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Announcements
• Homework 2 is posted on website and due Mar 1

• Majority of material follows Sackinger Chapter 4
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Agenda
• Receiver Model
• Bit-Error Rate
• Sensitivity
• Personick Integrals
• Power Penalties
• Bandwidth
• Equalization
• Jitter
• Forward Error Correction
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Receiver Model
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• Photodetector model
• Linear channel representing the transimpedance

amplifier (TIA) and main amplifier (MA) gain and an 
optional low-pass filter

• Detector with a decision threshold, VDTH

[Sackinger]



Receiver Detector Model
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• Signal current source iPD which is linearly related to 
the optical power

• Noise current source in,AMP whose spectrum is 
approximated as uniform and signal dependent

[Sackinger]



Receiver Linear Channel (Front-End)
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• Modeled with a linear transfer function H(f) relating the output voltage vO
amplitude & phase with input current iPD
• From a sensitivity perspective, the signals are small & linearity generally holds

• Single input-referred noise current source with a spectrum that produces 
the correct output-referred noise spectrum after passing through H(f)

• Generally, the TIA’s input-referred noise dominates

[Sackinger]



Detector and Amplifier Noise
• Detector noise

• Nonstationary – rms value changes 
with the bit value

• Uniform (white) frequency spectrum
• Noise power spectral density must 

formally be written as a time-varying 
function

7

   ttfI PDn bit_value~,2
,

• Amplifier noise
• Stationary – rms independent of time
• Non-white frequency spectrum which 

is well modeled as having a white 
component and a component that 
increases  to f2
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Receiver Decision Circuit
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• Compares the linear channel output vO with a decision 
threshold VDTH

• For binary (OOK) modulation
• Above VDTH  “One” bit
• Below VDTH  “Zero” bit

[Sackinger]



Agenda
• Receiver Model
• Bit-Error Rate
• Sensitivity
• Personick Integrals
• Power Penalties
• Bandwidth
• Equalization
• Jitter
• Forward Error Correction
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Bit Errors
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Output Noise – Amplifier Component
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[Sackinger]
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• Note that since H(f) generally rolls-off quickly, the exact upper bound is 
not too critical and could be set to a very high value (infinity)



Output Noise – Detector Component
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• This effective convolution implies that the noise can impact not only it’s 
bits, but can also spread to impact other bits

• However, we generally assume that the noise varies slowly relate to h(t)
and we can simplify the detector noise analysis
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• For simple OOK modulation, we use 2 values of the time-dependent 
output noise power



Total Output Noise
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• For simple OOK modulation, we will have two rms values
rms
n
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n vv 1,0,    and   

• The total output rms noise value is the root-sum-of-squares 
of the uncorrelated detector and amplifier noise components



Signal, Noise, and Bit-Error Rate (BER)
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• The noise is Gaussian with a standard deviation equal to the 
noise voltage rms value

• With an equal distribution of 1s and 0s, setting VDTH at the 
crossover of the two distributions yields the fewest bit errors

• The bit-error rate (BER) is defined as the probability that a 0 
is misinterpreted as a 1 or vice-versa

[Sackinger]



BER Calculation
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• For BER, we should calculate the area under the Gaussian “tails”
• Assuming equal 0 and 1 noise statistics for now, the 2 tails should be 

equal and we just need to calculate 1 of them
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• Here Gauss(x) is a normalized Gaussian distribution (=0,=1)
• The lower bound Q is the difference between the levels and the decision 

threshold, normalized by the Gaussian distribution standard deviation, 



Personick Q and BER
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• The Q parameter is called the Personick Q and is a 
measure of the ratio between the signal and noise
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What if I Have Unequal Noise Distributions?
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Signal-to-Noise Ratio

18

• In optical receiver analysis, the signal-to-noise ratio 
(SNR) is often defined as the mean-free average 
signal power divided by the average noise power
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Signal-to-Noise Ratio Extremes
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1. Noise is dominated by the amplifier, with equal 
noise on 0s and 1s 
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2. Noise is dominated by the detector/optical 
amplifier, with un-equal noise on 0s and 1s
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Agenda
• Receiver Model
• Bit-Error Rate
• Sensitivity
• Personick Integrals
• Power Penalties
• Bandwidth
• Equalization
• Jitter
• Forward Error Correction
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Electrical Receiver Sensitivity
• Sensitivity is the minimum input-referred signal 

necessary to achieve the desired bit-error rate
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Electrical Receiver Sensitivity

• What if I have unequal noise distributions on 0s 
and 1s?
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• Note that so far we have assumed an ideal slicer 
for the decision circuit.  A real slicer’s minimum 
signal input and offset will degrade this sensitivity. 
More about this later.



Optical Receiver Sensitivity
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Optical Receiver Sensitivity

• Note that the optical receiver sensitivity is based 
on the average signal value, whereas the electrical 
sensitivity is based on the peak-to-peak signal 
value 
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Optical RX Sensitivity w/ Ideal Photodetector

• In order to compare the relative performance of 
different electrical receivers, it is useful to 
normalize out the photodetector performance

• The sensitivity excluding the PD’s quantum 
efficiency  is 
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Optical RX Sensitivity w/ Ideal Photodetector

• Previous example using PD with R=0.8A/W

• Now, normalizing (multiplying) by the quantum 
efficiency or dividing by an ideal responsivity at a 
given wavelength
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Low and High Power Limits
• The sensitivity limit is the weakest signal for 

which we can achieve the desired BER
• However, if the signal is too large, we can 

also have bad effects that degrade BER
• Pulse-width distortion
• Data-dependent jitter

• The overload limit is the maximum signal for 
which we can achieve the desired BER



28

Dynamic Range
• Input overload current

• This is the maximum peak-to-peak signal current 
for which a desired BER can be achieved

• Optical overload power
• This is the maximum time-averaged optical 

power for which a desired BER can be achieved
• The dynamic range is the ratio of the 

overload limit and the sensitivity limit
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Reference Bit-Error Rates Examples

• SONET OC-48 (2.5Gb/s) requires BER≤10-10 (Q=6.361) 
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• SONET OC-192 (10Gb/s) requires BER≤10-12 (Q=7.035) 
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• What about BER≤10-15 ? (Q=7.942) 
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• Sensitivity must be specified at a desired BER!
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Sensitivity Analysis w/ Amplifier Noise Only

• With a p-i-n photodetector
R
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• With an APD

• With an optically preamplified p-i-n detector

• Here we are assuming that amplifier noise dominates
rms

ampn
rms
n ii ,

R
Qi

M
P

rms
ampn

APDsens
,

,
1


R
Qi

G
P

rms
ampn

APDsens
,

,
1


Assuming R=0.8A/W, M=10, G=100, and BER=10-12

If we neglect detector noise, the 
optically preamplified p-i-n 
detector only requires an average 
optical power of -39.1dBm or 
123nW!
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Now Let’s Include the Detector Noise

• Here we assume that the detector noise is very small for a 0 
bit and that we have a high extinction ratio, i.e. 

• Starting with a p-i-n detector RX, because of the signal-
dependent detector noise we need to consider 2 different 
noise values
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Now Let’s Include the Detector Noise
• With an APD receiver, we assume the following 2 different noise values
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• With an optically preamplified p-i-n detector receiver, we assume the 
following 2 different noise values
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• The amplifier noise is suppressed with increasing detector gain, while 
the shot noise increases with the excess noise factor
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Sensitivity w/ Amplifier & Detector Noise
Assuming R=0.8A/W, M=10, G=100, and BER=10-12

For the APD: F=6 (7.8dB) 
For the OA+p-i-n: =0.64, F=3.16 (5dB) w/amp noise only 

(previous table)
10Gb/s 

0dB
1.3dB
3.5dB

• For the 10Gb/s receivers, relative to amplifier noise only 
• p-i-n RX sensitivity is virtually unchanged  OK to ignore shot noise
• APD RX sensitivity is degraded by ~1dB  ignoring shot noise gives 

you a reasonable estimate. Depending on the link budget margin, 
may or may not be able to neglect shot noise.

• OA + p-i-n RX sensitivity degrades by >3dB  definitely need to 
include the shot noise
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BER Plots
• To analyze RX performance, we often plot BER or Q versus the average 

optical power
• At low power levels, this should track
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If we plot versus linear power, the Q 
function increases linearly and the 
BER improves  erfc(Q)

If we plot versus power in dB, then 
10log(Q) function increases linearly
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BER Plots

• The sensitivity limit occurs at the minimum power level for the 
desired BER

• The BER will improve if we increase the power further, until the 
shot noise term begins to dominate and we reach a BER floor

• As power is increased further, signal distortions occur and we reach 
the overload limit, beyond which the BER tends to degrade rapidly

sensitivity limit overload limit



36

Optimum APD Gain
• Recall for an APD, that as the avalanche gain M increases, so does 

the excess noise factor F and they are related by the ionization-
coefficient ratio kA   


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• Considering that the sensitivity 

is inversely proportional to M 
and proportional to F, there 
exists an optimum APD gain
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• The optimum APD gain 
increases with more amplifier 
noise, as the APD gain 
suppresses this noise

• Note for an optically preamplified p-i-n RX, the noise figure goes down 
with increased gain G, and thus higher G always improves sensitivity
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What If We Had a Perfect Noiseless Amplifier?

• If we can somehow reduce our amplifier noise to be very low, we will 
ultimately be limited by the detector noise
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Assuming R=0.8A/W, M=10, G=100, and BER=10-12

For the APD: F=6 (7.8dB) 
For the OA+p-i-n: =0.64, F=3.16 (5dB)

• As evident by the equations above, the p-i-n RX performs best
• The APD RX sensitivity is degraded by F (7.8dB)
• The OA+p-i-n RX sensitivity is degraded by hF (-1.9dB+5dB=3.1dB)
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What If Everything Is Perfect?
• If we have zero amplifier and detector noise, we can receive  

data with an infinitesimally amount of optical power, right?

• Uh no, as we still need to at least detect one photon to 
determine that we have a “1” bit, which is the quantum limit

• Photon count per “1” bit, n, follows a Poisson distribution
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• Assuming no power is sent for a “0”, these bits will always 
be correct
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Quantum Limit Sensitivity
• The error probability for a “1” is Poisson(0)
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• How do the previous example RX sensitivities with amplifier and detector 
noise compare relative to the 10Gb/s quantum limit sensitivity?
• p-i-n RX = +28.5dB
• APD RX = +19.8dB
• OA + p-i-n = +12dB



Agenda
• Receiver Model
• Bit-Error Rate
• Sensitivity
• Personick Integrals
• Power Penalties
• Bandwidth
• Equalization
• Jitter
• Forward Error Correction
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Total Input-Referred Noise
• In order to calculate the RX 

sensitivity, we need the input-
referred rms current noise

• The easiest way to obtain this (in 
simulations) is to integrate the 
output noise spectrum over the 
decision element bandwidth and 
divide by the midband gain H0
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 • Note that since H(f)
generally rolls-off 
quickly, the exact 
upper bound is not 
too critical and could 
be set to a very high 
value (infinity)
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How to Get the Input RMS Noise from the 
Input Noise Power Spectrum?

• If we cannot simulate the output noise spectrum, we can get the input-
referred rms noise from the input noise spectrum through integration

• However, we must be very careful regarding the bounds of the integral 
due to the rapidly rising f2 component 

 
?
0

22 dffIi nn
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Noise Bandwidths
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Noise Bandwidths

    dfffH
H

BWdffH
H

BW

BWBWi

DD BW
n

BW
n

nnn

22

02
0

3
2

2

02
0

3
2

2
0

2

1   and   1
where

3

 




• The bandwidths BWn and BWn2 depend only on the receiver’s frequency 
response and the decision circuit’s bandwidth BWD

• Note that BWD is not too critical if it is larger than the receiver bandwidth
• Assuming BWD=, BWn and BWn2 are calculated for typical receiver 

frequency responses
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What if I Just Integrate Up To the 3dB 
Bandwidth?

3
2

2
0

2

3 nnn BWBWi  

• What we should do is use the table 
data and calculate

• But, what if we simply integrate up to the 
3dB bandwidth, which is equivalent to using

3
3

2
30

2

3 dBdBn BWBWi  

• Referring to the table, this is only correct for a Brick Wall 
Low Pass response and can lead to significant error

• For example, with a 2nd-order Butterworth response, this 
underestimates the white noise component by 1.11x and the 
f2 component by 3.33x
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Personick Integrals
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• Optical receiver literature 
often uses constants from 
Personick Integrals

• The Personick Integrals I2 and I3 are normalized 
noise bandwidths



Agenda
• Receiver Model
• Bit-Error Rate
• Sensitivity
• Personick Integrals
• Power Penalties
• Bandwidth
• Equalization
• Jitter
• Forward Error Correction
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Power Penalty
• So far we have primarily been considering random 

noise sources and assumed that we have had an 
ideal transmitter, receiver decision circuit, etc…

• The actual receiver sensitivity will be degraded by 
impairments throughout the optical link and is 
quantified by power penalties

• The power penalty PP is the increase in average 
transmit power necessary to maintain the desired 
BER, relative to an ideal case where we don’t have 
the impairment

• This is quantified in dBs, 10log(PP)   
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Typical Impairments 
• Transmitter

• Extinction ratio
• Relative intensity noise (RIN)
• Output power variations

• Fiber
• Dispersion
• Nonlinear effects

• Detector
• Dark current

• TIA
• Distortions (ISI)
• Offset

• MA
• Distortions (ISI)
• Offset
• Noise figure
• Low-frequency cutoff

• CDR
• Decision-threshold offset
• Decision-threshold ambiguity
• Sampling-time offset
• Sampling-time jitter
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Decision-Threshold Offset PP
• So far we have assumed that the decision 

threshold is in the ideal place

2
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Decision-Threshold Offset PP


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• Note that we are neglecting the improved BER on one of the levels 
(low level), but formally considering this has only a small impact on 
the resulting PP
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Decision-Threshold Offset PP
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• Good receiver offset control is necessary to 
minimize this power penalty!
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Dark Current PP
• Dark current by itself isn’t a major issue, as 

we generally assume that the receiver can 
somehow subtract it out

• However, a potential problem is the shot 
noise that it induces, which can be 
quantified as a power penalty

nDKDKn BWqIi 2,
2 
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Dark Current PP
• To keep things simple, let’s assume that the 

receiver noise is dominated by the amplifier noise. 
Note, this will slightly overestimate the dark 
current PP.

• The dark current noise increases the total noise by
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Dark Current PP
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Dark Current PP

 

 
  

A
GHzC

nAI

qBW
i

PPI

DK

n

ampn
DK

53.5
9.1106.12

380110

numbersreceiver  2.5Gb/s  theUsing
2

1

penalty?power  0.05dB afor  becurrent dark  must the  What :3 Example

19

2
2

10
05.0

,
2

2







































• As long as the effective dark current is in the low 
A or less, the power penalty is generally negligible



Agenda
• Receiver Model
• Bit-Error Rate
• Sensitivity
• Personick Integrals
• Power Penalties
• Bandwidth
• Equalization
• Jitter
• Forward Error Correction
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Noise vs ISI Bandwidth Trade-Offs
• If we design our receiver to have a very wide bandwidth, 

then we will receive the signal with minimal distortion

• However, noise will grow as bandwidth increases

• From a basic sensitivity perspective, decreasing bandwidth 
results in ever-improving sensitivity

• However, this neglects the filtering of the high-frequency 
pulses (bits) which causes intersymbol interference (ISI)

• Thus, there is an optimum bandwidth from a sensitivity 
perspective to balance noise and ISI

• This optimum bandwidth is generally about (2/3)B

58



Eye Diagrams
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[Walker]



Eye Diagrams vs Data Rate
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Eye Diagrams vs Channel

61



Inter-Symbol Interference (ISI)
• Previous bits residual state can distort the current bit, 

resulting in inter-symbol interference (ISI)
• ISI is caused by

• Reflections, Channel resonances, Channel loss (dispersion)

62

Single Input Bit

Output Pulse 
Response



ISI Impact
• At channel input (TX output), eye diagram is 

wide open

• As data pulses propagate through channel, they 
experience dispersion and have significant ISI
• Result is a closed eye at channel output (RX input)
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Eye Diagrams w/ a 2nd-Order Butterworth RX

64

• No ISI present
• Assume that the noise (BER=10-12) 

is exactly equal to the eye height, 
and we have no margin

• Still minimal (no) ISI present
• Assuming white noise dominates, we 

have a sqrt(2) reduction in rms noise 
• We could reduce our optical power 

by the same sqrt(2) factor and 
obtain the same BER!

• Severe ISI (~1/2 eye height)
• While the rms noise is reduced by 

2x, the overall vertical margin is the 
same as the 4/3B RX

• Note that if we are off in time 
(horizontally), we won’t achieve our 
desired BER!



ISI Power Penalty
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E
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VPP




• In order to get the same effective (vertical) eye opening, 
we have to increase our optical signal power to overcome 
the ISI

• Note, this power penalty is a bit conservative, as the worst-
case data pattern, which produces the eye closure can 
occur at a low probability. This is a peak-distortion analysis 
power penalty.



Optimum Receiver Bandwidth

66

• Assuming white noise dominates, 
the sensitivity improves by a sqrt
factor as bandwidth decreases

• However, around (2/3)B the ISI 
power penalty increases rapidly

• Overall, the optimum bandwidth is 
near 60%-70% of the bit rate



Will a B/3 Bandwidth RX Work?

67

• If I am willing to live with a 1.5dB degradation in 
sensitivity, can I design my receiver with B/3 bandwidth?
• 13.3GHz for a 40Gb/s RX!

• Maybe, there is much more sensitivity to timing noise (jitter)
• Note that while the (4/3)B 

receiver has theoretically the 
same sensitivity, it maintains the 
same effective eye height over a 
much wider time window



Bandwidth Allocation

68

• Note that the equivalent bandwidth of the entire receiver 
front-end must be close to (2/3)B

• Thus, each individual block must have a larger bandwidth

...111
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2
2

1
2 

BWBWBW



Bandwidth Allocation Strategies

69

• Wide bandwidth circuits and a precise low-pass filter
• Often a Bessel-Thompson filter is used to limit the noise
• Applicable for low-speed receivers (<2.5Gb/s)

• TIA sets the receiver bandwidth
• Allows for a higher TIA gain and better noise performance
• This means that the subsequent MA stages need to have a much 

wider bandwidth
• Higher bandwidth than a fixed filter, but also less controlled

• All blocks have similar bandwidths
• If we are designing at the highest speeds, then we can’t afford to 

overdesign any of the blocks
• Applicable for higher-speed receivers (>10Gb/s)



Optimum Receiver Response

70

• While we have shown that a bandwidth of ~(2/3)B 
is optimum from a receiver-induced ISI and noise 
perspective, is this truly the optimal response when 
we consider other factors?

• Important factors
• Received signal ISI
• Input-referred noise spectrum
• RX clock jitter
• Bit estimation technique



Low ISI Input Optimal RX Response
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• A matched filter receiver maximizes the sampled 
signal-to-noise ratio if the input ISI is minimal

• This has an impulse response h(t) which is 
proportional to a time-reversed copy of the received 
pulses x(t)

• For NRZ signals, this is a simple rectangular filter 
with an impulse response being a rectangular pulse 
with length of one bit period



Rectangular Filter

72

• If we convolve the NRZ input with the rectangular filter 
impulse response, we get a triangular output waveform
• Not sampling exactly in the center of the eye will result in a 

power penalty
• In the frequency domain, the rectangular filter has
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Integrating Receiver Block Diagram

[Emami VLSI 2002]
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Demultiplexing Receiver

• Demultiplexing with multiple clock phases allows 
higher data rate
̶ Data Rate = #Clock Phases x Clock Frequency
̶ Gives sense-amp time to resolve data
̶ Allows continuous data resolution



Agenda
• Receiver Model
• Bit-Error Rate
• Sensitivity
• Personick Integrals
• Power Penalties
• Bandwidth
• Equalization
• Jitter
• Forward Error Correction
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What If We Have Significant ISI?

76

• If we have significant ISI in our system, then an 
integrating receiver is not optimal

• It is preferred to have a receiver with bandwidth 
~(2/3)B to filter the noise, and then have circuitry 
which cancels the ISI

• A Viterbi decoder, which performs a maximum-
likelihood sequence detection, is an optimum 
realization of an ISI canceller. However, this is 
generally too complex (power/area).

• Instead, an equalizer is often used to cancel ISI



Receiver with Equalization
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• An FIR filter, also called a feed-forward equalizer 
(FFE), is used to (primarily) cancel pre-cursor ISI

• A decision feedback equalizer (DFE) cancels post-
cursor ISI

FFE DFE



Pre- and Post-Cursor ISI

78

cursor

post-cursor ISI

pre-cursor 
ISI

…

• With post-cursor ISI, the bits before our 
current bit induces some error in the 
detected level

• With pre-cursor ISI, the bits after our 
current bit induce the error

• ISI can span over multiple bit periods



RX FIR Equalization
• Delay analog input signal and 

multiply by equalization 
coefficients

• Pros
• With sufficient dynamic range, can 

amplify high frequency content 
(rather than attenuate low 
frequencies)

• Can cancel ISI in pre-cursor and 
beyond filter span

• Filter tap coefficients can be 
adaptively tuned without any 
back-channel

• Cons
• Amplifies noise/crosstalk
• Implementation of analog delays
• Tap precision

79

[Hall]



RX Equalization Noise Enhancement
• Linear RX equalizers don’t discriminate between 

signal, noise, and cross-talk
• While signal-to-distortion (ISI) ratio is improved, SNR 

remains unchanged

80

[Hall]



Analog RX FIR Equalization Example

81
D. Hernandez-Garduno and J. Silva-Martinez, “A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3rd-Order Delay Cells," 
ISSCC, 2007.

• 5-tap equalizer with tap spacing of Tb/2

1Gb/s experimental results

3rd-order delay cell



RX Decision Feedback Equalization (DFE)
• DFE is a non-linear

equalizer

• Slicer makes a symbol 
decision, i.e. 
quantizes input

• ISI is then directly 
subtracted from the 
incoming signal via a 
feedback FIR filter
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RX Decision Feedback Equalization (DFE)
• Pros

• Can boost high frequency 
content without noise and 
crosstalk amplification

• Filter tap coefficients can be 
adaptively tuned without any 
back-channel

• Cons
• Cannot cancel pre-cursor ISI
• Chance for error propagation

• Low in practical links (BER=10-12)
• Critical feedback timing path
• Timing of ISI subtraction 

complicates CDR phase 
detection
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DFE Example

84

• If only DFE equalization, DFE tap coefficients 
should equal the unequalized channel pulse 
response values [a1 a2 … an]

• With other equalization, DFE tap coefficients 
should equal the pre-DFE pulse response values

• DFE provides flexibility in the optimization of other 
equalizer circuits

• i.e., you can optimize a TX equalizer without caring 
about the ISI terms that the DFE will take care of

a1

a2

[w1 w2]=[a1 a2]



Direct Feedback DFE Example (TI)
• 6.25Gb/s 4-tap DFE

• ½ rate architecture
• Adaptive tap algorithm
• Closes timing on 1st 

tap in ½ UI for 
convergence of both 
adaptive equalization 
tap values and CDR
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R. Payne et al, “A 6.25-Gb/s Binary Transceiver in 0.13-um CMOS for Serial Data Transmission Across High Loss 
Legacy Backplane Channels,” JSSC, vol. 40, no. 12, Dec. 2005, pp. 2646-2657



Setting Equalizer Values
• Simplest approach to setting equalizer values (tap weights, 

poles, zeros) is to fix them for a specific system
• Choose optimal values based on lab measurements
• Sensitive to manufacturing and environment variations

• An adaptive tuning approach allows the optimization of the 
equalizers for varying channels, environmental conditions, 
and data rates

• Important issues with adaptive equalization
• Extracting equalization correction (error) signals
• Adaptation algorithm and hardware overhead
• Communicating the correction information to the equalizer circuit
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FIR Adaptation Error Extraction
• In order to adapting the FIR 

filter, we need to measure the 
response at the receiver input

• Equalizer adaptation (error) 
information is often obtained 
by comparing the receiver 
input versus the desired 
symbol levels, dLev

• This necessitates additional 
samplers at the receiver with 
programmable threshold levels

87
[Stojanovic JSSC 2005]



FIR Adaptation Algorithm
• The sign-sign LMS algorithm is 

often used to adapt equalization 
taps due to implementation 
simplicity
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• As the desired data level is a 
function of the transmitter swing 
and channel loss, the desired data 
level is not necessarily known and 
should also be adapted
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[Stojanovic JSSC 2005]



Agenda
• Receiver Model
• Bit-Error Rate
• Sensitivity
• Personick Integrals
• Power Penalties
• Bandwidth
• Equalization
• Jitter
• Forward Error Correction
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Eye Diagram and Spec Mask
• Links must have margin in both the voltage AND 

timing domain for proper operation
• For independent design (interoperability) of TX 

and RX, a spec eye mask is used 
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Eye at RX 
sampler

RX clock timing noise 
or jitter (random noise 
only here)

[Hall]



Jitter Histogram

• Used to extract the jitter PDF
• Consists of both deterministic and random components

• Need to decompose these components to accurately estimate 
jitter at a given BER 91

[Hall]
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Jitter Categories
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Total Jitter (TJ)
• The total jitter PDF is produced by 

convolving the random and deterministic 
jitter PDFs
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Jitter and Bit Error Rate
• Jitter consists of both 

deterministic and random
components

• Total jitter must be quoted at 
a given BER
• At BER=10-12, jitter ~1675ps 

and eye width margin ~200ps
• System can potentially achieve 

BER=10-18 before being jitter 
limited
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System Jitter Budget
• For a system to achieve a minimum BER performance
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Jitter Budget Example – PCI Express System
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Architecture

Jitter Model

[Hall]



Jitter Frequency Content
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System Jitter Filtering
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• Jitter sources get shaped/filtered differently depending 
where they are in the clocking system

CDR (Embedded Clocking) System
• Reference clock jitter gets 

low-pass filtered by the TX 
PLL and high-pass filtered 
by the RX PLL/CDR when 
we consider the phase 
error between the sample 
clock and incoming data



Jitter Budget Example – PCI Express System
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         clockDJRXDJchannelDJTXDJsysDJ  

         clockRXchannelTXsys RMSRMSRMSRMSRMS
2222  

6.15 * 14.07 =
[Hall]
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Agenda
• Receiver Model
• Bit-Error Rate
• Sensitivity
• Personick Integrals
• Power Penalties
• Bandwidth
• Equalization
• Jitter
• Forward Error Correction
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Forward Error Correction
• From previous analysis, we found that we need a 

certain SNR for a given BER
• w/ NRZ it is Q2 or ~17dB for BER=10-12 (equal noise 

statistics)
• Can we do better?
• Yes, if we add some redundancy in the bits that 

we transmit and use this to correct errors at the 
receiver

• This is called forward error correction (FEC)
• Common codes are Reed-Solomon (RS) and Bose-

Chaudhuri-Hocquenghem (BCH)
101



Shannon’s Channel Capacity Theorem
• If sufficient coding is employed, error-free transmission over 

a channel with additive white Gaussian noise is possible for
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Reed-Solomon Code Example
• Reed-Solomon codes are often used in the 

Synchronous Optical Networking (SONET) standard
• An important parameter in any error-correcting code 

is it’s overhead or redundancy, with a RS(255,239) 
code having n=255 symbols/codeword, but only 
k=239 information symbols (although 1 is used for 
framing and isn’t considered in the data payload)
• The overhead is 255/(239-1)=1.071 or 7.1%
• This is equivalent to r=238/255=0.933

• A RS(n,k) code can correct for (n-k)/2 symbol errors 
in a codeword
• RS(255,239) can correct for 8 symbols/codeword 103



Coding Gain
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At BER = 10-12

Gross Coding Gain ~5.9dB
Net Electrical Coding Gain ~5.6dB



Soft-Decision Decoding
• So far we have talked about codes which use binary “hard-

decisions”
• Superior performance (~2dB) occurs if we use more 

“analog” information in the form of “soft-decisions”
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• Soft decisions are utilized in 
turbo codes and low-density 
parity check codes (LDPC)

• In an NRZ system, soft decisions 
can be realized with 2 additional 
comparators with some  offset 
or with an ADC front-end

• An AGC loop may be necessary 
to maintain required linearity



Next Time
• Transimpedance Amplifier (TIA) Circuits
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