Chapter 0

BACKGROUND AND
MOTIVATION

In this chapter we make some introductory and motivational remarks describing
the problems of robust stability and control. The first section is written for the
reader who is relatively unfamiliar with basic control concepts, terminology and
techniques. Next, a brief historical sketch of control theory is included to serve
as a background for the contents of the book. Finally these contents and their
organization are described in some detail.

0.1 INTRODUCTION TO CONTROL

A control system is a mechanism which makes certain physical variables of a
system, called a plant, behave in a prescribed manner, despite the presence of
uncertainties and disturbances.

tracking disturbance
reference error control l output
r(t) e(t) u(t) "0
n Controller Plant >

Figure 0.1. Unity feedback control system

The plant or system to be controlled is a dynamic system, such as an aircraft,
chemical process, machine tool, electric motor or robot, and the control objective 1s
to make the system output y(t) follow a reference input r(¢) as closely as possible
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2 BACKGROUND AND MOTIVATION  Ch. 0

despite the disturbances affecting the system. Automatic control is achieved by
employing feedback. In a unity feedback or closed loop system (see Figure 0.1),
control action is taken by applying the input «(?) to the plant, and this is based
on the difference, at each instant of time ¢, between the actual value of the plant
output to be controlled y(t) and the prescribed reference or desired output r(¢).
The controller is designed to drive this difference, the tracking error e(t) to
zero. Such control systems are also called regulators or servomechanisms.

Stability and performance are two of the fundamental issues in the design,
analysis and evaluation of control systems. Stability means that, in the absence
of external excitation, all signals in the system decay to zero. Stability of the
closed loop system is an absolute requirement since its absence causes signals to
grow without bound, eventually destroying and breaking down the plant. This
is what happens when an aircraft crashes, or a satellite spins out of control or a
nuclear reactor core heats up uncontrollably and melts down. In many interesting
applications the open loop plant is unstable and the job of feedback control is to
stabilize the system. While feedback is necessary to make the system track the
reference input, its presence in control systems causes the potential for instability to
be everpresent and very real. We shall make this notion more precise below in the
context of servomechanisms. In engineering systems it is of fundamental importance
that control systems be designed so that stability is preserved in the face of various
classes of uncertainties. This property is known as robust stability.

The performance of a system usually refers to its ability to track reference sig-
nals closely and reject disturbances. A well designed control system or servomech-
anism should be capable of tracking all reference signals belonging to a class of
signals, without excessive error, despite various types of uncertainties. In other
words the worst case performance over the uncertainty set should be acceptable.
This is, roughly speaking, referred to as robust performance.

The uncertainties encountered in control systems are both in the environment
and within the system. In the first place the reference signal to be tracked is
usually not known beforehand. Then there are disturbance signals tending to offset
the tracking. For example the load torque on the shaft of an electric motor, whose
speed 1s to be maintained constant, can be regarded as a disturbance.

As far as the system is concerned the main source of uncertainty is the behaviour
of the plant. These uncertainties can occur, for example, due to changes of oper-
ating points, as in an aircraft flying at various altitudes and loadings, or a power
system delivering power at differing load levels. Large changes can also occur in
an uncontrolled fashion for example, when sensor or actuator failures occur. The
complexity of even the simplest plants is such that any mathematical representation
of the system must include significant uncertainty.

In analysis and design it is customary to work with a nominal mathematical
model. This is invariably assumed to be linear and time invariant, because this is
the only class of systems for which there exists any reasonably general design theory.
Nevertheless, such models are usually a gross oversimplification and it is therefore
necessary to test the validity of any proposed design by testing its performance



Sec. 0.1. INTRODUCTION TO CONTROL 3

when the model is significantly different from the nominal.

In summary the requirements of robust stability and performance are meant to
ensure that the control system functions reliably despite the presence of significant
uncertainty regarding the model of the system and the precise description of the ex-
ternal signals to be tracked or rejected. In the next few subsections we discuss these
requirements and their impact on control system modelling, design, and evaluation,
in greater detail.

0.1.1 Regulators and Servomechanisms

The block diagram of a typical feedback control system is shown in Figure 0.2.

Controller Plant d(s)

Figure 0.2. General feedback configuration

Here, as in the rest of the book, we will be considering linear time invariant systems
which can be represented, after Laplace transformation, in terms of the complex
variable s. In Figure 0.2 the vectors u and y represent (the Laplace transforms of)
the plant inputs and outputs respectively, d represents disturbance signals reflected
to the plant output, n represents measurement noise and r represents the reference
signals to be tracked. The plant and the feedback controller are represented by the
rational proper transfer matrices G(s), and C/(s) respectively, while F(s) represents
a feedforward controller or prefilter. The usual problem considered in control the-
ory assumes that G(s) is given while C(s) and F(s) are to be designed. Although
every control system has a unique structure and corresponding signal flow repre-
sentation the standard system represented above is general enough that it captures
the essential features of most feedback control systems.

0.1.2 Performance: Tracking and Disturbance Rejection

In the system of Figure 0.2 the plant output y(¢) is supposed to follow or track
the command reference signal r(¢) as closely as possible despite the disturbances
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d(t) and the measurement noise n(t). The exogenous signals r,d, n are of course
not known exactly as time functions but are known qualitatively. Based on this
knowledge the control designer uses certain classes of test signals to evaluate any
proposed design. A typical design specification could state that the system is to
have zero steady state error whenever the command reference r and disturbance d
consist of steps and ramps of arbitrary and unknown magnitude and slope. Often
the measurement noise n is known to have most of its energy lying in a frequency
band [wq,ws]. In addition to steps and ramps the signals » and d would have
significant energy in a low frequency band [0,wg]. A reasonable requirement to
impose is that y track » with “small” error for every signal in this uncertainty class
without excessive use of control energy.

There are two approaches to achieving this objective. One approach is to require
that the average error over the uncertainty class be small. The other approach is
to require that the error response to the worst case exogenous signal from the given
class be less than a prespecified value. These correspond to regarding the control
system as an operator mapping the exogenous signals to the error and imposing
bounds on the norms of these operators or transfer functions. We examine these
ideas more precisely by deriving the equations of the closed loop system. These are:

y(s) = Gls)u(s) +d(s)
u(s) = C(s)[F(s)r(s) —n(s) — y(s)]
e(s) :=r(s) — y(s) (tracking error).

Solving the above equations, (we drop the explicit dependence on s whenever it is
obvious)

y=[I+GC) " d+[I+GC] ' GCFr—[I+GCT ' GCn
e=—[I+GCT d+ [I - (I +GC)'GOF) r+[I + GC]™ GCn.
Introducing the sensitivity function S(s) and the complementary sensitivity
function T'(s):
S:=[I+aGo™!
T:=[+GCI " GC
we can rewrite the above equations more compactly as
y=Sd+TFr—Tn
e=—-Sd+(I—-TF)r+Tn.
As we have mentioned, in many practical cases the control system is of unity
feedback type which means that the feedback controller is driven only by the
tracking error. In such cases the feedforward element F'(s) is the identity and the
system equations simplify to
y=5Sd+Tr—Tn
e=—=Sd+ Sr+Tn.
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Ideally the response of the tracking error e to each of the signals r, d and n should
be zero. This translates to the requirement that the transfer functions S(s) and
T(s) should both be “small” in a suitable sense. However we see that

S(s)+T(s) =1, for all s €

and thus there is a built-in trade off since S and T' cannot be small at the same
values of s. This trade off can be resolved satisfactorily if the frequency bands in
which 7 and d lie is disjoint from that in which n lies. In this case S(jw) should
be kept small over the frequency band [0,wg] to provide accurate tracking of low
frequency signals and T'(jw) should be kept small over the frequency band [wq, wa],
to attenuate noise.

Suppose for the moment, that the plant is a single-input, single-output (SISO)
system. Then G, C, F', S and T are scalar transfer functions. In this case, we have,
for the unity feedback case,

T T T

U= —=r——=n——d.

G G G

From Parseval’s Theorem we have

(o] 400
/0 uw?(t)dt = % . |u(jw)|? dw
and so we see that the control signal energy can be kept small by keeping the
magnitude of T(jw) as small as possible over the frequency bands of r,d and n.
This obviously conflicts with the requirement of making S(jw) small over the band
[0, wo]. Thus for good tracking, T'(jw) must necessarily be large over [0, wg] but then
should rapidly decrease with increasing frequency to “conserve” control energy.

The above arguments also extend to multiinput-multioutput (MIMO) systems.
We know that the “gain” of a SISO linear system, with transfer function M (s),
for a sinusoidal input of radian frequency w is given by |M (jw)|. When M(s) is
a proper transfer function with poles in the open left half plane we can define the
maximum gain, which is also the H., norm of M:

sup  [M(jw)| = [|M]]eo-

0<w< o
For a MIMO system, M (jw) is a matriz and the corresponding H, norm of M is

defined in terms of the maximum singular value &/ (w) of M(jw):

sup (@) 1= Moo
0<w< o
The above requirements on S and T' can be stated in terms of norms. Let the stable
transfer matrix W(s) denote a low pass filter transfer function matrix with
W(jw) =1, for w € [0,w]
W(jw) =0, for w > wq.
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Similarly let the stable transfer function matrix V(s) denote a bandpass filter with

V(jw)~ 1, for wé€ B:=[w,ws]
V(jw) ~0, for w¢ B.

Then the requirement that S be small over the band [0,wy] and that T be small
over the band B can be stated in a worst case form:

VS|l < e
VTl < c..

0.1.3 Quantitative feedback theory

In classical control theory, the objective is to find a feedback compensator to satisfy
the above or similar types of design objectives for the nominal system. This type of
approach was extended to the domain of uncertain systems by the Quantitative
Feedback Theory (QFT) approach pioneered by Horowitz [120] in the early
1960’s. In the QFT approach, which we briefly outline here, one considers the plant
model G(s,p) with the uncertain parameter p lying in a set £ and a control system
configuration including feedback as well as feedforward elements. The quality of
tracking is measured by the closeness to unity of the transfer function relating y
to 7, the sensitivity of the feedback loop by the transfer function S, and the noise
rejection properties of the loop by the transfer function 7". Typically the tracking
performance and sensitivity reduction specifications are to be robustly attained over
a low frequency range [0, wp] and the noise rejection specifications are to be achieved
over a high frequency range [wy,00). For SISO systems the specifications assume
the forms

Cw)G(jw, p)

= U T GGGl )

< my(w), for w &[0, w)

[S(jw,p)| < li(w), for w € [0,wq]
|T(jwap)| < 12(("})’ for w e [wl,oo)

for suitably chosen frequency dependent functions my(w), ms(w), {1 (w) and l3(w).
Robust design means that the above performance specifications are met for all p € 2
by a suitable choice of feedback and feedforward compensators which stabilize the
feedback system for all p € Q. An additional requirement in QFT design is that
the bandwidth of the feedback controller C'(s) be as small as possible.

The advantage of the feedforward compensator is roughly, that it frees up the
feedback controller C'(s) to carry out certain closely related tasks such as robust
stabilization, sensitivity and noise reduction, while the feedforward controller can
subsequently attempt to satisfy the tracking requirement. This freedom allows for a
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better chance of finding a solution and also reducing the bandwidth of the feedback
controller, often referred to in QFT theory as the “cost of feedback”. QFT design
is typically carried out by loopshaping the nominal loop gain Ly = GyC, on the
Nichols chart, to satisfy a set of bounds at each frequency, with each bound reflecting
a performance specification. Once such an Ly is found, the controller C(s) can be
found by “dividing” out the plant and the feedforward filter F'(s) can be computed
from the tracking specification. The QFT approach thus has the flavor of classical
frequency domain based design, however with the added ingredient of robustness.
QFT techniques have been extended to multivariable and even nonlinear systems.

0.1.4 Perfect Steady State Tracking

Control systems are often evaluated on the basis of their ability to track certain
test signals such as steps and ramps accurately. To make the system track arbitrary
steps with zero steady state error it is enough to use unity feedback (F' = TI) and to
place one integrator or pole at the origin in each input channel of the error driven
controller C'(s). This causes each element of S(s) to have a zero at the origin,
as required, to cancel the s = 0 poles of r and d, to ensure perfect steady state
tracking. Likewise, if steps and ramps are to be tracked then {wo integrators, or
poles at s = 0 must be included.

These types of controllers have been known from the early days of automatic
control in the last century when it was known that steady state tracking and dis-
turbance rejection of steps, ramps etc. could be achieved by incorporating enough
integral action in a unity feedback control loop (see Figure 0.1). When the closed
loop 1s stable such a controller automatically converges to the correct control input
which is required to maintain zero error in the steady state. A precise model of
the plant is not needed nor is it necessary to know the plant parameters; all that is
required is that the closed loop be robustly stable. The generalization of this prin-
ciple, known as the Internal Model Principle, states that in order to track with
zero steady state error the control system should contain, internal to the feedback
loop, a model signal generator of the unstable external reference and disturbances
and the controller should be driven by the tracking error.

Although a controller incorporating integral action, or an unstable internal
model, allows the system to achieve reliable tracking, it potentially makes the sys-
tem more prone to instability because the forward path is rendered unstable.
The designer therefore faces the task of setting the rest of the controller parame-
ters, the part that stabilizes the closed loop system, so that closed loop stability is
preserved under various contingencies. In practice this is usually done by using a
fixed linear time invariant model of the plant, called the nominal model, stabiliz-
ing this model, and ensuring that adequate stability margins are attained about
this nominal in order to preserve closed loop stability under all the possible system
uncertainties.
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0.1.5 The Characteristic Polynomial and Nyquist Criterion

For linear time invariant control systems, stability is characterized by the root
locations of the characteristic polynomial. Consider the standard feedback control
system shown in Figure 0.3. If the plant and controller are linear, time invariant

C(s) G(s) >

Figure 0.3. Standard feedback system

dynamic systems they can be described by their respective real rational transfer
function matrices G(s) and C(s). Suppose that p is a vector of physical parameters
contained in the plant and that x denotes a vector of adjustable design parameters
contained in the controller. For continuous time systems we therefore write

C(s) = N.(s,x)D;"(s,x) and G(s) = D;l(s,p)Np (s,p)

where N,, D,, N, and D, are polynomial matrices in the complex variable s. The
characteristic polynomial of the closed loop control system is given by

6(s,x,p) = det [D.(s,x)D,(5,p) + N.(5,x)N, (s,p)] -

System stability is equivalent to the condition that the characteristic polynomial
have all its roots in a certain region & of the complex plane. For continuous time
systems the stability region § is the open left half, €™, of the complex plane and
for discrete time systems it is the open unit disc,ID', centered at the origin.

As an example, suppose the controller is a PID controller and has transfer func-
tion

[/7
C(s) = Kp + % + Kps

and the plant has transfer function G(s) which we write in two alternate forms

= pls — ) _ a1 s+ ag
o= (s=B)(s—7) s> +bys+by (0.1)

The characteristic polynomial is given by
5(s) = s(s— B)(s —7) + p(s —a)(Kps + Kr + Kps?)
and also by

5(s) = s(bas” +bys+by) + (a15 +ao)(Kps + K7 + Kps?).
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If a state space model of the strictly proper plant and proper controller are
employed, we have, setting the external input to zero, the following set of differential
equations describing the system in the time domain:

Plant : zp, = Apx, + Bpu
y=Coap
Controller : z.=A.x.+ B.y
U = chc + Dcy
) z, | _ | A +B,D.C, B,C. zp
Closed loop : [ i ] = [ B.C, A, v

Ac
and the closed loop characteristic polynomial is given by
8(s) = det [s]T — Ay].

Similar equations hold in the discrete time case.

If one fixes the parameters at the nominal values p = p” and x = x° the root
locations of the characteristic polynomial indicate whether the system is stable or
not. In control theory it is known that the nominal plant transfer function can
always be stabilized by some fixed controller x = x% unless it contains unstable
cancellations. For state space systems the corresponding requirement is that the
unstable system modes of A be controllable from u and observable from v.

An alternative and sometimes more powerful method of stability verification
is the Nyquist criterion. Here one seeks to determine conditions on the open
loop system G(s)C(s) that guarantee that the closed loop will be stable. The
answer is provided by the Nyquist criterion. Consider the SISO case and introduce
the Nyquist contour consisting of the imaginary axis along with a semicircle of
infinite radius which together enclose the right half of the complex plane (RHP).
The directed plot of G(s)C(s), evaluated as s traverses this contour in the clockwise
direction is called the Nyquist plot. The Nyquist criterion states that the closed
loop is stable if and only if the Nyquist plot encircles the —1 4 50 point P times in
the counterclockwise direction, where P is the number of RHP poles of G(s)C(s). A
similar condition can be stated for multivariable systems. The power of the Nyquist
criterion 1s due to the fact that the Nyquist plot is just the frequency response of
the open loop system and can often be measured experimentally, thus eliminating
the need for having a detailed mathematical model of the system.

The design of a stabilizing controller for the nominal plant can be accomplished
in a variety of ways such as classical control, Linear Quadratic Optimal state feed-
back implemented by observers, and pole placement controllers. The more difficult
and unsolved problem is achieving stability in the presence of uncertainty, namely
robust stability.
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0.1.6 Uncertainty Models and Robustness

The linear time invariant models that are usually employed are approximations
which are made to render the design and analysis of complex systems tractable. In
reality most systems are nonlinear and a linear time invariant model is obtained by
fixing the operating point and linearizing the system equations about it. As the
operating point changes so do the parameters of the corresponding linear approxi-
mation. Thus there is significant uncertainty regarding the “true” plant model,
and 1t is necessary that a controller that stabilizes the system do so for the entire
range of expected variations in the plant parameters. In addition other reasonable,
but less structured perturbations of the plant model must also be tolerated without
disrupting closed loop stability. These unstructured perturbations arise typically
from truncating a complex model by retaining only some of the dominant modes,
which usually lie in the low frequency range. Therefore unstructured uncertainty is
usually operational in a high frequency range. The tolerance of both these types of
uncertainty is,qualitatively speaking, the problem of robust stability.

In classical control design the above problem is dealt with by means of the Bode
or Nyquist plots and the notions of gain or phase margin. It is customary to fix
the controller structure based on existing hardware and software constraints and
to optimize the design over the numerical values of the fixed number of adjustable
controller parameters and any adjustable plant parameters. Thus most often the
controller to be designed is constrained to be of the proportional, integral, or PID
(proportional, integral and derivative) lag, lead or lead-lag types. Robustness was
interpreted to mean that the closed loop system remained stable, despite an ade-
quate amount of uncertainty about the nominal Bode and Nyquist plots, because
these represent the measured data from the physical system. This requirement in
turn was quantified roughly as the gain and phase margin of the closed loop system.

Gain and Phase Margin

In the gain margin calculation one considers the loop breaking m (see Figure 0.4)
and inserts a gain at that point. Thus the open loop plant transfer function G(s) is
replaced by its perturbed version kG(s) and one determines the range of excursion of
k about its nominal value of 1 for which stability is preserved (Figure 0.5). Likewise
in the phase margin calculation one replaces G(s) by e~#G(s) (Figure 0.6) and
determines the range of @ for which closed loop stability is preserved.

The importance of these concepts lie in the fact that they provide measures of
the robustness of a given designed controller since they indicate the distance from
instability or stability margin of the closed-loop system under gain and phase
perturbations of the plant’s frequency response. They can be readily determined
from the Nyquist or Bode plots and are thus useful in design. However it is to be
emphasized that this notion of distance to instability does not extend in an obvious
way to the realistic case where several independent parameters are simultaneously
subject to perturbation. We also remark here that simultaneous gain and phase
perturbations constitute a mixed real-complex perturbation problem which has only
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Figure 0.4. Unity feedback system

+._f_\ » k » G(S) »
Figure 0.5. Gain margin calculation
+ﬂ =it G(S) >

Figure 0.6. Phase margin calculation

recently been effectively analyzed by the techniques described in this book. Finally
the analysis of robust performance can be reduced to robust stability problems
involving frequency dependent perturbations which cannot be captured by gain
and phase margin alone.

Parametric Uncertainty

Consider equation (0.1) in the example treated above. The parametric uncertainty
in the plant model may be expressed in terms of the gain g and the pole and zero
locations «, 3, v. Alternatively it may be expressed in terms of the transfer function
coeflicients aq, ay, by, b1, bs. Each of these sets of plant parameters are subject to
variation. The PID gains are, in this example, the adjustable controller parameters.
Thus, in the first case, the uncertain plant parameter vector is

p1:[ﬂa67];
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the controller parameter vector 1s
x=[ Kp K; Kp ]
and the characteristic polynomial is
8(s,p1,x) = s(s — B)(s —7) + u(s — a)(Kps + K + Kps?).
In the second case the uncertain plant parameter vector is
Pzz[ao ap by by bz]
and the characteristic polynomial is
5(s,pa2,x) = s(bas? + bys+bo) + (15 + ao)(Kps + Kr + Kps?).

In most control systems the controller remains fixed during operation while the
plant parameter varies over a wide range about a nominal value p°. The term
robust parametric stability refers to the ability of a control system to main-
tain stability despite such large variations. Robustness with respect to parameter
variations is necessary because of inherent uncertainties in the modelling process
and also because of actual parameter variations that occur during the operation of
the system. In the design process, the parameters x of a controller are regarded as
adjustable variables and robust stability with respect to these parameters is also de-
sirable in order to allow for adjustments to a nominal design to accommodate other
design constraints. Additionally, it is observed that if insensitivity with respect to
plant parameters is obtained, it is generally obtained at the expense of heightened
sensitivity with respect to controller parameters. Thus, in many cases, it may be
reasonable to lump the plant and controller parameters into a global parameter
vector p, with respect to which the system performance must be evaluated.

The maximal range of variation of the parameter p, measured in a suitable
norm, for which closed loop stability is preserved is the parametric stability
margin, and is a measure of the performance of the controller x. In other words

ps = sup {a :8(s,x,p) stable, ||p—p’||<a}

is the parametric stability margin of the system with the controller x. Since p
represents the mazimal perturbation, 1t is indeed a bona fide performance measure
to compare the robustness of two proposed controller designs x; and x,. This
calculation is an important aid in analysis and design.

Consider a family of polynomials 6(s,p) of degree n, where the real parameter
p ranges over a connected set 2. If it is known that one member of the family is
stable, a useful technique of verifying robust stability of the family is to ascertain
that

S(jw,p)#0, forallpe, weR.
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This can also be written as the zero exclusion condition
0¢6(jw,2), forallw e R.

The zero exclusion condition is exploited in this text to derive various types of
robust stability and performance margins.

We note that the closed loop characteristic polynomial coefficients in the above
examples, are linear functions of the controller parameter x. On the other hand,
in the first case, the characteristic polynomial coefficients are multilinear functions
of the uncertain parameter p; whereas in the second representation they are linear
functions of the uncertain parameter po. In these cases the zero exclusion condition
can be verified easily and so can stability margins. Motivated by such examples, the
majority of robust parametric stability results developed in this book are directed
towards the linear and multilinear dependency cases, which fortunately, fit many
practical applications and also turn out to be mathematically tractable.

The problem of determining x to achieve stability and a prescribed level of
parametric stability margin p is the synthests problem, and in a mathematical sense
is unsolved. However in an engineering sense, many effective techniques exist for
robust parametric controller design. In particular the exact calculation of p, can
itself be used in an iterative loop to adjust x to robustify the system.

Nonparametric and Mixed Uncertainty

Nonparametric uncertainty refers to that aspect of system uncertainty associ-
ated with unmodelled dynamics, truncation of high frequency modes, nonlinearities
and the effects of linearization and even time-variation and randomness in the sys-
tem. It is often accounted for by, for instance, replacing the transfer function of the
plant G(s) by the perturbed version G(s) + AG(s) (additive unstructured uncer-
tainty), and letting AG(s) range over a ball of H,, functions of prescribed radius.
The problem then is to ensure that the closed loop remains stable under all such
perturbations, and the worst case performance is acceptable in some precise sense.

If the plant transfer function G(s) is not fixed but a function of the parameter
p we have the mixed uncertainty problem where the plant transfer function is
G(s,p) + AG(s) and stabilization must be achieved while p ranges over a ball in
parameter space and AG(s) ranges over an H,, ball.

Another model of nonparametric uncertainty that is in use in control theory
is in the Absolute Stability problem where a fixed system is perturbed by a
family of nonlinear feedback gains that are known to lie in a prescribed sector.
By replacing the fixed system with a parameter dependent one we again obtain the
more realistic mixed uncertainty problem.

There are now some powerful methods available for quantifying the different
amounts of parametric and nonparametric uncertainty that can be tolerated in
the above situations. These results in fact extend to the calculation of stability
and performance margins for control systems containing several physically distinct
interconnected subsystems subjected to mixed uncertainties. Problems of this type
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are treated in Chapters 9 - 14 of this book. To complete this overview we briefly
describe in the next two subsections the H., and g approaches to control design.

0.1.7 H. Optimal Control

In this section we attempt to give a very brief sketch of H., optimal control the-
ory and its connection to robust control. A good starting point is the sensitivity
minimization problem where a controller is sought so that the weighted sensitivity
function or error transfer function, with the nominal plant, is small in the H., norm.
In other words we want to solve the problem

inf [[W()(1 + Go(5)C(9)) ™

where the infimum is sought over all stabilizing controllers C'(s). A crucial step in
the solution is the so-called YJBK parametrization of all rational, proper, stabilizing
controllers. Write R R

Go(s) = N(s)D™'(s) = D™ (s)N(s)
where N(s), D(s), D(s), ]\7(5) are real, rational, stable, proper (RRSP) matrices

with N(s), D(s) being right coprime and lN)(s),N(s) being left coprime over the
ring of RRSP matrices. Let A(s), B(s) be any RRSP matrices satisfying

N(s)A(s) + D(s)B(s) = I.

The YJBK parametrization states that every stabilizing controller for Gy (s) can be
generated by the formula

C(s) = (A(s) + D(s) X (5))(B(s) = N(s)X(s)) 7"

by letting X (s) range over all RRSP matrices for which det[B(s) — N(s)X(s)] # 0.

The weighted sensitivity function minimization problem can now be rewritten as
inf [|W(s)(Z + Go(5)C(5) ™ [loo = inf [[W(s)(B(s) = N(5)X(5)) D(5)l|oc

where the optimization is now over the free parameter X (s) which is only required
to be RRSP.

The form of the optimization problem obtained in the above example is not
unique to the sensitivity minimization problem. In fact all closed loop transfer
functions of interest can be expressed as affine functions of the free parameter X(s).
Thus the generic H,, optimization problem that is solved in the literature, known
as the model matching problem takes the form

inf [[Y1 (s) = Y2(s) X (5)3(5) oo

where all matrices are RRSP. Various techniques have been developed for the so-
lution of this optimization problem. The most important of these are based on
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inner outer factorization of transfer matrices and matrix Nevanlinna-Pick interpo-
lation theory, and its state space counterpart involving the solution of two Riccati
equations.

Suppose that C(s) is a compensator stabilizing the nominal plant Gy(s). We
ask whether it stabilizes a family of plants Gy(s) + AG(s) around Go(s). The
family in question can be specified in terms of a frequency dependent bound on the
admissible, additive perturbations of the frequency response Go(jw)

[AGG) = 1G(Gw) = Go(Gw)l| < [r(5w)]

where 7(s) is a RRSP transfer function. Under the assumption that every admissible
G(s) and Go(s) have the same number of unstable poles it can be easily shown, based
on the Nyquist criterion that, C(s) stabilizes the entire family of plants if and only
if

IC(jw)(I 4+ Go(jw)C(Gw)) | - |[r(jw)| < 1, forallw € R. (0.2)

The robust stability question posed above can also be formulated in terms of per-
turbations which are H., functions and lie in a prescribed ball

B :={AG(s) : ||AG|| < o}
in which case the corresponding condition for robust stability is

IC(s)(L + Go(s)C(5)) ™ low < é (0.3)

If the perturbation of Gy (s) is specified in the multiplicative form G(s) = Go(s)(I+
AG(s)) where AG(s) is constrained to lie in the Hy, ball of radius «, and the number
of unstable poles of G(s) remains unchanged, we have the robust stability condition

I+ C)Go(s) ™ CEGo (o) < (04)

The conditions (0.2), (0.3), (0.4) can all be derived from the Nyquist criterion by
imposing the requirement that the number of encirclements required for stability
of the nominal system remain invariant under perturbations. This amounts to
verifying that

|74+ G(jw)C(jw)| #0, forallw e R

for deriving (0.2), (0.3), and
|7+ C(jw)G(jw)| #0, forallwelR

for deriving (0.4). The conditions (0.3), (0.4) are examples of the so-called Small
Gain Condition and can be derived from a general result called the Small Gain
Theorem. This theorem states that a feedback connection of stable operators
remains stable if and only if the product of the gains is strictly bounded by 1. Thus



16 BACKGROUND AND MOTIVATION  Ch. 0

a feedback loop consisting of a stable system Gy(s) perturbed by stable feedback
perturbations A € H,, remains stable, if and only if

1

o(A) = |Allee < 75—
=18 e

Now consider the question of existence of a robustly stabilizing compensator
from the set of compensators stabilizing the nominal plant. From the relations
derived above we see that we need to determine in each case if a compensator C(s)
satisfying (0.3) or (0.4) respectively exists. By using the YIBK parametrization we
can rewrite (0.3) as

1

«

inf[[(A(s) + D(5)X () D(s)]|co <

and (0.4) as
inf [(A(s) + D(5)X(s) N (]| < -

However these problems are precisely of the form of the H,, model matching prob-
lem. Therefore the standard machinery can be used to determine whether a ro-
bustly stabilizing compensator exists within the family of compensators that stabi-
lize G(s). From the above discussion it is clear that in the norm-bounded formu-
lation robust stability and robust performance problems are closely related.

0.1.8 ; Theory

The objective of p theory is to refine the small gain condition derived in H., op-
timal control, by imposing constraints on the perturbation structure allowed and
thus derive robustness results for a more realistic problem. By introducing fictitious
signals and perturbation blocks if necessary it is always possible to formulate ro-
bust stability and performance problems in a unified framework as robust stability
problems with structured feedback perturbations.

The starting point in this approach is the construction of an artificial stable
system M (s), which is scaled and defined so that the uncertain elements, which can
be real or complex can be pulled out and arranged as a block diagonal feedback

perturbation
A= dlag[A1 ;AQJ Ty Am]

with each A; being of size k; x k; repeated m; times and with #(A;) < 1. Both
performance and robust stability requirements can be reduced in this setting to the
condition

det[I + M (jw)A(jw)] #0, for allw € R. (0.5)

In the above problem formulation the matrices representing the perturbations A;
can be of arbitrary size and can be real or complex and can have repeated parame-
ters. The condition (0.5) is similar to the small gain condition derived earlier with
the important difference that the allowed perturbation matrices A must respect
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the block diagonal structure imposed. In this general setting the verification of the
inequality (0.5) is a N-P complete problem and is therefore hard for problems of
significant dimension. In the special case where the A; consist only of complex
blocks a sufficient condition (necessary and sufficient condition when n < 3) for the
the inequality (0.5) to hold is

igf&(DM(jw)D_l) <1, forallweR (0.6)

where the matrix D is a real block diagonal matrix which possesses the same struc-
ture as A. The attractive feature about the second problem is that it is convex in
D. Techniques of verifying this inequality constitutes the p analysis machinery.
To proceed to the question of synthesis one can now write out the stable system
M (s) in terms of the compensator C'(s) or its YIBK representation. This leads to
the problem
infinf [|(D[Y; (5) ~ ¥a(s) X (5)Ya(s)]1D " ) < 1. (0.7)

In g synthesis one attempts to find a solution to the above problem by alternating
between D and X(s). This is known as D-K iteration. Whenever D is fixed we have
a standard model matching problem which provides the optimum X(s). However
the structured matrix D must be chosen to guarantee that the condition (0.7) has
a solution and this 1s difficult. In the case where real parameter uncertainty exists
the A; containing real numbers would have to be replaced, in this approach, by
complex parameters, which inherently introduces conservatism.

In the next section we give a rapid sketch of the history of control theory tracing
the important conceptual developments. This is done partly to make the reader
appreciate more fully the significance of the present developments.

0.2 HISTORICAL BACKGROUND

Control theory had its beginnings in the middle of the last century when Maxwell
published his paper “On Governors” [178] in 1868. Maxwell’s paper was motivated
by the need to understand and correct the observed unstable (oscillatory) behaviour
of many locomotive steam engines in operation at the time. Maxwell showed that
the behaviour of a dynamic system could be approximated in the vicinity of an
equilibrium point by a linear differential equation. Consequently the stability or
instability of such a system could be determined from the location of the roots of the
characteristic equation of this linear differential equation. The speed of locomotives
was controlled by centrifugal governors and so the problem was to determine the
design parameters of the controller (flyball mass and inertia, spring tension etc.)
to ensure stability of the closed loop system. Maxwell posed this in general terms:
Determine the constraints on the coefficients of a polynomial that ensure that the
roots are confined to the left half plane, the stability region for continuous time
systems.

This problem had actually been already solved for the first time [109] by the
French mathematician Hermite in 1856! In his proof, Hermite related the location of



18 BACKGROUND AND MOTIVATION  Ch. 0

the zeros of a polynomial with respect to the real line to the signature of a particular
quadratic form. In 1877, the English physicist E.J. Routh, using the theory of
Cauchy indices and of Sturm sequences, gave his now famous algorithm [198] to
compute the number &k of roots which lie in the right half of the complex plane
Re(s) > 0. This algorithm thus gave a necessary and sufficient condition for stability
in the particular case when & = 0. In 1895, A. Hurwitz drawing his inspiration from
Hermite’s work, gave another criterion [121] for the stability of a polynomial. This
new set of necessary and sufficient conditions took the form of n determinantal
inequalities, where n is the degree of the polynomial to be tested. Equivalent
results were discovered at the beginning of the century by I. Schur [202, 203] and
A. Cohn [69] for the discrete-time case, where the stability region is the interior of
the unit disc in the complex plane.

One of the main concerns of control engineers had always been the analysis and
design of systems that are subjected to various type of uncertainties or perturba-
tions. These may take the form of noise or of some particular external disturbance
signals. Perturbations may also arise within the system, in its physical parameters.
This latter type of perturbations, termed parametric perturbations, may be the
result of actual variations in the physical parameters of the system, due to aging or
changes in the operating conditions. For example in aircraft design, the coefficients
of the models that are used depends heavily on the flight altitude. It may also be
the consequence of uncertainties or errors in the model itself; for example the mass
of an aircraft varies between an upper limit and a lower limit depending on the
passenger and baggage loading. From a design standpoint, this type of parameter
variation problem is also encountered when the controller structure 1s fixed but its
parameters are adjustable. The choice of controller structure is usually dictated by
physical, engineering, hardware and other constraints such as simplicity and eco-
nomics. In this situation, the designer is left with a restricted number of controller
or design parameters that have to be adjusted so as to obtain a satisfactory behavior
for the closed-loop system; for example, PID controllers have only three parameters
that can be adjusted.

The characteristic polynomial of a closed-loop control system containing a plant
with uncertain parameters will depend on those parameters. In this context, it
1s necessary to analyse the stability of a family of characteristic polynomials. It
turns out that the Routh-Hurwitz conditions which are so easy to check for a single
polynomial, are almost useless for families of polynomials because they lead to
conditions that are highly nonlinear in the unknown parameters. Thus, in spite of
the fundamental need for dealing with systems affected by parametric perturbations,
engineers were faced from the outset with a major stumbling block in the form of
the nonlinear character of the Routh-Hurwitz conditions, which moreover was the
only tool available to deal with this problem.

One of the most important and earliest contributions to stability analysis under
parameter perturbations was made by Nyquist in his classic paper [184] of 1932 on
feedback amplifier stability. This problem arose directly from his work on the prob-
lems of long-distance telephony. This was soon followed by the work of Bode [42]
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which eventually led to the introduction of the notions of gain and phase margins
for feedback systems. Nyquist’s criterion and the concepts of gain and phase margin
form the basis for much of the classical control system design methodology and are
widely used by practicing control engineers.

The next major period in the evolution of control theory was the period between
1960 and 1975 when the state-variable approach and the ideas of optimal control
in the time-domain were introduced. This phase in the theory of automatic control
systems arose out of the important new technological problems that were encoun-
tered at that time: the launching, maneuvering, guidance and tracking of space
vehicles. A lot of effort was expended and rapid developments in both theory and
practice took place. Optimal control theory was developed under the influence of
many great researchers such as Pontryagin [192], Bellman [25, 26], Kalman [125] and
Kalman and Bucy [128]. Kalman [126] introduced a number of key state-variable
concepts. Among these were controllability, observability, optimal linear-quadratic
regulator (LQR), state-feedback and optimal state estimation (Kalman filtering).

In the LQR problem the dynamics of the system to be controlled are represented
by the state space model which is a set of linear first order differential equations

(1) = Az(t) + Bu(t)

where (1) represents the n dimensional state vector at time t. The objective of
control is to keep x close to zero without excessive control effort. This objective 1s
to be achieved by minimizing the quadratic cost function

= / (& (1)Qa(t) + /(1) Ru(t)dt.
0
The solution is provided by the optimal state feedback control
u(t) = Fz(t)
where the state feedback matrix F' is calculated from the algebraic Riccati equation:
A'P+PA+Q—PBR'B'P=0

F=-R'B'P

The optimal state feedback control produced by the LQR problem was guaranteed
to be stabilizing for any performance index of the above form, provided only that
the pair (@, A) is detectable and (A, B) is stabilizable. This means that the char-
acteristic roots of the closed loop system which equal the eigenvalues (A + BF') of
A+ BF lie in the left half of the complex plane.

At this point 1t 1s important to emphasize that, essentially, the focus was on
optimality of the nominal system and the problem of plant uncertainty was largely
ignored during this period. One notable exception was to be found in a 1963 pa-
per [244] by Zames introducing the concept of the “small gain” principle, which
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plays such a key role in robust stability criteria today. Another was in a 1964
paper by Kalman [127] which demonstrated that for SISO (single input-single out-
put) systems the optimal LQR state-feedback control laws had some very strong
guaranteed robustness properties, namely an infinite gain margin and a 60 degree
phase margin, which in addition were independent of the particular quadratic index
chosen. This is illustrated in Figure 0.7 where the state feedback system designed
via LQR optimal control has the above guaranteed stability margins at the loop
breaking point m.

u = Ax + Bu Y

m y=_Cx

Figure 0.7. State feedback configuration

In implementations, the state variables, which are generally unavailable for direct
measurement, would be substituted by their “estimates” generated by an observer
or Kalman filter. This takes the form

2(t) = Az(t) + Bu(t) + L(y(t) — Ci(t))

where Z(t) is the estimate of the state #(¢) at time ¢. From the above equations it
follows that

(& = 2)(t) = (A4 = LO)(z — &)(1)

so that the estimation error converges to zero, regardless of initial conditions and
the input u(t), provided that L is chosen so that A — LC' has stable eigenvalues.

To close the feedback loop the optimal feedback control 4 = F'x would be re-
placed by the suboptimal observed state feedback control @ = Fz. It is easily
shown that the resulting closed loop system has characteristic roots which are pre-
cisely the eigenvalues A+ BF and those of A — LC. This means that the “optimal”
eigenvalues were preserved in an output feedback implementation and suggested
that the design of the state estimator could be decoupled from that of the opti-
mal controller. This and some related facts came to be known as the separation
principle.

Invoking this separation principle, control scientists were generally led to believe
that the extraordinary robustness properties of the LQR state feedback design were
preserved when the control was implemented as an output feedback. We depict
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this in Figure 0.8 where the stability margin at the point m continues to equal that
obtained in the state feedback system.

U x=Ax+ Bu Y

{Jlr)
s
S
y

Estimated States

Observer >~

Figure 0.8. Observed state feedback configuration

In 1968 Pearson [187] proposed a scheme whereby an output feedback compen-
sator could be designed to optimize the closed loop dynamics in the LQR sense, by
including the requisite number of integrators in the optimal control problem formu-
lation from the outset. The philosophy underlying this approach is that the system
that is implemented should also be optimal and not suboptimal as in the previous
observed state feedback case. In [52] Brasch and Pearson showed that arbitrary
pole placement could be achieved in the closed loop system by a controller of order
no higher than the controllability index or the observability index.

In the late 1960’s and early 1970’s the interest of control theorists turned to
the servomechanism problem. Tracking and disturbance rejection problems with
persistent signals such as steps, ramps and sinusoids could not be solved in an ob-
vious way by the existing methods of optimal control. The reason is that unless
the proper signals are included in the performance index the cost function usually
turns out to be unbounded. In [35] and [36] Bhattacharyya and Pearson gave a
solution to the multivariable servomechanism problem. The solution technique in
[36] was based on an output regulator problem formulated and solved by Bhat-
tacharyya, Pearson and Wonham [37] using the elegant geometric theory of linear
systems [237] being developed at that time by Wonham. Tt clarified the conditions
under which the servo problem could be solved by relating it to the stabilization
of a suitably defined error system. The robust servomechanism problem, based on
error feedback, was treated by Davison [79], and later Francis and Wonham [96]
developed the Internal Model Principle which established the necessity of using
error driven controllers, and consequently internal models with suitable redundancy,
for reliable tracking and disturbance rejection.

In Ferreira [93] and Ferreira and Bhattacharyya [94] the multivariable servomech-
anism problem was interpreted as a problem wherein the exogenous signal poles are
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to be assigned as the zeroes of the error transfer functions. The notion of blocking
zeros was introduced in [94] and it was shown that robust servo performance, which
1s equivalent to robust assignment of blocking zeros to the error transfer function,
could be achieved by employing error driven controllers containing as poles, in each
error channel, the poles of the exogenous signal generators.

It was not realized until the late 1970’s that the separation principle of state
feedback and LQR control theory really applies to the nominal system and is not
valid for the perturbed system. This fact was dramatically exposed in a paper by
Doyle in 1978 [87] who showed by a counterexample that all the guaranteed robust-
ness properties (gain and phase margins) of the LQR design vanished in an output
feedback implementation. Referring to the Figure 0.8 we emphasize that the stabil-
ity margins that are relevant are those that hold at the point m’ and not those that
hold at m. In other words injecting uncertainties at m implies that the observer
is aware of the perturbations in the system, which is unrealistic. On the other
hand stability margins at m’ reflect the realistic situation, that uncertainty in the
plant model is unknown to the observer. Doyle’s observation really brought back
to the attention of the research community the importance of designing feedback
controllers which can be assured to have desirable robustness properties, and thus
a renewed interest appeared in the problem of plant uncertainty. It was realized
that the state space based approach via LQR optimal control was inadequate for
robust stability. The geometric approach of Wonham [237], which had proved suc-
cessful in solving many control synthesis problems, was also inadequate for handling
robustness issues because i1t assumed exact knowledge of the plant.

At about this time, significant results were being reported on the analysis of mul-
tivariable systems in the frequency domain. In particular, the concept of coprime
matrix fraction description of multivariable systems was introduced as a design tool
by Youla, Jabr and Bongiorno [241, 242] and Desoer, Liu, Murray and Saeks [81].
In [242] and Kucera [156] a parameterization of all stabilizing controllers was given
and this parameterization (which is commonly referred to as the YJBK parameter-
ization) has come to play a fundamental role in the theory of robust stabilization of
multivariable systems. Also, the Nyquist stability criterion was generalized to mul-
tivariable systems by Rosenbrock [197], and Mac Farlane and Postlethwaite [166].

This confluence of interests naturally led to a frequency domain formulation
for the robust control problem. More precisely, uncertainty or perturbations in a
system with transfer function G(s) were modelled as,

i) G(s) — G(s) (I + AG(s)), or
i) G(s) — G(s) + AG(s) with ||AG(s)|| < .

Here [|AG(s)|| denotes a suitable norm in the space of stable transfer function matri-
ces, and case 1) represents a multiplicative perturbation whereas case ii) represents
an additive perturbation. From our present perspective, this type of perturbation
in a plant model will be referred to as unstructured or norm bounded perturbations.
One reason for this designation is that the norms which are commonly employed in
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i) and ii) completely discard all the phase information regarding the perturbation.
Also, there is no obvious connection between bounds on the coefficients or other
parameters of G(s) and the transfer function norm bounds.

The solution to the robust stabilization problem, namely the problem of de-
termining a controller for a prescribed level of unstructured perturbations, was
given in 1984 by Kimura [148] for the case of SISO systems. The multivariable
robust stabilization problem was solved in 1986 by Vidyasagar and Kimura [234]
and Glover [103].

These results were in fact a by-product of an important line of research initiated
by Zames [245] concerning the optimal disturbance rejection problem which can be
summarized as the problem of designing a feedback controller which minimizes the
worst case effect over a class of disturbances on the system outputs. This problem
1s mathematically equivalent to the so-called sensitivity minimization problem or to
the problem of minimizing the norm of the error transfer function. Note that the
idea of designing a feedback control so as to reduce the sensitivity of the closed-loop
is a very classical idea which goes back to the work of Bode [42].

In his seminal paper [245] of 1981, Zames proposed the idea of designing feedback
controllers which do not merely reduce the sensitivity of the closed-loop system but
actually optimize the sensitivity in an appropriate sense. The crucial idea was
to consider the sensitivity function as a map between spaces of bounded energy
signals and to minimize its induced operator norm. This translates to the physical
assumption that the disturbance signal that hits each system is precisely the worst
disturbance for that system.

The induced operator norm for a convolution operator between spaces of finite
energy signals is the so-called H,, norm which derives its name from the theory
of Hardy spaces in functional analysis. Zames’ fundamental paper thus introduced
for the first time the H,, approach to control system design. In this same paper
the solution of the H, sensitivity minimization problem was given for the special
case of a system with a single right half plane zero. This paper led to a flurry of
results concerning the solution of the H., optimal sensitivity minimization problem
or of the H,, optimal disturbance rejection problem. Francis and Zames [97] gave a
solution for the SISO case, and the multivariable problem was solved by Doyle [89],
Chang and Pearson [53] and Safonov and Verma [201]. In [90, 88] Doyle showed
the equivalence between robust performance and sensitivity in H., problems. A
state space solution to the H,, disturbance rejection problem was given by Doyle,
Glover, Khargonekar and Francis [91].

Following the same norm optimization design philosophy, Vidyasagar proposed
in [233] the Ly optimal disturbance rejection problem. TIn this problem, the dis-
turbances that affect the system are no longer bounded energy (L) signals but
bounded amplitude (L) signals. The L, optimal disturbance rejection problem
was solved by Dahleh and Pearson in 1987 [73].
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0.3 THE PARAMETRIC THEORY

It is important to point out that during the 1960°s and 70’s the problem of stabil-
ity under large parameter uncertainty was almost completely ignored by controls
researchers. The notable exceptions are Horowitz [120] who in 1963 proposed a
quantitative approach to feedback theory, and gilj ak [211] who advocated the use of
parameter plane and optimization techniques for control system analysis and design
under parameter uncertainty. This was mainly due to the perception that the real
parametric robust stability problem was an impossibly difficult one, precluding neat
results and effective computational techniques. Supposedly, the only way to deal
with 1t would be to complexify real parameters and to overbound the uncertainty
sets induced in the complex plane by real parameter uncertainty with complex plane
discs.

The situation changed dramatically with the advent of a remarkable theorem [143]
due to the Russian control theorist V.L. Kharitonov. Kharitonov’s Theorem showed
that the left half plane (Hurwitz) stability of a family of polynomials of fixed but
arbitrary degree corresponding to an entire box in the coefficient space could be
verified by checking the stability of four prescribed vertex polynomials. The result
is extremely appealing because the apparently impossible task of verifying the sta-
bility of a continuum of polynomials could now be carried out by simply using the
Routh-Hurwitz conditions on 4 fixed polynomials. The number 4 is also surprising
in view of the fact that a) for polynomials of degree n the box of polynomials in
question has 271 vertices in general and b) the Hurwitz region is not convex or
even connected. From a computational point of view the fixed number 4 of test
polynomials independent of the dimension of the parameter space is very attrac-
tive and dramatically counterbalances the usual arguments regarding increase in
complexity with dimension.

Kharitonov’s work was published in 1978 in the Russian technical literature but
his results remained largely unknown for several years partly due to the fact that
Kharitonov’s original proofs were written in a very condensed form.

The appearance of Kharitonov’s Theorem led to a tremendous resurgence of in-
terest in the study of robust stability under real parametric uncertainty. For the
first time since Routh’s and Hurwitz’s results, researchers started to believe that the
robust control problem for real parametric uncertainties could be approached with-
out conservatism and overbounding, and with computational efficiency built right
into the theory. Moreover, it has also revealed the effectiveness and transparency of
methods which exploit the algebraic and geometric properties of the stability region
in parameter space, as opposed to blind formulation of an optimization problem.
This has led to an outpouring of results in this field over the last few years.

The first notable result following Kharitonov’s Theorem is due to Soh, Berger
and Dabke [214] in 1985 who, in a sense, adopted a point of view opposite to
Kharitonov’s. Starting with an already stable polynomial §(s), they gave a way to
compute the radius of the largest stability ball in the space of polynomial coefficients
around 6. In their setting, the vector space of all polynomials of degree less than
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or equal to n is identified with R"™ equipped with its Euclidean norm, and the
largest stability hypersphere is defined by the fact that every polynomial within the
sphere 1s stable whereas at least one polynomial on the sphere itself 1s unstable.

The next significant development in this field was a paper by Bartlett, Hollot
and Lin [21] which considered a family of polynomials whose coefficients vary in an
arbitrary polytope of R with its edges not necessarily parallel to the coordinate
axes as in Kharitonov’s problem. They proved that the root space of the entire
family is bounded by the root loci of the exposed edges. In particular the entire
family is stable if and only if all the edges are proved to be stable. Moreover this
result applies to general stability regions and is not restricted to Hurwitz stability.

In 1987 Biernacki, Hwang and Bhattacharyya [40] extended the results of [214]
and calculated the largest stability ball in the space of parameters of the plant
transfer function itself. This work was done for the case of a plant with a single
input and multiple outputs, or the dual case of a plant with multiple inputs and
a single output, and a numerical procedure was given to compute the stability
radius. These and other results on parametric robust stability were reported in a
monograph [29] by Bhattacharyya.

In 1989, Chapellat and Bhattacharyya [58] proved the Generalized Kharitonov
Theorem (GKT) which gave necessary and sufficient conditions for robust stability
of a closed loop system containing an interval plant in the forward path. An inter-
val plant is a plant where each transfer function coefficient can vary in a prescribed
interval. The solution provided by GKT reveals an extremal set of line segments
from which all the important parameters of the behaviour of the entire set of un-
certain systems can be extracted. The number of extremal line segments is also
mdependent of the number of uncertain parameters.

The extremal set characterizes robust stability under parametric uncertainty,
worst case parametric stability margin, frequency domain plots such as Bode and
Nyquist envelopes, worst case H, stability margins and mixed uncertainty stability
and performance margins. The characterization enjoys the built-in computational
efficiency of the theory and provides closed form or almost closed form solutions to
entire classes of control design problems that could previously only be approached
as optimization problems on a case by case basis. In a series of recent papers the
Generalized Kharitonov Theorem has been established as a fundamental and unify-
ing approach to control system design under uncertainty. In combination with the
recently developed highly efficient computational techniques of determining stability
margins, such as the Tsypkin-Polyak locus [225, 226] and those based on the Map-
ping Theorem of Zadeh and Desoer [243], the GKT provides the control engineer
with a powerful set of techniques for analysis and design.

The above fundamental results have laid a solid foundation. The future devel-
opment of the theory of robust stability and control under parametric and mixed
perturbations rests on these. The objective of our book is to describe these results
for the use of students of control theory, practicing engineers and researchers.
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0.4 DISCUSSION OF CONTENTS

We begin Chapter 1 with a new look at classical stability criteria for a single poly-
nomial. We consider a family of polynomials where the coefficients depend contin-
uously on a set of parameters, and introduce the Boundary Crossing Theorem
which establishes, roughly, that along any continuous path in parameter space con-
necting a stable polynomial to an unstable one, the first encounter with instability
must be with a polynomial which has unstable roots only on the stability boundary.
This is a straightforward consequence of the continuity of the roots of a polynomial
with respect to its coefficients. Nevertheless, this simple theorem serves as the uni-
fying idea for the entire subject of robust parametric stability as presented in this
book. In Chapter 1 we give simple derivations of the Routh and Jury stability
tests as well the Hermite-Biehler Theorem based on this result. The results
developed in the rest of the chapters depend directly or indirectly on the Boundary
Crossing Theorem.

In Chapter 2 we study the problem of determining the stability of a line seg-
ment joining a pair of polynomials. The pair is said to be strongly stable if
the entire segment is stable. This is the simplest case of robust stability of a
parametrized family of polynomials. A first characterization is obtained in terms of
the Bounded Phase Lemma which is subsequently generalized to general poly-
topic families in Chapter 4. We then develop necessary and sufficient conditions for
strong stability in the form of the Segment Lemma treating both the Hurwitz
and Schur cases. We then establish the Vertex Lemma which gives some useful
sufficient conditions for strong stability of a pair based on certain standard forms
for the difference polynomial. We also discuss the related notion of Convex Di-
rections. The Segment and Vertex Lemmas are used in proving the Generalized
Kharitonov Theorem in Chapter 7.

In Chapter 3 we consider the problem of determining the robust stability of a
parametrized family of polynomials where the parameter is just the set of polyno-
mial coefficients. This 1s the problem treated by Soh, Berger and Dabke in 1985.
Using orthogonal projection we derive quasi-closed form expressions for the real
stability radius in coefficient space in the Euclidean norm. We then describe
the Tsypkin-Polyak locus which determines the stability radius in the £, norm for
arbitrary p in a convenient graphical form. Then we deal with a family of complex
polynomials where each coefficient is allowed to vary in a disc in the complex plane
and give a constructive solution to the problem of robust stability determination
in terms of the H., norms of two transfer functions. The proof relies on a lemma
which gives a robust Hurwitz characterization of the H., norm which is useful in
its own right.

In Chapter 4 we extend these results to the parameter space concentrating on
the case of linear parametrization, where the polynomial coefficients are affine linear
functions of the real parameter vector p. We develop the procedure for calculating
the real parametric stability margin measured in the £, €5 and £., norms. The
main conceptual tool is once again the Boundary Crossing Theorem and its compu-
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tational version the Zero Exclusion Principle. We consider the special case in
which p varies in a box. For linearly parametrized systems this case gives rise to a
polytope of polynomials in coefficient space. For such families we establish the
important fact that stability is determined by the exposed edges and in special
cases by the vertices. It turns out that this result on exposed edges also follows from
a more powerful result, namely the Edge Theorem, which is established in Chapter
6. Here we show that this stability testing property of the exposed edges carries
over to complex polynomials as well as to quasipolynomials which arise in control
systems containing time-delay. A computationally efficient solution to testing the
stability of general polytopic families is given by the Bounded Phase Lemma,
which reduces the problem to checking the maximal phase difference over the vertex
set, evaluated along the boundary of the stability region. The Tsypkin-Polyak
locus for stability margin determination is also described for such polytopic sys-
tems. We close the chapter by giving an extension of the theory of disc polynomials
developed in Chapter 3 to the case of linear disc polynomials where the charac-
teristic polynomial is a linear combination with polynomial coefficients of complex
coefficients which can vary in prescribed discs in the complex plane.

In Chapter 5 we turn our attention to the robust stability of interval poly-
nomial families. We state and prove Kharitonov’s Theorem which deals with
the Hurwitz stability of such families, treating both the real and the complex cases.
This theorem is interpreted as a generalization of the Hermite-Biehler Interlacing
Theorem and a simple derivation is also given using the Vertex Lemma of Chapter
2. An important extremal property of the Kharitonov polynomials is established,
namely that the worst case real stability margin in the coefficient space over an in-
terval family occurs precisely on the Kharitonov vertices. This fact is used to give an
application of Kharitonov polynomials to robust state feedback stabilization.
Finally the problem of Schur stability of interval polynomials is studied. Here
it is established that a subset of the exposed edges of the underlying interval box
suffices to determine the stability of the entire family.

In Chapter 6 we state and prove the Edge Theorem. This important result
shows that the root space boundary of a polytope of polynomials is exactly
determined by the root loci of the exposed edges. Since each exposed edge is a one
parameter family of polynomials, this result allows us to constructively determine
the root space of a family of linearly parametrized systems. This is an effective tool
in control system analysis and design.

In Chapter 7 we generalize Kharitonov’s problem by considering the robust
Hurwitz stability of a linear combination, with polynomial coefficients, of interval
polynomials. This formulation is motivated by the problem of robust stability of
a feedback control system containing a fixed compensator and an interval plant in
its forward path and we refer to such systems as linear interval systems. The so-
lution is provided by the Generalized Kharitonov Theorem which shows that
for a compensator to robustly stabilize the system it is sufficient that it stabilizes a
prescribed set of line segments in the plant parameter space. Under special con-
ditions on the compensator it suffices to stabilize the Kharitonov vertices. These
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line segments, labeled extremal segments, play a fundamental characterizing role
in later chapters.

In Chapter 8 we develop some extremal frequency domain properties of
linear interval control systems. The extremal segments are shown to possess bound-
ary properties that are useful for generating the frequency domain templates
and the Nyquist, Bode and Nichols envelopes of linear interval systems. The
extremal gain and phase margins of these systems occur on these segments.
We show how these concepts are useful in extending classical design techniques to
linear interval systems by giving some examples of robust parametric classical
control design.

In Chapter 9 we consider mixed uncertainty problems, namely the robust sta-
bility and performance of control systems subjected to parametric uncertainty as
well as unstructured perturbations. The parameter uncertainty is modeled through
a linear interval system whereas two types of unstructured uncertainty are consid-
ered, namely H°° norm bounded uncertainty and nonlinear sector bounded pertur-
bations. The latter class of problems is known as the Absolute Stability problem.
We present robust versions of the Small Gain Theorem and the Absolute
Stability Problem which allow us to quantify the worst case parametric or un-
structured stability margins that the closed loop system can tolerate. This results
in the robust versions of the well-known Lur’e criterion, Popov criterion and the
Circle criterion of nonlinear control theory.

Chapters 10 and 11 deal with the robust stability of polynomials containing
uncertain interval parameters which appear affine multilinearly in the coefficients.
The main tool to solve this problem is the Mapping Theorem described in the
1963 book of Zadeh and Desoer. We state and prove this theorem and apply it
to the robust stability problem. In Chapter 11 we continue to develop results on
multilinear interval systems extending the Generalized Kharitonov Theorem
and the frequency domain properties of Chapters 7, 8 and 9 to the multilinear case.

In Chapter 12 we deal with parameter perturbations in state space mod-
els. The same mapping theorem is used to give an effective solution to the robust
stability of state space systems under real parametric interval uncertainty. This is
followed by some techniques for calculating robust parametric stability regions
using Lyapunov theory. We also include results on the calculation of the real
and complex stability radius defined in terms of the operator (induced) norm
of a feedback matrix as well as some results on the Schur stability of nonnegative
interval matrices.

In Chapter 13 we describe some synthesis techniques. To begin with we
demonstrate a direct synthesis procedure whereby any minimum phase interval
plant of order n, with m zeros can be robustly stabilized by a fixed stable minimum
phase compensator of order n — m — 1. Then we show, by examples, how stan-
dard results from H® theory such as the Small Gain Theorem, Nevanlinna-Pick
interpolation and the two Riccati equation approach can be exploited to deal with
parametric perturbations using the extremal properties developed earlier.

In Chapter 14 some examples of interval identification and design applied
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to two experimental space structures are described as an application demonstrating
the practical use of the theory described in the book.

The contents of the book have been used in a one-semester graduate course on
Robust Control. The numerical exercises given at the end of the chapters should be
worked out for a better understanding of the theory. They can be solved by using
a MATLAB based Parametric Robust Control Toolbox available separately. A
demonstration diskette based on this ToolBox is included in this book, and includes
solutions to some of the examples.

0.5 NOTES AND REFERENCES

Most of the important papers on robust stability under norm bounded perturba-
tions are contained in the survey volume [83] edited by Dorato in 1987. Dorato
and Yedavalli [86] have also edited in 1990, a volume of papers collected from IEEE
Conferences which contains a large collection of papers on parametric stability.
Siljak [212] gave a (1989) survey of parametric robust stability. Many of the re-
sults presented in this book were obtained in the M.S. (1987) and Ph.D. (1990)
theses [54, 55] of H. Chapellat and the Ph.D (1986) thesis [131] of L. H. Keel. The
1987 book [29] of Bhattacharyya, and the recent books [2] and [14] by Ackermann
and Barmish respectively concentrate on the parametric approach. The mono-
graph [85] by Dorato, Fortuna and Muscato, and the 1985 book [232] of Vidyasagar
all deal with H, optimization and the book [84] by Dorato, Abdallah and Cerone
deals with Linear Quadratic Optimal Control. The book [167] by Maciejowski is
a design oriented textbook on control systems concentrating on robustness issues.
In the book of Boyd and Barratt [51] several control design problems are treated
as convex optimization problems. The proceedings [180, 32, 172] of several Inter-
national Workshops on Robust Control held since 1988, and edited respectively by
Milanese, Tempo and Vicino [180], Hinrichsen and Martensson [110], Bhattacharyya
and Keel [32] and Mansour, Balemi and Trudl [172], are also useful references.



