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Announcements

e Homework 2 is posted on website and due Mar 1

e Majority of material follows Sackinger Chapter 4



Agenda

e Receiver Model

e Bit-Error Rate

e Sensitivity

e Personick Integrals

o Power Penalties

e Bandwidth

e Equalization

o Jitter

e Forward Error Correction



Receiver Model

Detector Linear Channel [Sackinger] Declsion Ckd.
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e Photodetector model

e Linear channel representing the transimpedance
amplifier (TIA) and main amplifier (MA) gain and an
optional low-pass filter

e Detector with a decision threshold, /.,



Receiver Detector Model

Detector Linear Channel [Sackinger] Decision Ckl.
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e Signal current source /., which is linearly related to
the optical power

* Noise current source /, 4,» Whose spectrum is
approximated as uniform and signal dependent



Receiver Linear Channel (Front-End)

Detector Linear Channel [Sackinger] Declsion Ckd.
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Modeled with a linear transfer function H(7) relating the output voltage v,
amplitude & phase with input current /.,

« From a sensitivity perspective, the signals are small & linearity generally holds

e Single input-referred noise current source with a spectrum that produces
the correct output-referred noise spectrum after passing through H(¥)

o Generally, the TIA’s input-referred noise dominates



Detector and Amplifier Noise

e Detector noise

« Nonstationary — rms value changes MPJ:mMM i 1=\ 4QRP BW,
with the bit value T

« Uniform (white) frequency spectrum

« Noise power spectral density must 5
formally be written as a time-varying I 5, ( f ,t) ~ bit Value(t)
function ’ B

0 1 6 01 10

e Amplifier noise 2
« Stationary — rms independent of time ’n

« Non-white frequency spectrum which
is well modeled as having a white
component and a component that
increases « to #

]lgamp(f):aO +a2f2 T...




Receiver Decision Circuit

Detector Linear Channel [Sackinger] Decision Ckl.
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e Compares the linear channel output v, with a decision
threshold V.,

e For binary (OOK) modulation
« Above V., — “One” bit
+ Below V), — “Zero” bit



Agenda

o Receiver Model

e Bit-Error Rate

e Sensitivity

e Personick Integrals

o Power Penalties

e Bandwidth

e Equalization

o Jitter

e Forward Error Correction



Bit Errors

The receiver front - end output before the decision element can

be modeled as the superposition of the desired signal and the noise

vo(t)=vs(t)+v,(t)

Occasionally, the instantaneous noise voltage v, (¢) can suffiently
corrupt the output and exceed the decision threshold V7 to cause

a bit error.

Ideally, this happens at a low - probability or bit - error rate (BER)
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Output Noise — Amplifier Component

Detector Linear Channel Decision Ckt.
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Output Noise Power Spectrum: V2 (f)= H (f )‘2 I (f)

n,amp n,amp
Integrating this noise spectrum over the decision circuit bandwidth BW,

gives the total noise power experienced by the decision circuit

V2w = PN 12 gy (1)

e Note that since H(¥) generally rolls-off quickly, the exact upper bound is

not too critical and could be set to a very high value (infinity) "



Output Noise — Detector Component

Formally, because the detector noise 1s nonstationary, we should write it as
nPD (f.1)= J PD (f.t=t")-h(t")-”*7 ar
where A(t )1s the front - end impulse response.

e This effective convolution implies that the noise can impact not only it's
bits, but can also spread to impact other bits

e However, we generally assume that the noise varies slowly relate to A(%)
and we can simplify the detector noise analysis

Vn%PD(fat):‘H(f)‘z 'LiPD(fat) ,,,NJ%
2RP _ﬂuwm ims =\N4qRP BW,
2 BW, 0 1060 01 10
Vg,PD(t) J- D‘H( )‘ 3,PD(f:t)df

e For simple OOK modulation, we use 2 values of the time-dependent
output noise power
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Total Output Noise

e The total output rms noise value is the root-sum-of-squares
of the uncorrelated detector and amplifier noise components

v (6)=1v o)+ v, amp ')
— J-“fWD ‘H(f)‘z ) [LiPD(f»t)_" Liamp(f)]df

e For simple OOK modulation, we will have two rms values

rms rms
Vi 0 and Vil

ipiv }

2RP | - ——— ‘:f{ ,.ganNJ: ~.":IQ'F"F—,BH'{n
RP+ -4 ———- .
0 t

0100110
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Signal, Noise, and Bit-Error Rate (BER)

[Sackinger] Bit
Errors
Ve I . <~ Yoru
NRZ Signal + Noise Noise Statistics

e The noise is Gaussian with a standard deviation equal to the
noise voltage rms value

e With an equal distribution of 1s and Os, setting V. at the
crossover of the two distributions yields the fewest bit errors

e The bit-error rate (BER) is defined as the probability that a 0

is misinterpreted as a 1 or vice-versa
14



BER Calculation

NRZ Signal + Noise Noise Statistics
e For BER, we should calculate the area under the Gaussian “tails”

e Assuming equal 0 and 1 noise statistics for now, the 2 tails should be
equal and we just need to calculate 1 of them

0 . V vEP
BER:I Gauss(x)x with Q=-PH - S
0 ’i;ms 2V’i;ms

e Here Gauss(x) is a normalized Gaussian distribution (u=0,c6=1)

e The lower bound Qs the difference between the levels and the decision
threshold, normalized by the Gaussian distribution standard deviation, o

15



Personick Q and BER

e The Q parameter is called the Personick Qand is a
measure of the ratio between the signal and noise

j;Gauss(x)dx = ﬁ j;oe_zdx = ;erfc(

2

Table 4.1 Numerical relationship between © and bit-error rate.

Q BER 0 BER
0.0 1/2 5.998 10~°
3.090 1073 6.361 10710
3.719 1074 6.706 10~ 1
4.265 1077 7.035 10~ 12
4.753 10-6 7.349 10~13
5.199 1077 7.651 10—
5.612 10~8 7.942 10715

3

If we want BER =107%, then we need O =7.0350r

vl =14.07v,™, assuming equal 1 and 0 noise statistics
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What if I Have Unequal Noise Distributions?

Neglecting any noise memory effect, the rms noise simply alternates

rms

between v,y and v,

n,l

We have a relatively thinner, lower - noise distribution for the Os,

with o, o =v,y , and a thicker, higher - noise distribution for the s,

rms

) witho,,=v, | .

H\ v (xlag=0)

VPP

" BER = j Gauss(x)lx with Q=

I"ﬂ’lS rms

nO +Vn1

0" Mean “1” Mean 17



Signal-to-Noise Ratio

e In optical receiver analysis, the signal-to-noise ratio
(SNR) is often defined as the mean-free average
signal power divided by the average noise power

Mean - Free Average Signal Power : v? (£)— vt ?

2
pp
For a DC - balanced NRZ signal, this 1s (VSZ )

— _
b2, 02,

2

Noise Power :

svr=— 2]

(5 +"_1)
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Signal-to-Noise Ratio Extremes

1. Noise is dominated by the amplifier, with equal
noise on 0s and 1s

— (Vb{)p)z \ — (pr)z _ N2 . rms __ _ rms
SNR = 2(2,0 +E,1)_ 2(2(V;ms)2) =07, with v, =v%
Fora BER =102 (0 =7.0) = SNR =(7.0)* =49.0=16.94B

2. Noise is dominated by the detector/optical
amplifier, with un-equal noise on 0s and 1s

(vpp )2 (vpp )2 Q ’ : rms rms
SNR = ——-% V==, with v, >>v,

2 2 2
2vn,0+vn’1) Z(Vn 1 2

2
ForaBER =10"*(0=7.0) = SNR = (7;)) =24.5=13.9dB N
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Electrical Receiver Sensitivity

e Sensitivity is the minimum input-referred signal
necessary to achieve the desired bit-error rate
Electrical Receiver Sensitivity, 22 _, is the minimum peak - to - peak

signal current at the receiver input to achieve the desired BER.

An input current swing produces an output voltage swing
vl = Hylt? =20v,"™
where H , is the midband value of H(f").

rms
ipp :::Zgzvn
Sens

for the O necessary for the BER
0

rms

Vi

Input - Referred RMS Noise: i, = o
0

pp __ 2£2lW%S

SenS
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Electrical Receiver Sensitivity

If /™ =380nA, what is the electrical receiver sensitivity for a BER =107%?

i =20i"™ =2(7.035)380nA)=5.35u4

Sel’lS

e What if I have unequal noise distributions on 0s
and 1s?

PP _ rms rms pp FMS | . FmS
Vs _Q(nO +an ) — lsens_Q(nO +ln1 )

rms rms

IS Vn,O 1S Vn,l

where i, 5 = and i, | =
H ’ H,
e Note that so far we have assumed an ideal slicer

for the decision circuit. A real slicer's minimum

signal input and offset will degrade this sensitivity.

More about this later.
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Optical Receiver Sensitivity

Optical Receiver Sensitivity, Psens, is the minimum optical power,
averaged over time, required to achieve the desired BER.
Assuming a DC - balanced signal with a high extinction ratio (more

about this later), the average signal current 1s

— i — it

jo=5— = P,=25_

50 5 2R
S _iths _ 200" _ O™
2R 2R R

or if we have different noise distributions

-7'mS -rms
p . Q(ln,O +ln,1 )
sens

2R
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Optical Receiver Sensitivity

If i)™ =380nA and R = 0.84/W , what is the optical receiver

sensitivity for a BER = 10729
po =9 _ (7.035)380nA ) _ 3.34 W =—24.8dBm
R 0.84/W

e Note that the optical receiver sensitivity is based
on the average signal value, whereas the electrical

sensitivity is based on the peak-to-peak signal
value

24



Optical RX Sensitivity w/ Ideal Photodetector

e In order to compare the relative performance of
different electrical receivers, it is useful to
normalize out the photodetector performance

e The sensitivity excluding the PD’s quantum
efficiency n is

hc B
nBsenS :7°Q'lnms
q

or if we have different noise distributions

- _he ol +int)
M sens = 14 5

25



Optical RX Sensitivity w/ Ideal Photodetector

e Previous example using PD with R=0.8A/W

If ;™ =380nA and R = 0.84/W, what is the optical receiver

sensitivity for a BER =107%?

00" _(T035)3800A) 350 o4 gapm

sens R 0.84/W

e Now, normalizing (multiplying) by the quantum
efficiency or dividing by an ideal responsivity at a
given wavelength

V'S

If i, =380nA and we are operating at a wavelenth of 1550nm,

what is the optical receiver sensitivity for a BER = 10"% with an ideal photodetector?

hC - rms (7.035)(380nA) 2.67 uW
77Psens - an = 5 =
Aq 8x10°(4/W -m))1550nm)  1.24

=2.16ulW =-26.7dBm

26



Low and High Power Limits

e The sensitivity limit is the weakest signal for
which we can achieve the desired BER

e However, if the signal is too large, we can
also have bad effects that degrade BER

* Pulse-width distortion
- Data-dependent jitter

e The overload limit is the maximum signal for
which we can achieve the desired BER

27



Dynamic Range

l'PP

e Input overload current v

 This is the maximum peak-to-peak signal current
for which a desired BER can be achieved

e Optical overload power »,,

 This is the maximum time-averaged optical
power for which a desired BER can be achieved

e The dynamic range is the ratio of the
overload limit and the sensitivity limit

. l.fﬁ I_)ovl
Dynamic Range = ==

j PP
sens

sens

28



Reference Bit-Error Rates Examples

o Sensitivity must be specified at a desired BER!

Assumingi, " =380nA and R =0.84/W for the following

e SONET OC-48 (2.5Gb/s) requires BER<1019 ((0=6.361)

_ 90" _(6361)3800A) 3 1 55 2pm

sens R 0.84/W
e SONET OC-192 (10Gb/s) requires BER<10-12 ((Q=7.035)

00" _(TO35)3800A) 53y o4 m

sens R 0.84/W

e What about BER<101>? (0=7.942)

sens = O _ (7.942)(380nA) =3.77TuW =-24.2dBm
R 0.84/W

29



Sensitivity Analysis w/ Amplifier Noise Only

e Here we are assuming that amplifier noise dominates

e With a p-i-n photodetector

e With an APD

e With an optically preamplified p-i-n detector

FMS T mS
by = n,amp
Ql-l"ms
B n,am
P sens,PIN = P
IS
- 1 an,amp
P sens,APD — .
M R

Assuming R=0.8A/W, M=10, G=100, and BER=10-12

Parameter Symbol 2.5Gb/s 10Gb/s
Input rms noise due to amplifier ip.amp 380nA 1.4 nA
Input signal swing for BER = 107 12 il 5.3 uA 19.7 nA
Sensitivity of p-i-n receiver Paens PIN —24.8dBm  —19.1dBm
Sensitivity of APD receiver Pensapp  —348dBm  —29.1dBm
Sensitivity of OA + p-i-n receiver Peens. OA —44.8dBm —39.1dBm

123nW!

P sens, APD = —

<V'ms

1 . an,amp
R

If we neglect detector noise, the
optically preamplified p-i-n
detector only requires an average
optical power of -39.1dBm or

30




Now Let’s Include the Detector Noise

o Starting with a p-i-n detector RX, because of the signal-
dependent detector noise we need to consider 2 different
noise values

2 .2 2 )
Ly 0 I ,PIN ,0 ti, ,amp and In J In ,PIN 1 + ln ,amp

e Here we assume that the detector noise is very small for a 0
bit and that we have a high extinction ratio, i.e. P, =2Pgens

FMS __ rms V'ms 'ms
In0 = bn.amp and i1 —\/4qRPsenSBW +(namp)2

FMS | TS
Q(n 0 +ln1 )

Utilizing Psens = we can derive that

2R
-MS
ﬁsenS,P]N = Q nRamp Q qf:W
// K\

Amplifier Noise Shot Noise 31



Now Let’s Include the Detector Noise

o With an APD receiver, we assume the following 2 different noise values

PSS _ Lrms and l-rms \/F °M2 4qRﬁsensBWn n (l-rms )2

ln,O ln,amp nl —

n,amp
B jrms )
PsenS,APD = 1 y Q AP + F- Q qBWn
M R R

o With an optically preamplified p-i-n detector receiver, we assume the
following 2 different noise values

PSS _ -FmS and l.rms \/UF . G2 4qR]_)sensBWn n (l-rms )2

ln,O ln,amp nl — n,amp

r'ms

2
— l
PsenS,OA — : . Q LOmp +77F . Q q]an

o The amplifier noise is suppressed with increasing detector gain, while
the shot noise increases with the excess noise factor
32



Sensitivity w/ Amplifier & Detector Noise

Assuming R=0.8A/W, M=10, G=100, and BER=10-12
For the APD: F=6 (7.8dB)

For the OA+p-i-n: n=0.64, F=3.16 (5dB) w/amp noise only
{previous table)

Parameter Symbol 2.5Gb/s 10Gb/s 10Gb/s A

Input rms noise due to amplifier I amp 380nA 1.4 uA

Sensitivity of p-i-n receiver Peens PIN —24.7dBm ~19.1dBm 0dB

Sensitivity of APD receiver Peens APD —33.5dBm —27.8dBm 1.3dB

Sensitivity of OA + p-i-n receiver Pyens.0n —41.5dBm -35.6dBm  3.5dB

e For the 10Gb/s receivers, relative to amplifier noise only
» p-i-n RX sensitivity is virtually unchanged = OK to ignore shot noise

« APD RX sensitivity is degraded by ~1dB = ignoring shot noise gives
you a reasonable estimate. Depending on the link budget margin,
may or may not be able to neglect shot noise.

« OA + p-i-n RX sensitivity degrades by >3dB = definitely need to

include the shot noise
33



BER Plots

e To analyze RX performance, we often plot BER or Q versus the average

optical power Oi"™ BW,
* At low power levels, this should track  Py.,.s piyv = 'n.amp Q 9

R R
BER @  BER 101l0gQ
05 5 ]o 106°
12
107 | Dynamic Range 167
-6 14
10° | .
10° | le 10
102} BER Floor ] 1072}
10 f e N ]/ ——————————— 48 107°
107°F i 5§ i ; 1672
‘ I 10 1 L i L L
oUW  0.5pW  1.0uW S omw -34 -33 -32 -31 -30
Optical Power P; Optical Power P; [dBm]
IEf We plot versus Il?_ear |:I)oweg t:jle Q If we plot versus power in dB, then
unction increases linearly and the 10log(Q) function increases linearly

BER improves « erfc(Q)
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BER Plots

BER 10logQ
10‘3 55 1s
16
108 | Dynamic Range | .
! i
-9
10 5 | 18
102} | BERFioor ! *
oSl Y A v 9
-20 /$§ { D
10 I sensitivity limit | 5 | 149 Overload limit
55 5

“34 —33 32 31 -30
Optical Power P; [dBm]
e The sensitivity limit occurs at the minimum power level for the
desired BER

e The BER will improve if we increase the power further, until the
shot noise term begins to dominate and we reach a BER floor

e As power is increased further, signal distortions occur and we reach

the overload limit, beyond which the BER tends to degrade rapidly



Optimum APD Gain

e Recall for an APD, that as the avalanche gain M increases, so does
the excess noise factor F and they are related by the ionization-

coefficient ratio k, Fk M+ (—k )(2 lj
=ky —ky) 4~

e Considering that the sensitivity M
is inversely proportional to M
and proportional to F, there
exists an optimum APD gain

Y
o
.
—
o

N
T
o

——-

Avalanche Gain M
Excess Noise Factor F

1S 2 2 2
PsenS,APD = ! y an,amp + F - Q QBWn ! a5 50 55 60 !
R R Reverse Bias Voitage Vypp [V]
;rms 1_k e The optimum APD gain
M, = mamp A increases with more amplifier
Ok 49BW,  k, noise, as the APD gain

suppresses this noise

e Note for an optically preamplified p-i-n RX, the noise figure goes down

with increased gain G, and thus higher G always improves sensitivity _



What If We Had a Perfect Noiseless Amplifier?

o If we can somehow reduce our amplifier noise to be very low, we will
ultimately be limited by the detector noise
2 2 2
BW, — BW — BW,
Q 9 2 Psens,APD =F- Q qR 2 Psens,OA :77F Q qR 2

Assuming R=0.8A/W, M=10, G=100, and BER=10-12
For the APD: F=6 (7.8dB)
For the OA+p-i-n: n=0.64, F=3.16 (5dB)

Table 4.4 Maximum receiver sensitivities at BER = 10~ 12 for various photodetectors. A
noiseless amplifier i1s assumed.

P sens,PIN =

Parameter Symbol 2.5Gb/s 10 Gb/s

Sensitivity of p-i-n receiver 7’-53,,& PIN —47.3dBm —41.3dBm
Sensitivity of APD receiver Peens. APD —39.5dBm —33.5dBm
Sensitivity of OA + p-i-n receiver Piens.0A —44.2 dBm —-38.2dBm

e As evident by the equations above, the p-i-n RX performs best
e The APD RX sensitivity is degraded by F (7.8dB)
e The OA+p-i-n RX sensitivity is degraded by hF (-1.9dB+5dB=3.1dB)
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cVERYTHING ¢

PWESOME,

What If Everything Is Perfect? BSOS

e If we have zero amplifier and detector noise, we can receive
data with an infinitesimally amount of optical power, right?

e Uh no, as we still need to at least detect one photon to
determine that we have a “1” bit, which is the quantum limit

e Photon count per “1” bit, n, follows a Poisson distribution
oy M"
e .
n!
where M 1s the mean of the distribution

Poisson(n)=

e Assuming no power is sent for a 0", these bits will always
be correct

38



Quantum Limit Sensitivity

e The error probability for a “1” is Poisson(0)
BER = %Poisson(O)z %e_M

Thus, we need an average number of M photons per "1" bit
M =-1n(2BER)
Per bit, we need M /2 photons, which results in an average power of
—In(2BER) he R
2 A

where B 1s the bit rate

P sens,quant —

Table 4.5 Quantum limit for the sensitivity at BER = 10712

Parameter Symbol 2.5Gb/s 10Gb/s

Quantum limit Psens.quant —53.6dBm —47.6 dBm

e How do the previous example RX sensitivities with amplifier and detector
noise compare relative to the 10Gb/s quantum limit sensitivity?

e p-i-n RX = +28.5dB
« APD RX = +19.8dB
« OA + p-i-n = +12dB 39
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Total Input-Referred Noise

Detector Linear Channel Decision Ckt.

e In order to calculate the RX e e T .
sensitivity, we need the input- '\ inamp  Filter
referred rms current noise | dih @fg_

e The easiest way to obtain this (in ! b _
simulations) is to integrate the S - |

output noise spectrum over the ~ #, T
promeir v SO | I WY
S BWp )
) jz:jol I;if) .Igif)df e Note that since H(7)
i uickly, the oxact

where I7(f)= ],f,PD (f)+ I,iamp (f) arethe input - referred noise UPPEr I:_>ou nd is not
too critical and could

be set to a very high

irms:\P: e W value (infinity)
n n
H; H,

power spectrum of the detector and amplifier noise.
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How to Get the Input RMS Noise from the
Input Noise Power Spectrum?

Detector Linear Channel Decision Ckt.
————————————————————————————————————————————— 1
bge gl . :
i‘ ! i ln,amp Filter ! i o 1
: I :"'1 1 {

1 - f
| | 1 ] 1 L
: i i i | | -\ ' MR P EC |
) 'PD "n.PD ' i : va L A }
I | ——— Oy | \
R | . - § ..o

12 1 |H |2 vz,

e If we cannot simulate the output noise spectrum, we can get the input-
referred rms noise from the input noise spectrum through integration

 However, we must be very careful regarding the bounds of the integral
due to the rapidly rising #Z component

= 1 (f)df
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Noise Bandwidths

The input - noise spectrum can be expressed as
2 2 -
In(f):a0+a2f In

2
= O el

_

BW;, BWy, 2
b HY dr + 22 [P (r)

Hé
=, BW, +7213W,32
where

1 2 1 2
BW,= oy (Y df and BWG, = [T H() 2
0 0

BW, 1isidentical to the noise bandwidth of the receiver's frequency response.

BW , 5 1s the second - order noise bandwidth for the £ noise component.
43



Noise Bandwidths

i* = a,BW, +?2BW,132
where

1 2 1 2
BW, = [, CH() df and B = [TPIH(S) S
0 0

e The bandwidths BW_ and BW,_, depend only on the receiver’s frequency
response and the decision circuit’s bandwidth BW,

e Note that BW, is not too critical if it is larger than the receiver bandwidth

e Assuming BWy=o, BW_, and BW,, are calculated for typical receiver

frequency responses
Tabie 4.6 Numcrical values for BW,, and BW,,5.

H(f) BW, BW,»
Ist-order low pass 1.57 - BWs4p 00 12 BW. o, 2
2nd-order low pass, crit. damped (Q = 0.500) 1.22 - BWagp 2.07 - BWagp 3"{\} |
2nd-order low pass, Bessel (Q = 0.577) 1.15 - BWi4p 1.78 - BWaq4p ;
2nd-order low pass, Butterworth (Q = 0.707) 1.11 - BWs4p 1.49 . BWs4p - - = o
Brick wall low pass 1.00 - BWa4g 1.00 - BWs4p |{ Il” —
Rectangular (impulse response) filter 0.500 - B o0 BW, BW,, f
NRZ to full raised-cosine filter 0.564- B 0.639. B




What if I Just Integrate Up To the 3dB
Bandwidth?

e \What we should do is use the table 124
data and calculate

e
e But, what if we simply integrate up to the
3dB bandwidth, which is equivalent to using

i aoBW; 4 +%BW33CJB

n =

e Referring to the table, this is only correct for a Brick Wall
_Low Pass response and can lead to significant error

e For example, with a 2"d-order Butterworth response, this
underestimates the white noise component by 1.11x and the
 component by 3.33x

45



Personick Integrals

o Optical receiver literature
often uses constants from
Personick Integrals

i2 = oy BW, + %BW,?2 —ay-I,B+a, 1B’
where B is the bit rate

3
_ B, and ]3=BW”2

I
* B 3B°

e The Personick Integrals I, and I; are normalized
noise bandwidths

46
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e Bit-Error Rate
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e Personick Integrals

e Power Penalties

e Bandwidth

e Equalization

o Jitter

e Forward Error Correction
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Power Penalty

e So far we have primarily been considering random
noise sources and assumed that we have had an
ideal transmitter, receiver decision circuit, etc...

e The actual receiver sensitivity will be degraded by
impairments throughout the optical link and is
quantified by power penalties

e The power penalty PPis the increase in average
transmit power necessary to maintain the desired
BER, relative to an ideal case where we don't have
the impairment

e This is quantified in dBs, 10log(~P)
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Typical Impairments

e Transmitter e MA
 Extinction ratio « Distortions (ISI)
 Relative intensity noise (RIN) « Offset
« QOutput power variations  Noise figure
e Fiber - Low-frequency cutoff
- Dispersion e CDR
« Nonlinear effects  Decision-threshold offset
e Detector - Decision-threshold ambiguity
 Dark current « Sampling-time offset
e TIA « Sampling-time jitter

 Distortions (ISI)
« Offset
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Decision-Threshold Offset PP

e So far we have assumed that the decision
threshold is in the ideal place

pp
Vs

Assuming equal noise distributions and DC - balanced data pp I
V
s

VDTH = )

e \What if there is an offset?

Vore =Vpra +6vs”
Depending on the polarity on the offset, we must increase the distance

of one of the levels (high level) from the offset threshold. This implies a
new peak - to - peak signal level vi’” with }; pp

'pp PP
14 Vv
S _ 7§ PP
= + 0vg
2 2

VPP =vEP 4 250EP = vEP (1+26)
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Decision-Threshold Offset PP

Thus the signal swing must be increased by
VPP
S _=1+20 VPP

and the power penalty 1s
PP=1+20

e Note that we are neglecting the improved BER on one of the levels
(low level), but formally considering this has only a small impact on
the resulting PP

Examplel: v, =1mV and the decision - threshold offset is ImV

ForaBER =101 = v{¥ =14.07mV

ImV

S =
14.07mV
PP=1+20=1.142=0.577dB

=(0.071
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Decision-Threshold Offset PP

Example 2 : What should the offset be for only a 0.1dB power penalty?
_ PP-]
2

0

0.1
1019 -1
2
Thus the offset should be

i =0.012(14.07mV ) =164 uV

o =0.012

e Good receiver offset control is necessary to
minimize this power penalty!
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Dark Current PP

e Dark current by itself isn‘t @ major issue, as
we generally assume that the receiver can
somehow subtract it out

e However, a potential problem is the shot
noise that it induces, which can be
quantified as a power penalty

2
Iy ,DK — 2CI]DKBVV
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Dark Current PP

e To keep things simple, let's assume that the
receiver noise is dominated by the amplifier noise.
Note, this will slightly overestimate the dark
current PP.

e The dark current noise increases the total noise by

' amp * I DK _1, 24Lpx BV,
2 B 2

'n amp 'n amp

<V'ms

As the sensitivity 1s proportional to i,

PP = \/1 4 241k BV,

l-2
n,amp
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Dark Current PP

Examplel: Assumea 2.5Gb/s receiver with i, =380n4, BW, =1.9GHz,

n,amp

19 ~
pp 1+ 20631077 ”f)(l'gGHZ) =1.0000105=4.6x10~dB
(380n4)

Example 2 : What if  have an APD RX with /' =6and M =107?

2 2 19
PP — \/1 M gq]DKBWn _ \/1 , 6(10) (2)1.6x10 C)Z(SnA)(1.9GHz)
' (380n4)

ln,amp

=1.0063=0.027dB
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Dark Current PP

Example 3: What must the dark current be for a 0.05dB power penalty?

p

Ipg <

\

|

.2
l
I i <(PP2 _q) ame

'2gBW,

Using the 2.5Gb/s receiver numbers

0.05
10 10

]21

\

~ (380n4)

J

—5.53
2(1.6x107°C |1.9GHz) -

e As long as the effective dark current is in the low
uA or less, the power penalty is generally negligible
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Agenda

o Receiver Model

e Bit-Error Rate

e Sensitivity

e Personick Integrals

o Power Penalties

e Bandwidth

e Equalization

o Jitter

e Forward Error Correction
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Noise vs ISI Bandwidth Trade-Offs

If we design our receiver to have a very wide bandwidth,
then we will receive the signal with minimal distortion

However, noise will grow as bandwidth increases

From a basic sensitivity perspective, decreasing bandwidth
results in ever-improving sensitivity

However, this neglects the filtering of the high-frequency
pulses (bits) which causes intersymbol interference (ISI)

Thus, there is an optimum bandwidth from a sensitivity
perspective to balance noise and ISI

This optimum bandwidth is generally about (2/3)58
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Eye Diagrams

random

Use a precise clock to chop the data
into equal periods

a0ourRUEUCnd

overlay each period onto one plot

[Walker]

amplitude /
distribution at Y-Y
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Voltage (V)

Eye Diagrams vs Data Rate

Channel Frequency Response

0
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Eye Diagrams vs Channel

Desktop 5Gb/s Eye

Voltage (V)

0 100 200 300 400

o

Channel Responses

o
o

¥
=

Channel Response (dB)

T ; __________ ‘w _____

i i i L

Voltage (V)

2 4 6 8 10 12 14 16

Frequency (GHz)
Refined BP 5Gh/s Eye

0 100 200 300 400
Time (ps)

Legacy BP 5Gb/s Eye

Voltage (V)

0 100 200 300 400
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PP Diff Voltage (V)

Inter-Symbol Interference (ISI)

e Previous bits residual state can distort the current bit,
resulting in inter-symbol interference (ISI)

o ISI is caused by
 Reflections, Channel resonances, Channel loss (dispersion)

oo oo
~ O -

(o)}

o o0 o0
N W RO

o
0 -

Legacy BP SGb!s Pulse Response

......................................................................

5 6 7
Time (ns)

0.5

Legacy BP 5Gb/s Pulse Response




ISI Impact

e At channel input (TX output), eye diagram is
wide open

e As data pulses propagate through channel, they
experience dispersion and have significant ISI

« Result is a closed eye at channel output (RX input)

INPUT

Eye FFE1 10.0Gb/s [OPEN, 1-8] No Xtalk

500m)

[DATA = RAND_ Tx:600mVpd AGC Gain -6.02dB

XTALK = NONE AGC 5.0GHz 0.00dB

|PKG=010TERM = S050/5050. IC=313. - -~ -~ - -
400m| ° .
soomyEmE
200m|
100m)

¥ .o0m

-100m
-200m)|
-300mif 55 :

oL DT UO0 C (32 O TRRBI0-0.00ppL00 ;

~O0F1VaSO X =0, US- = < e e e s
-400m fFE =[1.000, 0.000] i |
-5001
MMobps _50ps 0ps 50ps 100ps

Time.

Packaged SerDes

~~~<__Backplane trace

~

Line card trace--~. _

Edge connector

-
- 4

[Meghelli (IBM) ISSCC 2006]

L —

-
-

-t

Eye FFE1 10.0Gb/s [OPEN, 1e-8] No Xtalk

_SO0IbATA = RAND_ Tx.600mVpd AGC Gain -5.480B,

XTALK = NONE AGC 5,06Hz 0.00d8
s00m{PKG=00TERM = S0s0/5050. IC=313. - - L]

m . . .
e
200m
100m |

|
¥ .o.0m ]
|
-100m
-200miES
300MiiSSCOR = 232-pre2 IBM Confidential, . ]|
DL OrGS o2 511880 00ppm0.00 ;
=OF: x = us. oo
-400m| J\é'FE =(1.000, 6.000] pprm .
@hfﬂ)oos _50ps 0ps 50ps 100ps
Time

OUTPUT
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Eye Diagrams w/ a 2"9-Order Butterworth RX

1.67
n’si 4
.53
A0
1. ety peeret
6 20 4 &0 S 400 120 140 180 $AG DO)
BW, . = 2B
3dB ~ 3
-1.5°7 .f!.n LTy "I}..n}:w.-. rrT rreTETTY
C 20 40 80 a0 3100 120 440 480 100 2p0
BW,..= 1B
3dB ~ 3

0 20 40 B0 80 100 120 740 1860 180" 200

No ISI present

Assume that the noise (BER=10-12)
is exactly equal to the eye height,
and we have no margin

Still minimal (no) ISI present

Assuming white noise dominates, we
have a sqrt(2) reduction in rms noise

We could reduce our optical power
by the same sqgrt(2) factor and
obtain the same BER!

Severe ISI (~1/2 eye height)

While the rms noise is reduced by
2X, the overall vertical margin is the
same as the 4/368RX

Note that if we are off in time
(horizontally), we won't achieve our
desired BER! 64



ISI Power Penalty

o In order to get the same effective (vertical) eye opening,
we have to increase our optical signal power to overcome

the ISI

e Note, this power penalty is a bit conservative, as the worst-
case data pattern, which produces the eye closure can
occur at a low probability. This is a peak-distortion analysis

power penalty. .



Optimum Receiver Bandwidth

; i .
R :
5.': = 4 ﬁ. .
: 3':.:; i ) - —— -
PEigN ? _
N Fsenso = 1.5dB} pp|
. B 1.7 Noise Only
20 « e s 00 120 1d0 1M A0 200 Fsenso — 3.0 dB ~*

138 238 438 Wus

7

e Assuming white noise dominates,
‘ the sensitivity improves by a sqrt
j = ~ factor as bandwidth decreases

STt YT
0 20 40 B0 &0 05 420 440 460 100 Ip0

w|m
W

e However, around (2/3)Bthe ISI
power penalty increases rapidly

B

BWaop = e Overall, the optimum bandwidth is

near 60%-70% of the bit rate

1
3

-1.577 T LA | grroey LASASE | .
0 20 40 BD B0 100 120 140 1860 180° 200
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Will a /3 Bandwidth RX Work?

e If I am willing to live with a 1.5dB degradation in
sensitivity, can I design my receiver with 5/3 bandwidth?
« 13.3GHz for a 40Gb/s RX!

-
rs

-~ Noise Only

,.Q

0 20 40 B0 §0 100 120 140 160 180 200

e Maybe, there is much more sensitivity t

3B 238 438 Wus

o timing noise (jitter)

AT s e ;

e Note that while the (4/3)B

0 Y i 4

receiver has theoretically the
same sensitivity, it maintains the
same effective eye height over a

much wider time window O S S A

L} L] L LI
0 20 40 &0 2 40D 120 140 1A $AD 20D

i H b i !
e - a '
A IR T E T EEY o
b, Y ET X :
i 5 A B {
T ¥ KA
G J - ? i)
- Z
» r4 “ 4
£ ¢ 3 .
= FEERE:
¥
PERE
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Bandwidth Allocation

Detector Linear Channel Decision Cki.

!
!
!
|
!
|
f
|
!
[
I
[

L--- L& B &R % B N ¥ ]

———— i S———

e Note that the equivalent bandwidth of the entire receiver
front-end must be close to (2/3)8

e Thus, each individual block must have a larger bandwidth

1 1 1
+ + ...

BW® BW}? BW?
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Bandwidth Allocation Strategies

o Wide bandwidth circuits and a precise low-pass filter
« Often a Bessel-Thompson filter is used to limit the noise
 Applicable for low-speed receivers (<2.5Gb/s)

e TIA sets the receiver bandwidth

 Allows for a higher TIA gain and better noise performance

« This means that the subsequent MA stages need to have a much
wider bandwidth

 Higher bandwidth than a fixed filter, but also less controlled

e All blocks have similar bandwidths

- If we are designing at the highest speeds, then we can't afford to
overdesign any of the blocks

 Applicable for higher-speed receivers (>10Gb/s)
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Optimum Receiver Response

e While we have shown that a bandwidth of ~(2/3)B
is optimum from a receiver-induced ISI and noise
perspective, is this truly the optimal response when
we consider other factors?

e Important factors
» Received signal ISI
 Input-referred noise spectrum
« RX clock jitter
* Bit estimation technique
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Low ISI Input Optimal RX Response

e A matched filter receiver maximizes the sampled
sighal-to-noise ratio if the input ISI is minimal

e This has an impulse response h(t) which is
proportional to a time-reversed copy of the received
pulses Xx(t)

e For NRZ signals, this is a simple rectangular filter
with an impulse response being a rectangular pulse
with length of one bit period

/1



Rectangular Filter

_ sin(;gf/B)e_mp/B
H(n)="27

input: I l I |
|H(0)1%)
Qutput: _/\/—\_ .
I

|
|
| B2 B 2B f

e If we convolve the NRZ input with the rectangular filter
impulse response, we get a triangular output waveform

« Not sampling exactly in the center of the eye will result in a
power penalty

e In the frequency domain, the rectangular filter has
Noise Bandwidth: BW, = B/2
3-dB Bandwidth: BW, ; =0.443B
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Integrating Receiver Block Diagram

V, <. V, — D[Q]=1 |
VinA o Vv ; :

C = L,J ' ‘.
mT avg : V — J|
' <-—- O | T
fl i ¢ J‘Cn J_S‘% i COT Offset[9:0]
ILPF 3 ®* 1 " ¥ ) Double-Sampler

[Emami VLSI 2002] 73



Demultiplexing Receiver

PDBias
=2 . ~
X .
JAN v 4 N .
' 4 — > —
v @{_ | BE T . )—Ff ®[0,4]
op @211

» Demultiplexing with multiple clock phases allows
higher data rate
— Data Rate = #Clock Phases x Clock Frequency
— Gives sense-amp time to resolve data
— Allows continuous data resolution
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Agenda

o Receiver Model

e Bit-Error Rate

e Sensitivity

e Personick Integrals

o Power Penalties

e Bandwidth

e Equalization

o Jitter

e Forward Error Correction
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What If We Have Significant ISI?

o If we have significant ISI in our system, then an
integrating receiver is not optimal

o It is preferred to have a receiver with bandwidth
~(2/3)B to filter the noise, and then have circuitry
which cancels the ISI

o A Viterbi decoder, which performs a maximum-
likelihood sequence detection, is an optimum
realization of an ISI canceller. However, this is

genera

e Insteac

ly too complex (power/area).

, an equalizer is often used to cancel ISI
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Receiver with Equalization

FFE DFE

Linear Chan. Precursor Eq. Postcursor Eq.

RS VD Rt AASR SEED S AR SEEN GME whee -y AL S e L S AR SN S S — — e S — ——— A dm— — A — — — ———y —

— — — T S . — —— — S PV VY =

|
=
) 3
L
3

>

| S

e An FIR filter, also called a feed-forward equalizer
(FFE), is used to (primarily) cancel pre-cursor ISI

e A decision feedback equalizer (DFE) cancels post-
cursor ISI
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Pre- and Post-Cursor ISI

Refined BP 5Gb/s Pulse Response 5 |
08— — . . . T 1 <2 :
— cursor: . i {
05 ....... e ot e P ERRRRIEERES ...... L Loee e L - I
b A S [
— 04 ...................................................................................... :
. L N I
% 0.3F {4 SR s ost-cursngSI 0 | = '
L S Y 2N W ! '
£ 02 decided under  future
> decision
pre-cursor&- (with post-
ISI \D cursor 1Sl)
32101 23 450678 910 5
Time (Ul) 1‘

o With post-cursor ISI, the bits before our
current bit induces some error in the
detected level

e With pre-cursor ISI, the bits after our decided under  future

current bit induce the error dt_%cision
: : : (with pre-
e ISI can span over multiple bit periods cursor IS)

— R S — — — —— — — — =




RX FIR Equalization

e Delay analog input signal and
multiply by equalization
coefficients

e Pros

 With sufficient dynamic range, can

amplify high frequency content
(rather than attenuate low
frequencies)

« Can cancel ISI in pre-cursor and
beyond filter span

« Filter tap coefficients can be
adaptively tuned without any
back-channel

e Cons
« Amplifies noise/crosstalk
« Implementation of analog delays
« Tap precision

600 mV
™

79



RX Equalization Noise Enhancement

e Linear RX equalizers don't discriminate between
signal, noise, and cross-talk

» While signal-to-distortion (ISI) ratio is improved, SNR
remains unchanged

Insertion loss [dB]

Linear Equalizer __..--=""
......... Enhanced
_______ _ Noise
_______ Equalized Channel
_— =
S -
—— i'-l.-
— 'I'—'.‘
— 1-""-
— e
— -
~ .=
-
.-i"" =
----- =~ T
....... | ~ Channel
‘‘‘‘‘‘‘ Noise ~ -
e ittt =~=--- [Hall]
S
f[GHZ]
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Analog RX FIR Equalization Example

e 5-tap equalizer with tap spacing of T,/2

Vin

Vin+ o

— [Mms

I/V Converter

4| 5|3 Order

A

oy o

;% % ;% o
i
31 Order | 319 Order |

A

Vin- o

Delay Cell

ISSCC, 2007.

™ =12

Delay Cell|

Delay Cell|

Me=12 |

F=T1,/2 |

3rd-order delay cell

pnaa

C1
+0
Vin'® ﬁ
C1
Ibias1Q

I

CMFB

7 e Cool Sehp Mesue Cilbow Uik e

Floating Inducto

RS T W |

r Emulator and Active Load

1Gb/s experimental results

PCpl Cowol Sep Memue Cbeain (N Hop ||'qmu:n|m
b s

ahvamagﬂ

) QIS0 | DRI | 0| ST M | B | BT | JEP | Q0N RN O | S
Before Equalizer; 23meters

D. Hernandez-Garduno and J. Silva-Martinez, “"A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3-Order Delay Cells,"

After Equalizer: 23meters
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RX Decision Feedback Equalization (DFE)

e DFE is a non-linear z, =Y, —Wdia =W _ di(n1)=W, din

equalizer jpmmemmemnas
* Decision
i (Slicer)

e Slicer makes a symbol Y« +\ Zk v dy
decision, i.e. ; :
quantizes input N CK K

e ISI is then directly
subtracted from the
incoming signal viaa ! :
feedback FIR filter :.‘ Feedback (FIR) Filter;
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RX Decision Feedback Equalization (DFE)

e Pros

Can boost high frequency
content without noise and
crosstalk amplification

Filter tap coefficients can be
adaptively tuned without any
back-channel

e Cons

Cannot cancel pre-cursor ISI

Chance for error propagation
« Low in practical links (BER=1012)

Critical feedback timing path

Timing of ISI subtraction

complicates CDR phase
detection

:"Decision.‘:
i (Slicer) |

- :
[ ]

Pre-Cursor  Post-Cursor

DFE region
of influence

FFE region of influence

[Payne]
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Voltage (V)

DFE Example

-----------

e If only DFE equalization, DFE tap coefficients 1 t;gfiisi:}n
should equal the unequalized channel pulse b onee
response values [a, a, ... a,]

arsssshasss

e With other equalization, DFE tap coefficients U PR Srrrsssrsflioeeee., i
should equal the pre-DFE pulse response values

» DFE provides flexibility in the optimization of other
equalizer circuits

T YT T L L L T

: . : . . -1 -1 -1
- i.e., you can optimize a TX equalizer without caring Z L [«—oee Z |-
about the ISI terms that the DFE will take care of " Feedback (FIR) |:|":er
[wy; wy]=[a; a,]
6Gb/s Eye - Refined BP Channel w/ No Eq R;gm?F_!__?_F‘__?_h?_'?_n_é_l___9_9_?{'?__?_9_'_#9__3_?§99hses 6Gb/s Eye Refmed BP Chmmel w/ RXDFE Eq
0.5 T T T T T T —% No Eq : . _ . .
0.4 it b [ T# 2-Tap DFE|
S 03 >
Qo ©
D 0.2
S ol
o 0.1 = -
> o -
0 R
; ; : ; : : -0.1 ; .- : ; : :
o 50 100 150 200 250 300 _3 _2 _1 0 1 2 3 4 5 6 ? D 50 1400 150 200 250 300
Time (ps) Time (Ul) Time (ps)



Direct Feedback DFE Example (TI)

e 6.25Gb/s 4-tap DFE

« 1/ rate architecture

CLK0/180
Co>——

 Adaptive tap algorithm

 Closes timing on 1st
tap in /2 UI for
convergence of both
adaptive equalization
tap values and CDR

IN
®
RXEQ
CIK9wQﬂy///// ]
® '>:F

Feedback tap mux /

VD
R&'g
>

>:F

e TAP3,4: 3 bits + sign

e TAP2: 4 bits + sign }

[o TAP1: 5 bits

o > f

TAP1

X
S
()
©
_>8
DFECLK
4—|:a;ci Latch Latch
A A
$ x
S
= s
L 5O
N ™ < e
o o o
<C <C <C
- - -
4—|f;ci Latch Latch
f A

RXEQP

DFECLEN

VDD

H);’)

RXEON

l;Ll
DFF("[K'P :]_I_{i

h Dw

5"{?
Ow TjJ

Tﬁ

? TAP oo

ﬁ?

|

Q?r

TA P70

R. Payne et al, “A 6.25-Gb/s Binary Transceiver in 0.13-um CMOS for Serial Data Transmission Across High Loss

Legacy Backplane Channels,” JSSC, vol. 40, no. 12, Dec. 2005, pp. 2646-2657



Setting Equalizer Values

o Simplest approach to setting equalizer values (tap weights,
poles, zeros) is to fix them for a specific system
« Choose optimal values based on lab measurements
 Sensitive to manufacturing and environment variations

e An adaptive tuning approach allows the optimization of the

equalizers for varying channels, environmental conditions,
and data rates

o Important issues with adaptive equalization
 Extracting equalization correction (error) signals
 Adaptation algorithm and hardware overhead
« Communicating the correction information to the equalizer circuit
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FIR Adaptation Error Extraction

e In order to adapting the FIR
filter, we need to measure the
response at the receiver input

o Equalizer adaptation (error) Initial eye| Equalized
information is often obtained dLev
!:)y comparing the receiver Ekm |
input versus the desired %M Adaptive
H ata
symbol levels, dLev naz |
thresholds
- T edee
e This necessitates additional | &

. . o Tew ¥ ¥ ¥
samplers at the receiver with aClk dClk eClk

programmable threshold levels @i

tap updates

[Stojanovic JSSC 2005]



FIR Adaptation Algorithm

1000

e The sign-sign LMS algorithm is soo\m‘_’.
often used to adapt equalization | main tap |

> 600
E
taps due to implementation £ 400
- Tel gZBO-
simplicity § posa -

=]

W}];—l - Wnk + AwSign(dn—k )Sign(en)

. prel |
. . . . . -200- '
w = tap coefficients, n = time instant, & = tap index, d, = received data, W

400 -

e, = error with respect to desired data level, dLev 0 Sirim'mberg;ﬂupa;t;fﬁ' 200
e As the desired data level is a = | s
function of the transmitter swing i
and channel loss, the desired data % «
level is not necessarily known and  §

should also be adapted

20

dLev, . =dLev, —A dLevsign(en)
Y 100 150 200

[Stojanovic JSSC 2005] n"umberofupdates



Agenda

o Receiver Model

e Bit-Error Rate

e Sensitivity

e Personick Integrals

o Power Penalties

e Bandwidth

e Equalization

o Jitter

e Forward Error Correction
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Eye Diagram and Spec Mask

e Links must have margin in both the voltage AND
timing domain for proper operation

e For independent design (interoperability) of TX
and RX, a spec eye mask is used

50 ps

250

EyeatRX L |
sampler 150 |2 | | .

100 —
50 = I =

0 = —

50 mv

50 |=
-100 &
-150 |=
-200 |=

—250 I I L 0251
70 80 90 IOOE 020k

voltage (mV)
|
I
I
[
|

190 200 210 220 230

RX clock timing noise —.| [Hall]
or jitter (random noise ‘= o 5
only here) EETYggREeTI e eRNAET S
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Jitter Histogram

Leading Edge Jitter Trailing Edge Jitter

Threshold (Zero)
Crossing Time
High and Low Signal Voltage Distribution

Distribution at Time tg

Decision
|- Point

High Signal Amplitude _
I &

Low Signal Amplitude

[Hall]

| | | | | | |
L 155 185 175 185 19Ii 205 215 225
Time (ps)

| | | | | | |
75 85 95| 105 115 125 135 14
e (ps
t. Ul

I 0
e Used to extract the jitter PDF

e Consists of both deterministic and random components

* Need to decompose these components to accurately estimate
jitter at a given BER
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Jitter Categories

Probabilit:
o
o
=]
&

Total Jitter

Random

. iy ] Jitter (RJ)
5 0.06 «~
gl ] Characteristics
°—— = 0 20 20 ¢ Unbounded, Gaussian distributed
Juer (s) o Key parameters: pu= 0, ogyg
oo e Sources: Device noise (shot, flicker, thermal)
2 poa| -~
£ oooal M H "M m | Bl T Characteristics
o T2 o a0 Jitter (DJ) * Bounded, peak-to-peak
Jitter (ps) ¢ Key parameters: Maximum pk-pk jitter
ol ‘ ‘ ‘ T . _ + Sources: Losses, reflections, t/t: mismatch,
Z oosf ¢ . S!HUSO'dfﬂ spread spectrum clocking, crosstalk
g oo ] Jitter (SJ)
0.01 | :
0 —40 -20 . 0 20 40
eres | Data Dependent
02 . ‘ ‘ Jitter (DDJ)
2 0.16 - T
:é g:;gi {Mmm \\ | |
T 0.04F :
*T 20 Jmef(ps) 20 1 Intersymbol Duty Cycle Bounded
06— | . Interference (ISI) Distortion (DCD) Uncorrelated Jitter
2950 — (Crosstalk)
E 0.3 N —
E 02 7
01 | | | | | ]
00 -40 -20 0 20 40
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Total Jitter (TJ)

e The total jitter PDF is produced by
convolving the random and deterministic

jitter PDFs

PDFJT(t): PDFRJ(t)*PDFDJ(t)
where PDF,,(t)= PDF,,(t)* PDF,,(t)* PDF,,(t)* PDF,,, (t)

Probabilit
o
=)
=)
(8)]
1 1 1

¥l

—40 -20 0 20 40
Jitter (ps)
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Jitter and Bit Error Rate

e Jitter consists of both
deterministic and random
components

e Total jitter must be quoted at
a given BER

- At BER=1012, jitter ~1675ps

and eye width margin ~200ps\1£

- System can potentially achieve
BER=10!8 before being jitter .-
limited E o

18}
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System Jitter Budget

e For a system to achieve a minimum BER performance
Ul > DJ 55(sys)+200 py5(svs)

e The convolution of the individual deterministic jitter
components is approximated by linear addition of the terms

DJ55 SyS ZDJ§5 )

e The convolution of the individual random jitter components
results in a root-sum-of-squares system rms value

O s (55) = \/ Z & s (0)
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Jitter Budget Example — PCI Express System

!

Reference
cloc

100 MHz

Architecture

k

Tx PLL

Channe
25GHz

100 MHz

Reference
clock

TJ refclk

Jitter Model

T‘JTxgen

hy

3

[Hall]

D Q——
A
25GHz | CloH

Rx PLL Data

Recovery

G —TJisI + xtalk

+

hC:DF! _Tszstem
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Jitter Frequency Content

27,

1s the 1deal bit/clock period.

1

Je
PN(f)=20log,((27f, - FTIE})

Time Interval Error TIE(i)= (T.)

where T,
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System Jitter Filtering

e Jitter sources get shaped/filtered differently depending
where they are in the clocking system

CDR (Embedded Clocking) System

Parallel ;
data “—

Serializer

2

Serial

De-Serializer

data

!

TXPLL

/

/

i
| |

RefCl

k

()

= 20db/dec

Ju= BW‘:.;_ PLL

Sampler

A

Recove
cloc

RX PLL

9

Parallel

data

H.Ii.'l-'ill (/ )

e Reference clock jitter gets
ow-pass filtered by the TX
PLL and high-pass filtered
oy the RX PLL/CDR when
we consider the phase
error between the sample
clock and incoming data

12
Filtered RMS Jitter = \/ 2 [ |F{TIEY |H(f) df
f
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Jitter Budget Example — PCI Express System

DJ ;;(sys)= DJ ;,(TX )+ DJ ;;(channel )+ DJ ;(RX )+ DJ (clock)

O russ (Sys) = \/ oy (TX )+ O s (channel )+ O s (RX )+ O s (clock)

TABLE 13-2. PCI Express 2.5-Gb/s Jitter Budget at 10~!> BER

Component Term ory (ps) DlJss (ps) TT (ps)
Reference clock TT ciock 4.7 41.9 108
Transmitter TI tx 2.8 60.6 100
Channel TT channel 0 90 90
Receiver V 2.8 120.6 —#> 160
Linear TJ 458

RSS TJ 6.15 * 14.07 = 865 313.1 399.6

Table 4.1 NuMonship between Q and bit-error rate. [Ha"]

o) BER N\ @ BER

0.0 1/2
3.090 1073
3.719 1074
4.265 1077
4.753 100
5.199 1077

5.612 1078




Agenda

o Receiver Model

e Bit-Error Rate

e Sensitivity

e Personick Integrals

o Power Penalties

e Bandwidth

e Equalization

o Jitter

e Forward Error Correction
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Forward Error Correction

e From previous analysis, we found that we need a
certain SNR for a given BER

« w/ NRZ it is Q% or ~17dB for BER=10"12 (equal noise
statistics)

e Can we do better?

e Yes, if we add some redundancy in the bits that
we transmit and use this to correct errors at the
receiver

e This is called forward error correction (FEC)

e Common codes are Reed-Solomon (RS) and Bose-
Chaudhuri-Hocquenghem (BCH)
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Shannon’s Channel Capacity Theorem

o If sufficient coding is employed, error-free transmission over
a channel with additive white Gaussian noise is possible for

B < BWlog,(1+ SNR)
Here B 1s the information bit rate, which i1s lower than the channel
bit rate with coding. If we assume ideal Nyquist signaling, we need

a minimum channel bandwidth

=2

2r

: B. : : :
where r 1s the code rate and — 1s the channel bit rate. Thus, with coding
r

B< £1og2(1+57\f1!e)
2r

SNR =2°" —1
For example, if we have r = 0.8 (which is a 25% data rate overhead) then

SNR =22008) _1-2.03=3.084B = Much smaller than 17dB!!
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Reed-Solomon Code Example

e Reed-Solomon codes are often used in the
Synchronous Optical Networking (SONET) standard

e An important parameter in any error-correcting code
is it's overhead or redundancy, with a RS(255,239)
code having n=255 symbols/codeword, but only
k=239 information symbols (although 1 is used for
framing and isn’t considered in the data payload)

» The overhead is 255/(239-1)=1.071 or 7.1%
 This is equivalent to r=238/255=0.933

e A RS(n,k) code can correct for (n-k)/2 symbol errors

in @ codeword
« RS(255,239) can correct for 8 symbols/codeword 103



Coding Gain

BER

1.0E-03

1.0E-06

1.0E-09

1.0E-12

1.0E-15

1.0E-18

1.0E-21

BER vs SNR for R-S 255 Code (t=8)

[

1 =

- o
N At BER = 1012
; \ Gross Coding Gain ~5.9dB
_ _ Net Electrical Coding Gain ~5.6dB
_Net Electrical Coding Gain
AN :
, \ Gross Coding Gainl | \]
, @ milm ® B B W ¥ ® @

SNR (@) . . R 2

Gross Coding Gain at the desired BER = SNR = QO;”
SNRzn Qz‘
1

However, for a fairer comparison we should consider the — increase

r
1

in bandwidth necessary for the code, which will yield — more noise.

Jr

2
Net Electrical Coding Gain NECG) = r '—QOS”

in 104



Soft-Decision Decoding

So far we have talked about codes which use binary “hard-

decisions”

Superior performance (~2dB) occurs if we use more

“analog” information in the form of “soft-decisions”

Soft decisions are utilized in
turbo codes and low-density
parity check codes (LDPC)

In an NRZ system, soft decisions

Linear Chan. Soft-Decision Decoder

can be realized with 2 additional MA
comparators with some A offset i
or with an ADC front-end

Decoder

An AGC loop may be necessary " h-mremmmmem e

to maintain required linearity
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Next Time

e Transimpedance Amplifier (TIA) Circuits
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