) = w® — 52w’ + 266w* — 280w’ + 49.

The plots of P¢(w) and P°(w) are shown in Figure 1.5. They show that the poly-
nomial P(s) is Hurwitz because it satisfies the interlacing property.

400

300 - a

200 -

Polw
100 - ( )

-100

-200

-300|- Piw) — ]

-400 : : A ‘ :
0 0.5 1 1.5 2 2.5 3

Figure 1.5. Interlacing property for Hurwitz polynomials (Example 1.2)

Example 1.3.
P(s) = 57 4+ 21 + 5257 + 1455° + 2665” + 331s* 4+ 280s° + 155s5% + 495 + 6.

Then
P(jw) := P*(w) + jwP’(w)
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where
Pf(w) = 21w® — 145w° + 331w* — 155w” + 6
P°(w) = w® — 52w% 4+ 266w* — 280w’ + 49.

The plots of P¢(w) and P°(w) are shown in Figure 1.6. They show that the poly-
nomial P(s) is not Hurwitz because it fails to satisfy the interlacing property.
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Figure 1.6. Interlacing fails for nonHurwitz polynomials (Example 1.3)

Both the plots in the above examples are unbounded as w tends to co. A bounded
plot containing the same information can be constructed as follows. For a polyno-
mial
P(s)=potpis+-+pas”, pn>0
write as usual
P(jw) = P*(w) 4+ jwP’(w)
and let S(w) and T'(w) denote arbitrary continuous positive functions on 0 < w < oo.
Let
_ Pw) _Pw)
z(w) = 5w Y(w) = )
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Lemma 1.1 A real polynomial P(s) is Hurwitz if and only if the frequency plot
z2(w) = x(w) + jy(w) moves strictly counterclockwise and goes through n quadrants
mn turn.

Proof. The Hermite-Biehler Theorem and the monotonic phase property of Hur-
witz polynomials shows that the plot of P(jw) must go through n quadrants if and
only if P(s) is Hurwitz. Since the signs of P¢(w) and z(w), wP°(w) and y(w) coin-
cide for w > 0, the lemma is true. &

Although the P(jw) plot is unbounded, the plot of z(w) can always be bounded by
choosing the functions T(w) and S(w) appropriately. For example 7'(w) and S(w)
can be chosen to be polynomials with degrees equal to that of P¢(w) and P°(w)
respectively. A similar result can be derived for the complex case. Lemma 1.1 is
illustrated with the following example.

Example 1.4. Taking the same polynomial as in Example 1.2:
P(s) = s” + 11s® + 525" + 1455° + 2665° + 331s* + 280 + 15557 + 495 + 6

and writing
P(jw) = P*(w) + jwP°®(w)
we have
Pf(w) = 11w® — 145w° + 331w* — 155w? + 6
Po(w) = w® — 52w’ + 266w* — 280w? + 49.

We choose

Sw) =w® +wf +w +w? +1
Tw)=w®+u® 4w +u” + 1.

The function z(w) in Figure 1.7 turns strictly counterclockwise and goes through
nine quadrants and this shows that the polynomial P(s) is Hurwitz according to
Lemma 1.1.

It will be shown in Chapter 3 that the weighting functions S(w) and T'(w) can be
suitably chosen to extend this frequency domain criterion to verify robust Hurwitz
stability of an [, ball in coefficient space.

1.3.2 Hurwitz Stability for Complex Polynomials

The Hermite-Biehler Theorem for complex polynomials is given below. Its proof is
a straightforward extension of that of the real case and will not be given. Let P(s)
be a complex polynomial

P(s) = (a0 + jbo) + (a1 + jbi)s+ - -+ (an—1 —|—jb,,,_1)5"_1 + (@, +jb,)s™. (1.44)
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Figure 1.7. Frequency plot of z(w) (Example 1.4)
Define
Pr(s) = ao + jbis+ ays? + jbas® 4 - -
Pr(s) = jby + a5 + jbys® + agzs® + - - (1.45)
and write '
P(jw) = P"(w) + jP'(w),

where

P"(w) := Pr(jw) = ap —byw — asw? + bgw® + -
; 1
P7(w) = —,P[(j(.d) == bo —|—a1w — bzw2 — Cl3(.d3 —|— e (146)
J

The Hermite-Biehler Theorem for complex polynomials can then be stated as fol-
lows.
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Theorem 1.8 The complex polynomial P(s) in (1.44) is a Hurwitz polynomial if
and only f,

1) Gpn_10n + bn—lbn > 0)

2) The zeros of P"(w) and P'(w) are all simple and real and interlace, as w runs

from —oo to +oo.

Note that condition 1) follows directly from the fact that the sum of the roots of
the polynomial P(s) in (1.44) is equal to
_an—l +jbn—1 _ _an—lan + bn—lbn +j(bn—1an - an—lbn)

- )

a, + jb, az +b2

so that if P(s) is Hurwitz, then the real part of the above complex number must be
negative.

1.3.3 The Hermite-Biehler Theorem: Schur Case

In fact it is always possible to derive results similar to the interlacing theorem with
respect to any stability region § which has the property that the phase of a stable
polynomial evaluated along the boundary of § increases monotonically. In this case
the stability of the polynomial with respect to § is equivalent to the interlacing of its
real and imaginary parts evaluated along the boundary of §. Here we concentrate
on the case where § is the open unit disc. This is the stability region for discrete
time systems.

Definition 1.2. A polynomial,
P(z)=pn?" +pna?" " 4 1z o,
is said to be a Schur polynomial if all its roots lie in the open unit disc of the complex
plane. A necessary condition for Schur stability is |p.| > |po| (see Property 1.3).
A frequency plot for Schur stability
P(z) can be written as
P(z)=polz —21)(z —22)- (2 — 2n) (1.47)

where the z;’s are the n roots of P(z). If P(z) is Schur, all these roots are located
inside the unit disc |z| < 1, so that when z varies along the unit circle, z = ¢/ the
argument of P(e’?) increases monotonically. For a Schur polynomial of degree n,
P(e?%) has a net increase of argument of 2nm, and thus the plot of P(e/?) encircles
the origin n times. This can be used as a frequency domain test for Schur stability.

Example 1.5. Consider the stable polynomial

P(z) = 224 —3.2:% 4+ 1.242” 4 0.1922 — 0.1566
=2(240.3)(z—0.540.2j)(z — 0.5 —0.25)(z — 0.9)
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Let us evaluate P(z) when # varies along the unit circle. The plot obtained in Fig-
ure 1.8 encircles the origin four times, which shows that this fourth order polynomial
1s Schur stable.

Imag

Real
Figure 1.8. Plot of P(e??) (Example 1.5)

A simplification can be made by considering the reversed polynomial z" P(z~").
SPET) =po AT 4,
=po(l —212)(1 — 292) - - - (1 — 2, 2) (1.48)

2" P(z~") becomes zero at z = z7', i=1,--- n. If P(z) is Schur the z;’s have
modulus less than one, so that the 27 are located outside the unit disc. If we
let z = €/? vary along the unit circle the net increase of argument of e/"% P(e=7?)
must therefore be zero. This means that for Schur stability of P(z) it is necessary
and sufficient that the frequency plot, e/"? P(e=/") of the reverse polynomial not

encircle the origin.

Example 1.6. Consider the polynomial in the previous example. The plot of
2" P(z7") when z describes the unit circle is shown in Figure 1.9. As seen, the plot
does not encircle the origin and thus we conclude that P(z) is stable.
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Real
Figure 1.9. Plot of ¢/* P(¢=4%) (Example 1.6)

We see that when using the plot of P(z) we must verify that the plot of P(e/?)
encircles the origin the correct number of times n, whereas using the reverse poly-
nomial R(z) = z" P(z~1) we need only check that the plot of R(¢’?) excludes the
origin. This result holds for real as well as complex polynomials.

For a real polynomial, it is easy to see from the above that the stability of P(z)
is equivalent to the interlacing of the real and imaginary parts of P(z) evaluated
along the upper-half of the unit-circle. Writing P(e??) = R(0) + jI(0) we have:

R(0) = p, cos(nf) + - - -+ py cos(8) + po

and,

I(0) = p,, sin(nf) + - - - 4 py sin(6).
Lemma 1.2 A real polynomial P(z) is Schur with |p,| > |po| if and only if
a) R(0) has exactly n zeros in [0, 7],

b) I1(0) has ezactly n+ 1 zeros in [0, 7], and
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c) the zeros of R(0) and 1(6) interlace.
Example 1.7. Consider the polynomial
P(z) = 2" +0.22* 4+ 0.32° +0.42% + 0.03z + 0.02.

As seen in Figure 1.10 the polynomial P(z) is Schur since Re[P(e?)] and Im[P(¢’?)]
have respectively 5 and 6 distinct zeros for 6 € [0, 7], and the zeros of Re[P(e/?)]
interlace with the zeros of Im[P(e/?)].

Figure 1.10. Re[P(e/?)] and Im[P(e/?)](Schur case)(Example 1.7)

Example 1.8. Consider the polynomial
P(z)= 2742244+ 0.327 +0.427 4+ 0.032 4+ 0.02.

Since Re[P(e/*)] and Im[P(e’?)] each do not have 2n = 10 distinct zeros for 0 <
6 < 27, as shown in Figure 1.11, the polynomial P(z) is not Schur.

These conditions, can in fact be further refined to the interlacing on the unit
circle of the two polynomials Ps(z) and P,(z) which represent the symmetric and
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0

Figure 1.11. Re[P(¢/?)] and Im[P(e’?)] (nonSchur case) (Example 1.8)

asymmetric parts of the real polynomial P(z) = Pi(z) + P,(2):

1 1

e =g |Pe+p (1)) e =g [pe-op (1))

z

Theorem 1.9 A real polynomial P(z) is Schur if and only if Ps(z) and P,(z) satisfy
the following:

a) P,(z) and P,(z) are polynomials of degree n with leading coefficients of the same
sign.

b) P(z) and P,(z) have only simple zeros which belong to the unit circle.

¢) The zeros of Ps(z) and P,(z) interlace on the unit circle.

Proof. Let P(z) = po+piz +p2z? -+ p,z". The condition a) is equivalent to
p2 —p3 > 0 which is clearly necessary for Schur stability (see Property 1.3). Now we
apply the bilinear transformation of the unit circle into the left half plane and use
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the Hermite Biehler Theorem for Hurwitz stability. It is known that the bilinear

mapping, 1
s

s—1
maps the open unit disc into the open left half plane. It can be used to transform
a polynomial P(z) into P(s) as follows:

(s—1)"P (” D — P(s).

s —

Write X

P(s)=po+pis+ -+ poo18” " +ps”
where each p; is a function which depends on the coefficients of P(z). Tt follows that
if the transformation is degree preserving then P(z) is Schur stable if and only if
P(s) is Hurwitz stable. It is easy to verify that the transformation described above
is degree preserving if and only if

Pn = sz P(1) #

and that this holds is implied by condition ¢).

The transformation of P(z) into ]5(5) is a linear transformation 7". That is, ]5(5)
is the image of P(z) under the mapping 7. Then T'P(z) = P(s) may be written
explicitly as

ot 1) — TP(z) = P(s).

s-ue(

For example, for n = 4, expressing P(z) and ( ) in terms of their coefficient vectors
11 1 1 177 po o
4 -2 0 2 4 || pm Py
6 0 -2 0 6 2] = P2
42 0 =2 4 || p s
1 =1 1 =1 1| pa Py

Consider the symmetric and anti-symmetric parts of P(z), and their transformed
images, given by TP,(z) and T P,(z) respectively. A straightforward computation
shows that

TP (z) = peven (s), TP,z)= podd (s), n even
and R R

TP (z) = P°Y(s), TP,(2) =P (s), n odd.
The conditions b) and c) now follow immediately from the interlacing property for
Hurwitz polynomials applied to P(s).

The functions P,(z) and P,(z) are easily evaluated as z traverses the unit cir-
cle. Interlacing may be verified from a plot of the zeros of these functions as in
Figure 1.12.
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Im[z]

Re[z]

Figure 1.12. Interlacing of the symmetric and anti-symmetric parts of a polyno-
mial on the unit circle

General Stability Regions

The Hermite-Biehler interlacing theorem holds for any stability region & which has
the property that the phase of any polynomial which is stable with respect to &
varies monotonically along the boundary dS. The left half plane and the unit circle
satisfy this criterion. Obviously there are many other regions of practical interest
for which this property holds. For example, the regions shown in Figure 1.1.(¢) and
(d) also satisfy this condition.

In the next two sections we display another application of the Boundary Crossing
Theorem by using it to derive the Jury and Routh tables for Schur and Hurwitz
stability respectively.

1.4 SCHUR STABILITY TEST

The problem of checking the stability of a discrete time system reduces to the
determination of whether or not the roots of the characteristic polynomial of the
system lie strictly within the unit disc, that is whether or not the characteristic
polynomial is a Schur polynomial. In this section we develop a simple test procedure
for this problem based on the Boundary Crossing Theorem. The procedure turns
out to be equivalent to Jury’s test for Schur stability.
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The development here is given generally for complex polynomials and of course
it applies to real polynomials as well. Now, let

P(z)=po+piz+-+pai",
be a polynomial of degree n. The following is a simple necessary condition.
Property 1.3. A necessary condition for P(z) to be a Schur polynomial is that
[Pn] > [pol.

Indeed, if P(z) has all its roots 2y, - - -, 2, inside the unit-circle then the product of
these roots is given by

hence

Po
Pn

n
i=1

Now, consider a polynomial P(z) of degree n,
P(z)=po+piz+- - +p2".

Let 7 denote the conjugate of z and define

1
m@I”PG>:%W+@ﬂ”+M+m4Hmm

R(z) = % [P(z) _Io (z)] . (1.49)

Pn
It is easy to see that R(z) is always of degree less than or equal to n — 1. The

following key lemma allows the degree of the test polynomial to be reduced without
losing stability information.

Lemma 1.3 If P(z) satisfies |pn| > |po|, we have the following equivalence
P(z) is a Schur polynomial <= R(z) is a Schur polynomial.
Proof. First notice that obviously,
R(z) is a Schur polynomial <= zR(z) is a Schur polynomial.
Now consider the family of polynomials

Pa(2) = P(2) = M2 Q(2), where A € [0, 1].

Pn
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It can be seen that Py(z) = P(z), and Pi(z) = 2R(z). Moreover the coeflicient of
degree n of Py(z) is

)
Pn _/\|]i—|,
P
and satisfies
2
o= MEEL S = 3|22 ol > ] = ol > 0,
D Pn

so that Py (z) remains of fixed degree n.

Assume now by way of contradiction that one of these two polynomials Py(z)
or Pi(z) is stable whereas the other one is not. Then, from the Boundary Crossing
Theorem it can be concluded that there must exist a A in [0, 1] such that P, (z) has
a root on the unit-circle at the point zo = e/, 6 € [0,27), that is

Py(z0) = P(z) — Ag_o P [

kel

_i] 0. (1.50)

<0

But for any complex number z on the unit circle, 7 = %, and therefore (1.50) implies
that,

Py(z0) :P(zo)—)\g—o 2 Pzg) = 0. (1.51)
Taking the complex conjugate of this last expression it is deduced that
YR Po _n _
P(z) — /\p— Zy P(z0) = 0. (1.52)

Therefore, from (1.51) and (1.52) after using the fact that |z| = 1,

P(z0) (1 Py |p0||z) = 0. (1.53)

[Pn
2
By assumption A2 ||p0 ||2 < 1, and therefore (1.53) implies that,
P(z) = 0. (1.54)
But then this implies that
1
P(Zo) =P (_-) - 0,
20
and therefore (see (1.49))
R(z0) = 0. (1.55)

But (1.54) and (1.55) contradict the assumption that one of the two polynomials
P(z) and zR(z) is stable, and this concludes the proof of the lemma. &
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The above lemma leads to the following procedure for successively reducing the
degree and testing for stability.

Algorithm 1.1. (Schur stability for real or complex polynomials)
1) Set PO (z) = P(z),

2) Verify |pi'| > |pi],

(1) —3—
) ) (2] i
3) Construct P+ (z) = L | PU(2) — ]%z”P(:) ,
Pn o

4) Go back to 2) until you either find that 2) is violated (P(z) is not Schur) or
until you reach P(*~1(z) (which is of degree 1) in which case condition 2) is
also sufficient and P(z) is a Schur polynomial.

It can be verified by the reader that this procedure leads precisely to the Jury
stability test.

Example 1.9. Consider a real polynomial of degree 3 in the variable z,
P(z) = A taz?+bz+e.

According to the algorithm, we form the following polynomial

1 1
W)y = 2 _ 3 Z
P (z) . P(z) — ez P(f)
=(1—-c*z?+(a—be)z+b—ac,
and then,
1 b—ac 1
@)= 2 | pMx) — 2pn) (| =
PE(z) = - | PO(z) (1—(;2)”3 (;)]

L0 O (1),

1—¢2 1—¢2

On the other hand, the Jury table is given by,

¢ b a 1

1 a b ¢
-1 cb—a ca—b
ca—b chb—a |

(? =1) = (ca=b)* (cb—a)[(c* — 1) — (ca— b)]

Here, the first two lines of this table correspond to the coefficients of P(z), the third
and fourth lines to those of P{')(z) and the last one to a constant times P(*)(z),

and the tests to be carried out are exactly similar.
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1.5 HURWITZ STABILITY TEST

We now turn to the problem of left half plane or Hurwitz stability for real poly-
nomials and develop an elementary test procedure for it based on the Interlacing
Theorem and therefore on the Boundary Crossing Theorem. This procedure turns
out to be equivalent to Routh’s well known test.

Let P(s) be a real polynomial of degree n, and assume that all the coefficients
of P(s) are positive,

P(s)=po+pis—+ - +pns”, p; >0, for i=0,---,n.
Remember that P(s) can be decomposed into its odd and even parts as
P(s) = P (s) + podd (s).
Now, define the polynomial (s) of degree n — 1 by:
Ifn=2929m: Q(S) - |:P9Ven(5) _ ppispodd(s)] + POdd(S),
2m—1

Hn=2m+1: Q(S) — |:Podd(5) _ %Speven(s)] + Peven(S) (1.56)
2m

Pn
Prn—1’

that is in general, with y =

Q(8) = Pro18” ™ 4 (Paoz — 1Pn=3)5" "7 + Po=s8” > + (Pna — PPn—s5)s" 4.
(1.57)
Then the following key result on degree reduction is obtained.
Lemma 1.4 If P(s) has all its coefficients positive,

P(s) is stable <= Q(s) is stable.

Proof. Assume, for example that, n = 2m, and use the interlacing theorem.

(a) Assume that P(s) = py + - + pans?™ is stable and therefore satisfies the
interlacing theorem. Let

0< We 1 < Wo,1 < We 2 < Wo,2 << We,m—1 < Wom—1 < We m,

be the interlacing roots of P¢(w) and P°(w). One can easily check that (1.56)
implies that @¢(w) and Q°(w) are given by

Q(w) = P{(w) + pu P(w), p= z%’
Q"(w) = P?(w).

From this it is already concluded that @Q°(w) has the required number of
positive roots, namely the m — 1 roots of P?(w):

Wo,]; wo,‘Z; Ty wo,m,—1~
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Moreover, due to the form of Q°(w), it can be deduced that,

Q°(0) = P*(0) > 0,
Qe(wo,l) = Pe(wo,l) < 0;

Q° (Wo.m—2) = P*(wo.m—2), has the sign of (—1)™~%
Q°(Wo.m—1) = P*(wo.m—1), has the sign of (—1)™~*.

Hence, it is already established that Q°(w) has m—1 positive roots w ;, W, ,,
W, 1, that do interlace with the roots of @°(w). Since moreover Q°(w)
is of degree m—1 in w?, these are the only positive roots it can have. Finally,
it has been seen that the sign of Q°(w) at the last root w,m—1 of Q°(w) is

that of (—1)"~1. But the highest coefficient of Q°(w) is nothing but

(J2m—2(—1)m_1~

BN

From this ¢o,,_o must be strictly positive, as ¢s,,_1 = pam_1 18, otherwise
Q°(w) would again have a change of sign between w,,,_1 and +oo, which
would result in the contradiction of Q¢(w) having m positive roots (whereas
it is a polynomial of degree only m — 1 in w?). Therefore Q(s) satisfies the
interlacing property and is stable if P(s) is.

(b) Conversely assume that Q(s) is stable. Write

P(S) — [Qeven (S) + HSQOdd (5)] + QOdd(S) p= prm] )
By the same reasoning as in a) it can be seen that P°(w) already has the
required number m—1 of positive roots, and that P¢(w) already has m—1 roots
in the interval (0,w, ,—1) that interlace with the roots of P°(w). Moreover
the sign of P¢(w) at w, -1 is the same as (—1)™~! whereas the term po,, s*™
in P(s), makes the sign of P¢(w) at +oo that of (—=1)™. Thus P¢(w) has an
m'? positive root,
Wem > Wom—1,

so that P(s) satisfies the interlacing property and is therefore stable.
&

The above lemma shows how the stability of a polynomial P(s) can be checked by
successively reducing its degree as follows.

Algorithm 1.2. (Hurwitz stability for real polynomials)
1) Set P (s) = P(s),

2) Verify that all the coefficients of P{)(s) are positive,
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3) Construct PO+ (s) = Q(s) according to (1.57),

4) Go back to 2) until you either find that any 2) is violated (P(s) is not Hurwitz)
or until you reach P("=2)(s) (which is of degree 2) in which case condition 2)
is also sufficient (P(s) is Hurwitz).

The reader may verify that this procedure is identical to Routh’s test since it gen-
erates the Routh table. The proof also shows the known property that for a stable
polynomial not only the first column but the entire Routh table must consist only of

positive numbers. However the procedure described here does not allow to count the
stable and unstable zeroes of the polynomial as can be done with Routh’s Theorem.

Example 1.10. Consider a real polynomial of degree 4,
P(s) = st 4+ as® +bs? +es+d.
Following the algorithm above we form the polynomials,
H= %, and P (s) = as® + (b - 2) s* +es+d,

and then,

2 2
- @ = (p_ N2y (e ©d
7 pr— and P (b a)s —I—(c p— s+d.

Considering that at each step only the even or the odd part of the polynomial is
modified, it is needed to verify the positiveness of the following set of coefficients,

1 b d
a c
b— S 4
a
a2d
¢ ab—c

But this is just the Routh table for this polynomial.

Note that a lemma similar to Lemma 1.4 could be derived where the assumption
that all the coefficients of P(s) are positive is replaced by the assumption that only
the two highest degree coefficients p,_1 and p,, are positive. The corresponding
algorithm would then exactly lead to checking that the first column of the Routh
table is positive. However since the algorithm requires that the entire table be
constructed, i1t 18 more efficient to check that every new coefficient is positive.
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Complex polynomials

A similar algorithm can be derived for checking the Hurwitz stability of complex
polynomials. The proof which is very similar to the real case 1s omitted and a
precise description of the algorithm is given below.

Let P(s) be a complex polynomial of degree n,

P(s) = (ap+jbo)+(ar +5b1)s+ A+ (an_14+7jbn_1)s" " +(an+5bn)s", an+jb, # 0.

Let

bl

1

TS = a5

Thus T'(s) can be written as,

P(s).

T(s) = (co + jdo) + (c1 + jdy)s + - -+ (oot + jdu_1)s" ™" + 57,

and notice that,
Un—10n +'bn—lbn
az + b2

Cn—1 =

Assume that ¢, _; > 0, which is a necessary condition for P(s) to be Hurwitz (see
Theorem 1.8). As usual write, 7'(s) = T'r(s) + T (s), where

Tr(8) = co + jdys + eys? + jdas® + -+ |
Tr(s) = jdo + 15 + jdos® + c38° + - .

Now define the polynomial Q(s) of degree n — 1 by:

0 =2 Q) = |Tale) = ——sT1(5)| +Ti(6),
Ifn=2m+1: Qs) = [TI(S) — %STR(S)] + Tr(s),

1

Cn—1’

that is in general, with p =

Q(s) = [en—1 + J(dno1 = pdp2)]s" 7" + [(enoo — pen_s) + jdu_2]s" >
+[Cn—3 + j(dn_g, — /,Ldn_4)]5"_3 4+

Now, exactly as in the real case, the following lemma can be proved.
Lemma 1.5 If P(s) satisfies an_1an + bp_1b, >0, then
P(s) is Hurwitz stable <= Q(s) s Hurwilz stable.

The corresponding algorithm is as follows.
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Algorithm 1.3. (Hurwitz stability for complex polynomials)
1) Set PO)(s) = P(s),
2) Verify that the last two coefficients of P()(s) satisfy affllaﬁﬁ + bffllbif) >0,
3) Construct T (s) = ﬁp(i)(s)’
an” + 7bn
4) Construct P01 (s) = Q(s) as above,

5) Go back to 2) until you either find that any 2) is violated (P(s) is not Hurwitz)
or until you reach P("=1)(s) (which is of degree 1) in which case condition 2)
is also sufficient (P(s) is Hurwitz).

1.6 A FEW COMPLEMENTS

Polynomial functions are analytic in the entire complex plane and thus belong to
the so-called class of entire functions. It is not straightforward however, to obtain a
general version of the Boundary Crossing Theorem that would apply to any family of
entire functions. The main reason for this is the fact that a general entire function
may have a finite or infinite number of zeros, and the concept of a degree is not
defined except for polynomials. Similar to Theorem 1.3 for the polynomial case, the
following theorem can be considered as a basic result for the analysis of continuous
families of entire functions.

Theorem 1.10 Let A be an open subset of the complex plane C', F' a metric space,
and f be a complex-valued function continuous in A X F' such that for each o in F,
z — f(z,) is analytic in A. Let also B be an open subset of A whose closure B
in C' is compact and included in A, and let g € F be such that no zeros of f(z, o)
belong to the boundary OB of B. Then, there exists a neighborhood W of g in F
such that,

1) For all o € W, f(z,a) has no zeros on 0B.

2) For all o« € W, the number (multiplicities included) of zeros of f(z, ) which
belong to B is independent of c.

The proof of this theorem is not difficult and is very similar to that of Theorem 1.3.
It uses Rouché’s Theorem together with the compactness assumption on B. Loosely
speaking, the above result states the continuity of the zeros of a parametrized fam-
ily of analytic functions with respect to the parameter values. However, 1t only
applies to the zeros which are contained in a given compact subset of the complex
plane and therefore, in terms of stability, a more detailed analysis is required. In
the polynomial case, Theorem 1.3 is used together with a knowledge of the degree
of the family to arrive at the Boundary Crossing Theorem. The degree of a poly-
nomial indicates not only the number of its zeros in the complex plane, but also
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its rate of growth at infinity. For more general families of entire functions it is
precisely by using this additional notion of growth at infinity that results which
are similar to the Boundary Crossing Theorem may sometimes be derived. Clearly,
each particular case requires its own analysis. Much deeper results however may be
achieved and some of these are presented in the remainder of this section. These
results demonstrate the possibility of extending the Hermite-Biehler Theorem to
more general classes of entire functions, and some extensions that seem to be of
particular interest for Control Theory are selected here.
Let P(s) be a real or complex polynomial. Write,

P(jw) = P"(w) + jP'(w) (1.58)

where P"(w) and P!(w) are real polynomials in w which represent respectively the
real and imaginary part of P(jw). The Hermite-Biehler Theorem for real or complex
polynomials can be stated in the following way.

Theorem 1.11 (Hermite-Biehler)
P(s) has all its roots in the open left-half of the complex plane if and only if,

a) P"(w) and P'(w) have only simple roots and these roots interlace.
b) For allw in R, P (w)P"(w)— P{(w)P™(w) > 0.

In condition b) the symbol’ indicates derivation with respect to w. Moreover it can
be shown that condition b) can be replaced by the following condition,

b') P (w,) P (w,) — Pi(w, )P (w,) >0,  for some w, in IR.

In other words it is enough that condition b) be satisfied at only one point on the
real line.

It is quite easy to see that the Hermite-Biehler Theorem does not carry over to
arbitrary entire functions f(s) of the complex variable s. In fact counterexamples
can be found which show that conditions a) and b) above are neither necessary nor
sufficient for an entire function to have all its zeros in the open left-half plane. The
theorem however holds for a large class of entire functions and two such theorems
are given below without proofs.

One of the earliest attempt at generalizing the Hermite-Bichler Theorem was
made by L. S. Pontryagin. In his paper he studied entire functions of the form
P(s,e®), where P(s,t) is a polynomial in two variables. Before stating his result,
some preliminary definitions are needed. Let P(s,t) be a polynomial in two variables
with real or complex coefficients,

P(s,t) =) > ags'th. (1.59)

Let 7 be the highest degree in s and p be the highest degree in t. P(s,t) is said to
have a principal term if and only if a,, # 0. For example

P(s,t) =s+t,
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does not have a principal term but the following polynomial does
P(s,t)y =s+1t+st.
The first result of Pontryagin can be stated as follows.

Theorem 1.12 If the polynomial P(s,t) does not have a principal term then the
function,

f(s) = P(s, es))
has an unbounded number of zeros with arbitrarily large positive real parts.
In the case where P(s,t) does have a principal term, the main result of Pontryagin’s
paper 1s then to show that the Hermite-Biehler Theorem extends to this class of
entire functions. More precisely we have the following theorem.
Theorem 1.13 Let f(s) = P(s,e®), where P(s,t) is a polynomial with a principal
term, and write '

fw) = ") +if' (W),

where f7(w) and f!(w) represent respectively the real and imaginary parts of f(jw).

Then in order that f(s) have all its zeros in the open left-half plane it is necessary
and sufficient that the following two conditions hold,

a) f"(w) and f*(w) have only simple roots and these roots interlace,
b) For allw in R, f'(w)f" (w) — f/(w)f"" (W) > 0.

Another interesting extension of the Hermite-Biehler Theorem is now given. Let
f(s) be an entire function of the form,

f(s) = Ee“‘Pzﬂ,(s), (1.60)

where Py(s) for k= 1,---,n is an arbitrary polynomial with real or complex coef-
ficients, and the A;’s are real number which satisfy,
A <A << Ay, (M < A, (1.61)

The Hermite-Biehler Theorem also holds for this class of entire functions. Write as
usual f(jw) = f(w) + jf' (w).

Theorem 1.14 Under the above assumptions, the entire function f(s) in (1.60)
has all its zeros wn the open left-half plane if and only of

a) f"(w) and f*(w) have only simple roots and these roots interlace.
b) For allw in R, f'(w)f" (@) — fi(w)f (W) > 0.

Moreover in both Theorems 1.13 and 1.14, condition b) may be replaced by the
weaker condition,

b) fi/(wo)f’" (wo) — [H(wo)f" (wo) > 0, for some wy in RR.
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Time-delay systems
In control problems involving time delays, we often deal with characteristic equa-
tions of the form

8(s) =d(s) + e~ *Tip, (s) + e_STan(s) +qe Ty, (s). (1.62)

which are also known as quasipolynomials. Under the assumption that degl[d(s)] = n
and deg[n;(s)] < n and
0<y <Tsy << T,

it is easy to show using Theorems 1.13 and 1.14 that the stability of é(s) can be
checked using the interlacing condition. More precisely, we have

Theorem 1.15 Under the above assumptions, 6(s) in (1.62) is Hurwitz stable if
and only if

a) 6" (w) and &' (w) have only simple roots and these roots interlace.
b) 6i/(w0)6’"(w0) — 8 (w)8" (wo) > 0, for some wy in RR.

We note that the interlacing condition a) needs to be checked only up to a finite
frequency. This follows from the fact that the phasors of n;(jw)/d(jw) tend to zero
as w tend to oo. This ensures that the quasipolynomial 6(s) has the monotonic
phase property for a sufficiently large w. Therefore, the interlacing condition needs
to be verified only for low frequency range.

An immediate consequence of the above result is the following Boundary Cross-
ing Theorem for quasipolynomials. Consider the quasipolynomial family

Q(s,)) =d(s,A) + e Tiny (s, )+ e T2ny(s,\) + -+ e Tmn,,(s,0). (1.63)

where A € [a,b] and we assume that 1) Q(s, a) is Hurwitz, 2) Q(s, b) is not Hurwitz,
3) degld(s,\)] =n, ¥ A €[a,b] and 4) deg[n;(s,A)] <n, V A € [a,b].

Theorem 1.16 (Boundary Crossing Theorem for Quasipolynomials)
Under the above assumptions there exists at least one p in (a, b] such that Q(0,p) =0
or Q(jw, p) = 0 for some w € [—o0, +00].

These results are particularly useful for the stability analysis of control systems
which contain time-delays. We illustrate this in the example below.

Example 1.11. Consider the quasipolynomial:
§(s) = d(s) + e Tiny(s) + e T2ny(s)
where

d(s) = 57 4+ 55°% + 205" + 100s° + 200s° + 100s* + 1005 + 50s? + 15s + 1
ni(s) = 3s° + 1057 + 10s% + 15s° + 100s* + 50> + 50s” + 10s + 2
na(s) = 25° + 225 + 35s° + 51s° + 1315* + 130s® + 555 + 245 + 3
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with 77 = 0.1 sec and 15 = 0.3 sec. We write

d(ju) = d*() + jud® ()
ny (jw) = n§(w) + jwnd(w)
na(jw) = ns(w) + jwns(w)

and 8(jw) = 6,(w) + jé;(w). We have

6 (w) = d¥(w) + cos(wTi )nf (w) — wsin(wT} )ng (w)
+ cos(wTi)ns (w) — wsin(wTh )ng(w)

6 (w) = wd®(w) + w cos(wT )nS(w) — sin(wT} )n] (w)
Fw cos(wTy)ng (w) — sin(wTh )ns (w).

Figure 1.13 shows that é,(w) and ¢;(w) are interlacing. Thus, we conclude that the
quasipolynomial é(s) is Hurwitz.

100

‘
|
|
‘ |
|
80 ‘ !
L ! 4
‘ |
|
‘ |
|
‘ j

20

-100 z
3 2

Figure 1.13. Interlacing property for a quasipolynomial (Example 1.11)
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1.7 EXERCISES

The purpose of Problems 1-5 is to illustrate some possible uses of the Boundary
Crossing Theorem and of the Interlacing (Hermite-Biehler) Theorem. In all the
problems the word stable means Hurwitz-stable, and all stable polynomials are as-
sumed to have positive coefficients. The following standard notation is also used:
Let P(s) be any polynomial. Denote by P™"(s) the even part of P(s), and by
Podd(s) its odd part, that is

P(S):(p0+p252+p454+"')+(p15—|—p353—|—p555_|_...).

peven(s) Podd(s)

Also denote,

Pé(w) = P (jw) = po — pow” 4 pawt - -
B POdd(jw)
= =

PO(W)Z :pl—p3w2+p5w4+....

Also for any polynomial Q(¢) of the variable ¢, the notation [Q]/(t) designates the
derivative of Q(t) with respect to ¢.

1.1 Suppose that the polynomial P(s) = PV (s) 4+ P°44(s) is stable. Prove that
the following two polynomials are also stable:

Q(s) = PV (5) + [P (s) = po + 2pos + p2s” + 4pas® + -+,

R(s) = [P°"]' (s) + P°M(s) = p1 + p1s + 3pss” +pss® + - .

Hint: In both cases use the Hermite-Biehler (i.e. Interlacing) Theorem. First,
check that part a) of the theorem is trivially satisfied. To prove part b) of the

theorem for Q(s), show that —wQ°(w) = [Pe]/(w). To conclude use the fact that
for any continuous function f(t), if f(a) = f(b) = 0 for some real numbers a < b,
and if f is differentiable on the interval [a, b], then there exists a real number ¢ such
that:

a<c<b and f'(c) =0. (Rolle’s Theorem).

Proceed similarly to prove part b) of the theorem for R(s).
1.2 Suppose that:

Pi(s) = P70(s) + PyH(s)
Py(s) = P70(s) + P5H(s)

are two stable polynomials with the same ‘even’ part. Show that the polynomial
> 1 (s) defined by:

Qau(5) = P (5) + AP (s) + p Py (s),
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is stable for all A > 0 and p > 0.
Hint: You can use directly the Boundary Crossing Theorem. In doing so, check
that

Q% (@) = AP (@) + pPs (w),
and use the fact that the sign of P?(w) alternates at the positive roots of P*(w),
and does not depend on .

1.3 Suppose that P(s) is a stable polynomial:
P(s)=po+p1s+p2s’+-+pps”, n>1.
Write as usual:  P(jw) = P¢(w) + jwP?(w).
a) Show that the polynomial @, (s) associated with:
Qi(w) = P(w) = AP%(w),
and,
Qi(w) = P?(w),
is stable for all A satisfying 0 < A < Z—‘z

b) Deduce from a) that

Dok S PO o all k> 1.

Por+1 M

Hint: In part a) use the Boundary Crossing Theorem. In doing so, check carefully
that the highest coefficient of 25 (s) equals p,, for all values of A and therefore the
degree of @,(s) is n no matter what X is.

To prove b) use the fact that since Qx(s) is stable for all A in the range [0, %),

then in particular the coefficients of @, (s) must remain positive for all values of A.

1.4 Prove that if P(s) is a stable polynomial then:

Po_ P2k
2ps = (2k 4+ 2)pog4o

Hint: Use Exercise 1.1 and apply part (b) of Exercise 1.3.

, forall k> 1.

1.5 Let P(s) be an arbitrary polynomial of degree n > 0. Prove that if P(s)
satisfies part b) of the interlacing condition, but violates part a) in the sense that
PnPn—1 < 0, then P(s) is completely unstable, that is P(s) has all its roots in the
open right half plane. Give the Schur counterpart of this result.

Hint: Consider the polynomial Q(s) = P(—s).

1.6 Show, by using the Boundary Crossing Theorem that the set H,,* consisting
of n'* degree Hurwitz polynomials with positive coefficients is connected. A similar
result holds for Schur stable polynomials and in fact for any stability region §.
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1.7 Write s = 0 + jw and let the stability region be defined by
S:i={s:0<w?—1}.
Consider the parametrized family of polynomials

p(s,A) = 57 + (10 — 14X)s” + (6527 — 94 + 34)s
+(22407 — 102X% — 164X +40), A € [0,1].

Verify that p(s,0) is stable and p(s, 1) is unstable with respect to §. Use the
Boundary Crossing Theorem to determine the range of values of A for which the
family is stable and the points on the stability boundary through which the roots
cross over from stability to instability.

Hint: Consider a point (¢,w) on the stability boundary and impose the condition
for this point to be a root of p(s,A) in the form of two polynomial equations in
w with coefficients which are polynomial functions of A. Now use the eliminant to
obtain a polynomial equation in A the roots of which determine the possible values
of A for which boundary crossing may occur.

1.8 Use Algorithm 1.1 to check that the following complex polynomial is a Schur
polynomial,
P(z) =322* + (8 4+ 325)2° + (=16 +4j)z* — (2+8j)z + 2 — J.

Use Algorithm 1.3 to check that the following complex polynomial is a Hurwitz
polynomial,

P(s) = s* + 65> + (14 + j)s* + (15 + 35)s + 2j + 6.

1.9 Show using the Hermite Biehler Theorem that the polynomial P(s) + jQ(s)
with P(s) and @(s) being real polynomials has no zeroes in the lower half plane
Im s <0 if and only if

i) P(s) and Q(s) have only simple real zeroes which interlace and
i) Q' (s0)P(s0) — P'(50)Q(s0) > 0 for some point sy on the real axis.

Hint: Use the monotonic phase property.

1.10 Rework Example 1.11 with d(s), n(s), na(s) and 77 as before. Determine
the maximal value of 7, for which the system is stable by using the interlacing

property.

1.8 NOTES AND REFERENCES

The material of section 1.2 is mainly based on Marden [175] and Dieudonné [82]. In
particular the statement of Theorem 1.2 (Rouché’s Theorem) follows Marden’s book
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very closely. The Boundary Crossing Theorem and the unified proof of the Hermite-
Biehler Theorem, Routh and Jury tests based on the Boundary Crossing Theorem
were developed by Chapellat, Mansour and Bhattacharyya [68] and the treatment
given here closely follows this reference. The stability theory for a single polynomial
bears countless references, going back to the last century. For a modern exposition of
stability theory, the best reference remains Gantmacher [101] and to a lesser extent
Marden [175]. The Hermite-Biehler Theorem for Hurwitz polynomials can be found
in the book of Guillemin [105]. The corresponding theorem for the discrete time
case is stated in Bose [43] where earlier references are also given. The complex case
was treated in Bose and Shi [49]. Jury’s test is described in [124]. Vaidyanathan and
Mitra [228] have given a unified network interpretation of classical stability results.
It is to be noted that the type of proof given here of Jury’s criterion for Schur
stability can also be found in the Signal Processing literature in conjunction with
lattice filters (see, for example, the book by Haykin [108]). A considerable amount
of research has been done on the distribution of the zeros of entire functions and
numerous papers can be found in the literature. For a particularly enlightening
summary of this research the reader can consult the book of B. Ja. Levin [160].
Theorems 1.13 and 1.14 are due to Pontryagin [192]. The stability theory of time-
delay systems is treated in the book [106] by Hale. A unified approach to the proofs
of various stability criteria based on the monotonicity of the argument and the
Boundary Crossing Theorem has been described by Mansour [169].



