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Announcements

e Homework 3 is due Apr 7

e Reading
 Sackinger Chapter 8



Agenda

e EAM device operation and modeling

e EAM drivers

 Controlled-impedance drivers
» Lumped-element drivers



Electroabsorption Modulator (EAM)
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Electroabsorption modulators operate with voltage-dependent
absorption of light passing through the device

The device structure is a reverse-biased p-i-n diode

The Franz-Keldysh effect describes how the effective bandgap of the
semiconductor decreases with increasing electric field, shifting the
absorption edge

o While this effect is weak, it can be enhanced with device structures

with multiple quantum wells (MQW) through the quantum-confined
Stark effect



EAM Device Types
Waveguide EAM [Liu 2008]
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e EAMs can be waveguide-based or MQW EAM Array Bonded onto

surface normal a CMOS Chip [Keeler 2002]
e o :

e Waveguide-based structures typically .

allow for higher extinction ratios due to

the increased absorption length

e Surface normal devices provide the
potential for large arrays of optical I/Os
through bonding
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Electroabsorption Modulated Laser (EML)

DFB Laser EA Modulator

[Sackinger]

I _ - Light

e In direct-bandgap III-V technologies, an EAM can
be monolithically integrated with a laser to form
an Electroabsorption Modulated Laser (EML)

e This is a very compact device structure which has
low coupling losses




EAM Switching Curve

[Sackinger]
Fout

e At low reverse-bias, the device ideally has low absorption
and most of the light appears at the output

e The absorption increases when a strong reverse-bias is
applied and less power appears at the output

e EAMs are characterized with a switching voltage V,, that
corresponds to a given extinction ratio

e Typical switching voltages are 1.5 to 4V



EAM Chirp

e The modulation voltage not only changes the
absorption, but also the refractive index,
inducing some chirp in the EAM output

e This chip is generally much less than a
directly-modulated laser, with |a|<1

o Application of a small on-state bias (0-1V)
can minimize this chirp at the cost of higher
insertion loss
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EAM Bias & Modulation Voltages

B Y%
e The voltage swing V; is set to achieve a sufficient
extinction ratio, i.e. higher than Vg,
 Typical Range: 0.2-3V
e The bias voltage Vj is set to minimize the chirp at
the cost of higher insertion loss
 Typical Range: 0-1V



EAM Electrical Model
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e Electrically, the EAM is a reverse-based diode

e This is modeled with the diode capacitance and a

voltage-dependent photocurrent source (nonlinear
resistance)

e Depending on the integration level with the driver,
the device may also include a termination resistor




67GHz Hybrid Silicon (InP) EAM

e EAM is formed with an InP p-
I-n diode bonded onto silicon

e Design for a controlled-
impedance driver

e Nominal 1300nm operation
with -4V bias and 2V drive
achieves ~15dB ER

E/O Response [dB]

[Tang OFC 2012]
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28Gb/s GeSi EAM on SOI
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e EAM is formed with an GeSi p-i-n
diode fabricated in an SOI platform

e Device is only 50mm long and can be
driven with a lumped-element driver

e Nominal operation with 3V drive
achieves 3-6dB ER over a wide
wavelength range -




Controlled-Impedance EAM Driver
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e If the EAM is not tightly integrated with the driver circuitry,
then a controlled-impedance driver is required

e The high EAM swings results in large power consumption

13



CMOS Reliability Constraints

= High electric fields in modern CMOS devices cause
many reliability issues
= Oxide Breakdown
= Hot-Carrier Degradation

= Higher voltage I/O transistors are too slow

= Core transistor output stage V¢, Vp, Vps

= Should not exceed 20-30% of nominal Vdd during
transients

= Not greater than Vdd in steady state



High-Voltage Output Stages
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= Static-biased cascode suffers from V. stress
during transients

= Double-cascode with output tracking is slow due
to three transistor stack and feedback loop

1. T.Woodward et a/, “Modulator-Driver Circuits for Optoelectronic VLSI," IEEE Photonics Technology Letters, June 1997.
2. A. Annema et al, “5.5-V I/O in a 2.5-V 0.25-um CMQOS Technology,” IEEE Journal of Solid-State Circuits, Mar. 2001.



Pulsed-Cascode Output Stage

Vdd2

vdd

= Uses only two-transistor stack for maximum speed
= The cascode transistors gates are pulsed during a transistion
to prevent Vds overstress

S. Palermo and M. Horowitz, “High-Speed Transmitters in 90nm CMOS for High-Density
Optical Interconnects," ESSCIRC 2006.



Output Stage Waveforms
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Output Stage Waveforms
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Pulsed-Cascode Output Stage
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= Cascode body terminals dynamically biased to minimize body effect

= Issues
= Voltage level shift
= Delay matching high voltage path with standard voltage path



Modulator TX with
Level-Shifting Multiplexer
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= Level-shifter combined with multiplexer

= Active inductive shunt peaking compensates multiplexer self-
loading (reduces risetime by 37%)

= Slightly lower fan-out ratio in “high” signal path to compensate for
level-shifting delay

= Delay Tracking
= "High” path inverter nMOS in separate p-well
= Metal fringe coupling capacitors perform skew compensation




Modulator Driver
Reliability Simulations
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MQWM TX Testing
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Modulator Driver
Electrical Eye Diagram
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16Gb/s data subsampled at modulator driver output node



Modulator Driver
Optical Eye Diagram

19MOd 1ndinQ pozijewoN

1.4 16 1.8

1.2

02 04 06 038

)

2

1
Time (ns)

= Optical performance limited to ~1Gb/s by poor modulator
contact design causing large series resistance



30Gb/s Lumped-Element EAM Driver
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e Using a 5.4V reverse bias and 2Vpp dynamic
swing to achieve 8dB ER

e Have ~7dB insertion loss

25



Next Time

e Ring Resonator Modulator (RRM) TX
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