ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2022

Lecture 14: Analog MZM Driver with Linearization

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- Exam 2 is on Apr. 28
 - In class
 - One double-sided 8.5x11 notes page allowed
 - Bring your calculator
 - Covers through Lecture 12
- Project Report Due May 3

Outline

- Motivation
- Driver Design
- Measurement Results
- Conclusion

Radio-Over-Fiber Systems

- Remote antenna units
- Indoor wireless communications
- 5G cellular communications

Nonlinearity in RoF Systems

- MZM cosine transfer function
 - Major source of nonlinearity
 - AM-AM compression

16-QAM EVM vs AM-AM

- Assuming ideal cosine model for MZM
- EVM degrades when AM-AM compression increases
- Lower V_{π} MZM has higher gain, but more nonlinearity

MZM Linearization Approaches

- Optical domain linearization occupies large PIC area
- Electrical domain linearization approaches
 - Arcsine function from square law of transistor
 - Polynomial predistortion
 - IM3 injection
 - Diode-based predistortion
- Proposed programmable linearizer is able to compensate AM-AM and is highly tunable to generate predistortion

Outline

- Motivation
- Driver Design
- Measurement Results
- Conclusion

MZM Driver Architecture

- Programmable inverter-based amplifier linearizer generates predistortion to compensate MZM nonlinearity
- 3-stage amplifier provides gain to deliver 12dBm linear output power to drive MZM

Inverter-Based Amplifier Linearizer

- 17 unit segments consisting of inverter-based amplifiers
- Segments 1-3 provide gain without major expansion

 Segments 4-9 provide signal expansion at progressively larger input power levels

CMOS Driver

CC2	M2	C2	R4	CC3	L1	M3	M3C
20fF	19.2µm x 10	50fF	50Ω	40fF	60pH	19.2µm x 24	19.2µm x 18

- 3 pseudo-differential common-source amplifier stages
- Capacitive neutralization improves reverse isolation
- Cascode structures in first stage improves stability and in last stage allows for operation with a higher supply
- Inter-stage and output-stage matching implemented with symmetrical magnetically coupled resonator technique

28nm CMOS Unit Cell Layout

- Unit cell methodology allows for easy scaling of each amplifier stage
 - 32 600nm width fingers
 - Parasitics minimized with higher metal routing for drain connection
 - Gate resistance reduced
 with double-sided
 connection
 - Source impedance reduced with stacked M1/2 layers

Mutual coupling resonator (MCR)

- Adjusting Coupling factor by tuning radius
- Requirement for zero gain ripple

$$k'^2(Q^2+1)=1$$

Output matching

- Inductor L1 adopted to tune the impedance Zamp
- Conjugate matching for power delivery and output return loss

Outline

- Motivation
- Driver Design
- Measurement Results
- Conclusion

28nm CMOS Prototype

- GSG probe pads for high-speed input and output
- DC supplies and serial control signals applied via wirebonds to PCB

Test Setup

• 40GHz LiNbO3-MZM with 7V RF V $_{\pi}$ at 30GHz • MZM biased at quadrature point

S-Parameters & Group Delay

- 20-35GHz 3dB bandwidth with max 18dB gain
- Group delay variation of the entire RoF link is <115ps within the 20-35 GHz bandwidth

AM-AM Compensation

- Activating linearizer allows for 3dB OP1dB extension
- Driver delivers 12dBm output power with expansive response that compensates MZM compression

Two-Tone Measurements

4.1dBm IIP3 for entire RoF link

Summary Table

References	[Hosseinzadeh RFIC 2019]	[Sadhwani JLT 2003]	[Okyere Texas Symposium on 2017]	This Work
Technology	Si-SiGe	CMOS 180nm	65nm CMOS	28nm CMOS
Frequency	0.5-20GHz	0.28GHz	1GHz ·	20-35GHz
Power Consumption	1700mW*	162mW	49.2mW	180mW
Max Voltage Swing	$2V_{pp}$	N/A	N/A	$2.5 V_{pp}$
IIP3	22dBm	6.8dBm	N/A	4.1dBm
Supply Voltage	2.5/3.3V	1.8V	N/A	0.9/1.6V
Power Efficiency**	11.76 GHz/W	1.73GHz/W	N/A	194.44GHz/W
Technique	IM3 Injection	Adaptive Predistoriton	Polynomial Predistortion	Predistortion

*Total power of 4 stages

**Power Efficiency = Max Frequency / Power Consumption

Conclusion

- A power-efficient 28nm CMOS MZM driver for an external MZM is implemented
- 20-35GHz bandwidth and $2.5V_{\rm pp}$ output swing is achieved

 Programmable linearizer is able to extend OP1dB by 3dB and has the flexibility to support different MZM types