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Announcements

e Homework 3 is due Apr 7

e Reading
 Sackinger Chapter 8



Mach-Zehnder Modulator (MZM)
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An optical interferometer is formed with the incoming light split,
experiencing phase shifts through the two paths, and then recombined

If the phase shift between the two waves is 0°, then there is
maximum constructive interference and the output intensity is highest
(ideal logic 1)

If the phase shift between the two waves is 180°, then there is
maximum destructive interference and the output intensity is lowest
(ideal logic 0)

An MZM changes the relative phase between the two paths with a
modulation voltage via the electrooptic effect, producing the
modulated output signal



Ideal MZM Response
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e Assuming no loss and a perfect 50/50 splitter/combiner
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Ideal MZM Response
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Here V), is the differential voltage applied between the two input
ports and V_ 1s the voltage necessary for 7 phase shift, also called

the switching voltage.



Single or Dual-Drive
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Optical waveguides

« Only one are is driven in a single-ended manner
« While only requiring a single high-speed input signal, there is generally

some chirp in the output signal
 Need to apply the full V; to one are to get maximum extinction ratio

e Dual-Drive MZM

- Both arms are driven in a differential/push-pull manner
« This ideally results in no chirp at the output
« Only need to apply £V/2 on the two arms to get maximum extinction ratio

- SiO,
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V,*L Product
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The amount of phase shift generated by an MZM is proportional to

voltage applied and the length of the phase shifter

e Typical values
e Lithium Niobate: 14Vcm

Thus, an MZM figure of merit is the V;*L product

* Silicon (Depletion-Mode): 4Vcm
» Silicon (MOS Capacitor): 0.2Vcm

which must be terminated

These large VP*L products lead to long controlled-impedance electrodes

A key challenge is matching the propagation speed of the electrical
modulation signal with the optical beam



Chirp Parameter
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where v,,;; and v,,, are the voltage swings
o on the two modulator arms.
With differential signaling v, =—v;,, and the chirp is ideally zero.

If v) <—vl? then we can actually have negative chirp and potential pulse
compression when passed through a fiber with positive D

If v)" =v,0, then we get a purely phase modulated signal and the MZM can be used
for phase modulation (QPSK), rather than amplitude modulation.



Silicon Free Carrier Plasma Dispersion Effect

e The refractive index of silicon can be changed through
the free-carrier
electron and ho
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plasma dispersion effect where the
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nsorption (loss)

nis effect is utilized for all present high-speed silicon
notonic modulators
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Silicon Depletion-Mode MZM

HEEEXERER
P majority

[Analui JSSC 2006]

carrers
R EREEERR

B ERERERERRER
majority

P carrlers
LAA/
= @

rrrrrr

_l+cosAI

2

Between M21

e Here the silicon waveguide is doped as a PN junction
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ne depletion region is modulated as a function of the
pplied reverse bias voltage

ne resultant change in the carrier density within the

depletion region causes the refractive index to change
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MOS Capacitor Accumulation Mode MZM

[Webster _
CSICS 2015] Poly-Si Optical Intensity

Gate Oxide

e With a MOS capacitor structure, a change in the
accumulation carrier density occurs with the applied gate
voltage

e The resultant change in the carrier density within the MOS
capacitor region causes the refractive index to change

e Very large changes in charge density can be achieved!
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Traveling-Wave MZM Driver

Chip Boundary

Resistor Calibration Setting <3:0>
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Distributed MZM Driver

[Cignoli ISSCC 2015]
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o Allows for CMOS style drivers
o Well suited for a monolithic silicon photonic process

e Hybrid integration requires may pad connections between
CMOQS/silicon photonic die
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PAM4 Level Generation w/ MZMs
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(b)
o E-DAC PAM4 TX
* PAM4 driver bandwidth and swing limitation
« Multi current/voltage level

e O-DAC PAM4 TX

» Velocity mismatch between LSB and MSB
 Multi driver design



Optical DAC NRZ/PAM4
Reconfigurable MZM TX

9 segments 5 segments
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e 5 LSB segments and 9 MSB segments
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56Gb/s PAM4 16nm FinFET CMOS Prototype

Segment setting ER RLM EYE width | Eye height
(@) 3 LSB+6 MSB 6.35dB 0.942 5.12ps 11.6uW
(b) 4 LSB+7 MSB 8.14dB 0.896 5.01ps 4.6uW
(©) 4 LSB+8 MSB 8.46dB 0.944 5.7ps 18.4uW




MZM Transmitter Performance Summary

References This Work Issccl:%ngtl)lls I;-S?;g 33?6 OFCQ£016 Opt>i(clgn29016
Data Rate (Gb/s) 56 25 56 50 56
Modulation NRZ/PAM4 NRZ NRZ NRZ/PAM4 PAM4
Modulator Structure SE SE TW TW TW
Integration Technology | CCopper Pillap | Copper Pillar | Copper Pillar | Wire Bond Monolithic
MZM Length(mm) 7 3 3 NA 3
Test Pattern PRBS 23 PRBS 7 PRBS 31 PRBS 31 PRBS 23
Extinction Ratio (dB) [€D) 4-6 2.5 5.6 6
Power (mW) 708* 275 300 613 135%**
Power Efficiency (pJ/bit) 12.6 11 5.35 12.26 2.7
Technology 16nm FinFET | 65-nm CMOQOS Bﬁghsl]gs 65-nm CMOS CMgg-Sm;OI

*  Clocking and data serialization and digital backends power are included
** Power Consumption at 50Gbps
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Automatic Bias Control
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Next Time

o Electroabsorption Modulator (EAM) TX
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