ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2022

Lecture 11: Ring Resonator Modulator Transmitters

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- Homework 3 is due today
- Reading
 - Sackinger Chapter 8

Agenda

- WDM Optical Interconnect Motivation
- Silicon Photonic Modulators
- Carrier-Injection Ring Resonator Modulators
- Carrier-Depletion Ring Resonator Modulators

Wavelength-Division Multiplexing (WDM) Optical Interconnects

- Optical interconnects remove many channel limitations
- WDM allows for multiple high-bandwidth (10+Gb/s) signals to be packed onto one optical channel

Next-Generation 100G Interconnects

		[Google Datacenter]
7		

Link Distance	Transceiver Type	# of I/O Ports (25Gb/s NRZ)
0.5m	Electrical	PCB Trace × 4
1m	Electrical	Backplane × 4
10m	Electrical	Cu Cable × 4
100m	VCSEL	MMF × 4
1km	MZI / EAM	SMF × 4
> 10km	MZI / EAM	SMF × 4

Next-Generation 100G Interconnects

		[Google Datacenter]	
Link	Trancoaivar	# of I/O Ports	
Distance	Type	# of I/O Ports (25Gb/s NRZ)	
0.5m	Electrical	PCB Trace × 4	
1m	Electrical	Backplane × 4	
10m			
100m	Ring Modulator		
1km	WDM	SIML × J	
> 10km			

Ring Resonator Filter

- Ring resonators display a high-Q notch filter response at the through port and a band-pass response at the drop port
- This response repeats over a free spectral range (FSR)

Ring-Resonator Modulator (RRM)

High Frequency Modulation

- Refractive devices which modulate by changing the interference light coupled into the ring with the waveguide light
- Devices are relatively small (ring diameters < 20μm) and can be treated as lumped capacitance loads (~10fF)
- Devices can be used in WDM systems to selectively modulate an individual wavelength or as a "drop" filter at receivers

[Young ISSCC 2009]

WDM Photonic Transceiver

 High bandwidth density by combining multi-channels on a single waveguide via wavelength division multiplexing

Agenda

- WDM Optical Interconnect Motivation
- Silicon Photonic Modulators
- Carrier-Injection Ring Resonator Modulators
- Carrier-Depletion Ring Resonator Modulators

Plasma Dispersion Effect

 The change in refractive index and optical absorption coefficient is induced by free carriers in a semiconductor

 $N = n + i\alpha$

N: complex index of refraction n: electro-refraction α : electro-absorption

- 9 9 $\times 10^{-22}$ A M 9 5 $\times 10^{-18}$ (A M)^{0.8}

1550 nm

A ...

$$\Delta \alpha_{1.55\,\mu m} = -8.8 \times 10^{-18} \Delta N_e - 8.3 \times 10^{-18} \Delta N_h \ [cm^{-1}]$$
$$\Delta \alpha_{1.55\,\mu m} = 8.5 \times 10^{-18} \Delta N_e + 6.0 \times 10^{-18} \Delta N_h \ [cm^{-1}]$$

1310 nm $\Delta n_{1.31\mu m} = -6.2 \times 10^{-22} \Delta n_e - 6.0 \times 10^{-18} (\Delta n_h)^{0.8}$ $\Delta \alpha_{1.31\mu m} = 6.0 \times 10^{-18} \Delta n_e + 4.0 \times 10^{-18} \Delta n_h [cm^{-1}]$

 ΔN_e : electrons density ΔN_h : holes density 11

Silicon Photonic Modulators

- Carrier Accumulation
- Carrier Injection
- Carrier Depletion

 Electrooptic-polymer modulators have also been developed

Figure of Merit	Carrier Accumulation	Carrier Injection	Carrier Depletion
Modulation Bandwidth	High 🕂	Low -	High 🕂
Extinction Ratio (ER)	Small 🗕	Large 🕂	Small 🗕
Modulation Efficiency	High 🕂	High 🕂	Low 🗕
Insertion Loss	High 🗕	Low 🕂	High 🗕

MZM vs Microring Modulators

- Mach Zehnder Modulator
- Microring Modulator

Figure of Merit	Mach Zehnder	Microring
Footprint	Large 🗕	Small 🕂
Extinction Ratio (ER)	Small 🗕	Large 🕂
Insertion Loss	High 🗕	Low 🕂
Wavelength Sensitivity	Low 🕂	High 🗕

Agenda

- WDM Optical Interconnect Motivation
- Silicon Photonic Modulators
- Carrier-Injection Ring Resonator Modulators
 - Device Operation and Modeling
 - High-Speed Driver
 - Wavelength Stabilization Loop
- Carrier-Depletion Ring Resonator Modulators

Carrier-Injection Microring Modulator

- Ring waveguide is doped as a PIN junction
- Forward-bias voltage injects carriers, changing refractive index for optical modulation via the free carrier plasma dispersion effect

C-I Ring Modulator Speed Limitations

- Speed is limited by long minority carrier lifetimes
- Pre-emphasis signaling significantly improves data rates

Carrier-Injection Ring Modulator Modeling

- Previous Related Modeling Work
 - P-I-N diode model (only electrical dynamics) [Strollo TPE 1997]
 - Ring resonator model (only optical dynamics) [Smy JOSA B 2011]
 - Carrier-injection ring modulator model (lack accurate large-signal behavior) [Xu OE 2007, Wu OE 2015]

• Carrier-Injection Ring Modulator Model

• Capture nonlinear electrical and optical dynamics

[**Binhao Wang**, Cheng Li, Chin-Hui Chen, Kunzhi Yu, Marco Fiorentino, Raymond Beausoleil, and Samuel Palermo, "Compact Verilog-A Modeling of Carrier-Injection Microring Modulators for Optical Interconnect Transceiver Circuitry Design," accepted in Journal of Lightwave Technology]

[Binhao Wang, Cheng Li, Chin-Hui Chen, Kunzhi Yu, Marco Fiorentino, Raymond Beausoleil, and Samuel Palermo, "Compact Verilog-A Modeling of Silicon Carrier-Injection Ring Modulators," IEEE Optical Interconnects Conference (OIC), 2015]

[Cheng Li, Chin-Hui Chen, **Binhao Wang**, Samuel Palermo, Marco Fiorentino, and Raymond Beausoleil, "Design of an Energy-Efficient Silicon Microring Resonator-Based Photonic Transmitter," IEEE Design & Test of Computers, 31, 46-54, 2014]

[Cheng Li, Rui Bai, Ayman Shafik, Ehsan Zhian Tabasy, **Binhao Wang**, Geng Tang, Chao Ma, Chin-Hui Chen, Zhen Peng, Marco Fiorentino, Raymond Beausoleil, Patrick Chiang, and Samuel Palermo, "Silicon Photonic Transceiver Circuits with Microring Resonator Bias-Based Wavelength Stabilization in 65-nm CMOS," IEEE Journal of Solid-State Circuits (JSSC), 49, 1419-1436, 2014]

Model Flow Chart

Electrical Modeling - PIN Dynamics

- [Strollo TPE 1997]
- I-V dynamics are based on a moment-matching approximation of the ambipolar diffusion equation

Electrical Modeling - Parameter Extraction

Optical Modeling - Carrier Dynamics

Carrier Concentration

$$Q = \int_{0}^{t} I(t) dt / q \qquad I_{total}(t) = I_{free}(t) + I_{remain}(t) + I_{recombine}(t) Q_{total}(t) = Q_{free}(t) + Q_{remain}(t) + Q_{recombine}(t)$$

Index and Loss Changes

$$\Delta n_{1.31\mu m} = -6.2 \times 10^{-22} \Delta n_e - 6.0 \times 10^{-18} \left(\Delta n_h\right)^{0.8}$$
$$\Delta \alpha_{1.31\mu m} = 6.0 \times 10^{-18} \Delta n_e + 4.0 \times 10^{-18} \Delta n_h \ [cm^{-1}]$$

Optical Modeling - Optical Dynamics

- Consider the ring's cumulative phase shift
- Capture non-linear optical dynamics

Optical Modeling - Optical Dynamics

Parameter Extraction

Parameter	Unit	Description	Value
σ	-	Transmission coefficient	0.9944
a	-	Loss coefficient	0.9931
n _{eff}	-	Effective index	2.5188
r	μm	Ring radius	5

- Large extinction ratio (ER) ~20dB
- High modulation efficiency ~560pm/V

Simple NRZ Signaling

• Ring modulator under test

Parameter	Description
Coupling waveguide	350nm (W), 250nm (H), 50nm (slab)
Ring waveguide	450nm (W), 250nm (H), 50nm (slab)
Gap	250nm
Radius	5um
P+ doping	BF ²⁺ , 5e14 cm ⁻² , 10 KeV, Tilt 8°, Twist 27°
N+ doping	As, 5e14 cm ⁻² , 10 KeV, Tilt 8°, Twist 27°

8Gb/s eye diagrams with simple NRZ signal

Pre-Emphasis Signaling

Pre-emphasis NRZ signal generation

- Proposed model utilized to study the impact of key pre-emphasis parameters
 - Pulse duration
 - Pulse depth
 - DC bias

Pre-Emphasis Optimization - Duration

- Duration Pulse Duration 1.7V Depth 0.9V Voltage • Pulse Depth = 0.8VSwing DC Bias 0.7V 2V 0.5V DC Bias = 0.7V -0.3V 40ps 80ps
- 40ps pulse duration allows the eye to partially open
- 80ps pulse duration provides optimal eye opening

Pre-Emphasis Optimization - Depth

- 0.9V pulse depth results in low amount of charge for logic "1"
- 0.7V pulse depth produces excessive charge for logic "1"

Pre-Emphasis Optimization - DC Bias

- Pulse Depth = 0.8 V
- DC Bias

- 0.75V DC bias produces excessive charge for logic "1"
- 0.65V DC bias results in slower carrier injection for logic "1"

Co-Simulation with CMOS Driver

- Hybrid-integrated CMOS and silicon photonics prototype
- Optical transmitter co-simulation schematic
- Asymmetric pulse duration pre-emphasis setting
- 9Gb/s measured and co-simulated eye diagrams

High-Swing Pre-Emphasis Driver

- Dual-edge pre-emphasis with pulse width controlled by tunable delay cells (30ps~60ps)
- Cascode output stage used to meet high modulation swing requirement

Optical Transmitter Assembly

^{*} C. Li et. al. IEEE Design & Test, 2014

- GP 65nm CMOS 5-channel TX prototype
- 130nm SOI carrier-injection ring resonator modulators

Resonant Wavelength Sensitivity

- Ring's resonance wavelength is sensitive to fabrication variations and temperature fluctuations
- Requires tuning schemes to compensate wavelength drifts

Extinction Ratio Impact

- Ring devices resonance wavelength can shift with fabrication and temperature variations
- Tuning schemes necessary to stabilize resonance wavelength

Bias vs Thermal Tuning

	Bias Tuning	Thermal Tuning		
Speed	Fast (~µs) 🙂	Slow (~ms) 🙁		
Direction	Blue shift	Red shift		
Power	Low 🙂	High 🙁		
Range	Narrow 🙁	Wide 🙂		

Ring Spectrum vs Bias Voltage

Automatic Tuning Loop

- Automatic tuning loop sets ring output power to a DAC-generated reference level corresponding to the ring's resonance point
- Also applicable for thermal tuning

Static Tuning Mode

Dynamic Tuning Mode

Bias-Based Tuning Measurements

- Extinction ratio dramatically improved after biasbased tuning
- $340\mu W$ for a tuning range of 0.28nm

Agenda

- WDM Optical Interconnect Motivation
- Silicon Photonic Modulators
- Carrier-Injection Ring Resonator Modulators
- Carrier-Depletion Ring Resonator Modulators
 - Device Operation and Modeling
 - High-Speed Driver
 - Wavelength Stabilization Loop

Carrier-Depletion Ring Modulator Challenge I: Output Swing & Biasing

	ISSCC 2013	This Work
Ring Type	Injection	Depletion
Doping Profile	PIN	Lateral PN
Q	8000	5000
Tunability (pm/V)	350	25
Data Rate	9Gb/s	25Gb/s
Swing for >7dB ER	< 2V _{pp}	> 4V _{pp}

- High-speed depletion-mode ring modulator requires:
 - Large swing: >4V
 - Negative DC-bias: -2V

Carrier-Depletion Ring Modulator Challenge II: Nonlinear Dynamics

- Dynamic change of $n_{eff} \rightarrow$ unequal rise/fall times
- Asymmetric equalization for non-linearity cancellation

Carrier-Depletion Ring Modulator Modeling

- Previous Related Modeling Work
 - Ring resonator model (only optical dynamics) [Smy JOSA B 2011]
 - Carrier-depletion ring modulator model (lack electrical dynamics) [Zhang JSTQE 2010, Buckwalter JSSC 2012, Ban OIC 2015]
- Carrier-Depletion Ring Modulator Model
 - Capture nonlinear electrical and optical dynamics

[Ashkan Roashan-Zamir, **Binhao Wang**, Shashank Telaprolu, Kunzhi Yu, Cheng Li, M. Ashkan Seyedi, Marco Fiorentino, Raymond Beausoleil, and Samuel Palermo, "A 40Gb/s PAM4 Silicon Microring Resonator Modulator Transmitter in 65nm CMOS," accepted in IEEE Optical Interconnects Conference (OIC), 2016]

[Hao Li, Zhe Xuan, Cheng Li, Alex Titriku, Kunzhi Yu, **Binhao Wang**, Nan Qi, Ayman Shafik, Marco Fiorentino, Michael Hochberg, Samuel Palermo, and Patrick Yin Chiang, "A 25Gb/s, 4.4V Swing, AC-Coupled Ring Modulator-Based WDM Transmitter with Wavelength Stabilization in 65nm CMOS," IEEE Journal of Solid-State Circuits (JSSC), 50, 3145-3159, 2015]

[Hao Li, Zhe Xuan, Cheng Li, Alex Titriku, Kunzhi Yu, **Binhao Wang**, Nan Qi, Ayman Shafik, Marco Fiorentino, Michael Hochberg, Samuel Palermo, and Patrick Yin Chiang, "A 25Gb/s, 4.4V Swing, AC-Coupled, Si-Photonic Microring Transmitter with 2-Tap Asymmetric FFE and Dynamic Thermal Tuning in 65nm CMOS," IEEE International Solid-State Circuits Conference (ISSCC), 2015]

Carrier-Depletion Ring Modulator Model

Electrical Modeling - Parameter Extraction

Polynomial Curve Fitting

$$f(V) = a_0 + a_1 V + a_2 V^2 + a_3 V^3 + a_4 V^4$$

Parameter	Unit	a ₀	a ₁	a ₂	a ₃	a ₄
Δn _{eff}	-	-4.3×10 ⁻⁷	7.3×10 ⁻⁵	8.0×10 ⁻⁶	1.1×10 ⁻⁶	5.2×10 ⁻⁸
Δα	dB/cm	0.01	1.5	0.17	-2.3×10 ⁻²	1.0×10 ⁻³
С	fF/µm	0.71	-0.14	5.5×10 ⁻²	-1.2×10 ⁻²	1.0×10 ⁻³

Optical Modeling - Optical Dynamics

$$\frac{\partial A}{\partial t} = \left(2\pi c j \left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right) - \frac{1}{\tau}\right) A + j \mu S_i$$
$$S_o = S_i + j \mu A$$

where $1/\tau = 1/\tau_c + 1/\tau_l$ $\mu^2 = \kappa^2 v_g / 2\pi R = 2/\tau_c$ $\tau_l = 1/(v_g e^{2\pi R(\alpha_0 + 0.75\Delta\alpha)})$ $2\pi (n_0 + \Delta n) R = m\lambda_0$

[Little JLT 1997]

- Capture non-linear optical dynamics
- Require less memory and computation time

Optical Modeling - Optical Dynamics

Parameter Extraction

Parameter	Unit	Description	Value
τ	ps	Amplitude decay time	9.07
К	-	Coupling ratio	0.188
m	-	Mode number	28
r	μm	Ring radius	7.5

- Extinction ratio (ER) ~10dB
- Modulation efficiency ~25pm/V

Co-Simulation with CMOS Driver

- Optical transmitter prototype assembly
- Optical transmitter co-simulation schematic

Measured and Co-Simulated 25Gb/s Eye Diagrams

- Asymmetrical ISI is due to the device nonlinearity
- It is compensated by an optimized nonlinear equalizer

Proposed AC-Coupled Differential Driver

- $C_C = 3pF \rightarrow 4.4V$ differential swing
- $Z_S < 30\Omega$ to minimize low-pass attenuation
- High-pass cut-off: < 10MHz

Conventional Segmented Output Driver

- Cascode transistors suffer V_{DS} overstress
- Large parasitic capacitance due to segmented design

Proposed 2-Tap FFE Output Driver

Merged Output Stage

- Merged cascode transistors
- No V_{DS} overstress
- Reduced parasitics and area
- Independent `1'-Level and `0'-Level FFE coefficients

Transmitter Architecture

25Gb/s 8:1 CMOS Serializer

Quadrature quarter-rate architecture eliminates
 high-speed retiming before final 2:1 MUX

25Gb/s 8:1 CMOS Serializer

Tri-state inverter-based 2:1 MUX for fast edge rate

Heterogeneous Integration

- Hybrid CMOS-Photonic packaging (<0.5mm bond-wires)
- Stable optical coupling using vertically-attached fibers

25Gb/s Optical Measurement

Test Channel 1 w/o FFE

Test Channel 1 w/ Asymmetric FFE

Challenge III: Wavelength Stability

- Modulation efficiency depends strongly on wavelength
- ER degradation due to temperature fluctuation
- Closed-loop control is necessary for robust operation

Average Power Thermal Stabilization

Thermal Tuning Algorithm

Thermal Tuning Algorithm

Thermal Tuning Test

Thermal Tuning Test

Dynamic Thermal Tracking Test

Dynamic Thermal Tracking Test

TX Performance Comparison

	Liu JSSC2012	Li ISSCC2013	Moss ISSCC2013	Buckwalter JSSC2012	This Work
Technology	40nm CMOS	65nm CMOS	45nm SOI	130nm SOI	65nm CMOS
Data Rate	10Gb/s	5Gb/s	2.5Gb/s	25Gb/s	25Gb/s
Integration	Flip Chip	Wire Bonding	Monolithic	Monolithic	Wire Bonding
MRM Type	Depletion	Injection	Injection	Depletion	Depletion
MRM Q	~15000	~8000	~4000	~13000	~5000
Supply	1V, 2V	1V, 2V	1.1V, 1.5V	+1.5V, -1.5V	1.2V, 2.4V
Channels	8	6	1	1	5
EQ	N/A	2-Tap FFE	2-Tap FFE	2-Tap FFE	2-Tap FFE
Swing	$2V_{pp}$	$2V_{pp}$	1.5V _{pp}	$\mathbf{2.4V}_{pp-diff}$	4.4V _{pp-diff}
ER	7dB	12.7dB	3dB	6.5dB	7dB
MRM Stabilization	Static Thermal	Static Bias	N/A	N/A	Dynamic Thermal
Transmitter Power	*1.35mW	4.04mW	*3.07mW	*207mW	113.5mW

* w/o Serialization and Clocking

112Gb/s PAM4 Transmitter

[[]Li ISSCC 2020]

- Look-up table (LUT)
 DAC-based output stage
- 2-tap linear FFE (21X slices)
- Non-linear static predistortion (4.5X slices)
- Nonlinear 2-tap FFE (2.25X slices)

112Gb/s DAC Output

- Differential cascade output driver w/ level shifted pre-drivers
- Per-slice series R_L and lumped shunt R_T improve linearity at the cost of reduced output swing (3V_{ppd})
- Series peaking inductor provides significant bandwidth extension

112Gb/s PAM4 Eye Diagrams

- Utilizing only linear FFE results in significant eye skew and poor TDECQ
- Enabling the non-linear pre-distortion and FFE aligns the 3 eyes and improves TDECQ by ~1.5dB

Next Time

Laser Sources