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Announcements 
• Lab Report 5 and Prelab 6 due Mar 25

• Stateye theory paper posted on website
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Noise in High-Speed Link Systems

• Multiple noise sources can degrade link 
timing and amplitude margin
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Noise Source Overview
• Common “noise” sources

• Power supply noise
• Receiver offset
• Crosstalk
• Inter-symbol interference
• Random noise

• Power supply noise
• Switching current through 

finite supply impedance 
causes supply voltage drops 
that vary with time and 
physical location

• Receiver offset
• Caused by random device 

mismatches 4

• Crosstalk
• One signal (aggressor) 

interfering with another 
signal (victim)

• On-chip coupling (capacitive)
• Off-chip coupling (t-line)

• Near-end
• Far-end

• Inter-symbol interference
• Signal dispersion causes 

signal to interfere with itself
• Random noise

• Thermal & shot noise
• Clock jitter components



Bounded and Statistical Noise Sources
• Bounded or deterministic

noise sources
• Have theoretically 

predictable values with 
defined worst-case bounds

• Allows for simple (but 
pessimistic) worst-case 
analysis

• Examples
• Crosstalk to small channel 

count
• ISI
• Receiver offset 
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• Statistical or random noise 
sources
• Treat noise as a random process

• Source may be psuedo-random
• Often characterized w/ Gaussian stats

• RMS value
• Probability density function (PDF)

• Examples
• Thermal noise
• Clock jitter components
• Crosstalk to large channel count

• Understanding whether noise source is bounded or 
random is critical to accurate link performance estimation



Proportional and Independent Noise Sources

• Some noise is proportional
to signal swing
• Crosstalk
• Simultaneous switching 

power supply noise
• ISI

• Can’t overpower this noise
• Larger signal = more noise
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• Some noise is independent 
to signal swing
• RX offset
• Non-IO power supply noise

• Can overpower this noise

NISNN VVKV 
Total noise

Proportional noise 
constant

Signal swing
Independent noise



Common Noise Sources
• Power supply noise
• Receiver offset
• Crosstalk
• Inter-symbol interference
• Random noise
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Power Supply Noise

• Circuits draw current from the VDD supply nets and 
return current to the GND nets

• Supply networks have finite impedance
• Time-varying (switching) currents induce variations on 

the supply voltage
• Supply noise a circuit sees depends on its location in 

supply distribution network
8
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Power Routing

9

Bad – Block B will 
experience excessive 
supply noise

Better – Block B will experience 1/2 
supply noise, but at the cost of double 
the power routing through blocks

Even Better – Block A & 
B will experience similar 
supply noise

Best – Block A & B 
are more isolated

[Hodges]
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Supply Induced Delay Variation
• Supply noise can induce variations in circuit delay

• Results in deterministic jitter on clocks & data signals
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• CMOS delay is approximately directly proportional to VDD
• More delay results in more deterministic jitter

[Hodges]



Simultaneous Switching Noise
• Finite supply impedance 

causes significant 
Simultaneous Switching 
Output (SSO) noise 
(xtalk)

• SSO noise is proportional 
to number of outputs 
switching, n, and 
inversely proportional to 
signal transition time, tr
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Common Noise Sources
• Power supply noise
• Receiver offset
• Crosstalk
• Inter-symbol interference
• Random noise
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Receiver Input Referred Offset

• The input referred offset is primarily a function of Vth
mismatch and a weaker function of  (mobility) mismatch 
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Receiver Input Referred Offset
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• To reduce input offset 2x, we need to increase area 4x
• Not practical due to excessive area and power consumption
• Offset correction necessary to efficiently achieve good sensitivity

• Ideally the offset “A” coefficients are given by the design 
kit and Monte Carlo is performed to extract offset sigma

• If not, here are some common values:
• AVt = 1mVm per nm of tox

• For our default 90nm technology, tox=2.8nm  AVt ~2.8mVm 
• A is generally near 2%m



Common Noise Sources
• Power supply noise
• Receiver offset
• Crosstalk
• Inter-symbol interference
• Random noise
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Crosstalk
• Crosstalk is noise induced by one signal (aggressor) that 

interferes with another signal (victim)

• Main crosstalk sources
• Coupling between on-chip (capacitive) wires
• Coupling between off-chip (t-line/channel) wires
• Signal return coupling

• Crosstalk is a proportional noise source
• Cannot be reduced by scaling signal levels
• Addressed by using proper signal conventions, improving channel 

and supply network, and using good circuit design and layout 
techniques
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Crosstalk to Capacitive Lines
• On-chip wires have significant capacitance to adjacent 

wires both on same metal layer and adjacent vertical layers

• Floating victim
• Examples: Sample-nodes, domino logic
• When aggressor switches

• Signal gets coupled to victim via a capacitive voltage divider
• Signal is not restored
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Crosstalk to Driven Capacitive Lines
• Crosstalk to a driven 

line will decay away 
with a time-constant 
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inversely proportional 
to aggressor transition 
times, tr, and driver 
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Capacitive Crosstalk Delay Impact
• Aggressor transitioning near victim transition can modulate 

the victim’s effective load capacitance
• This modulates the victim signal’s delay, resulting in 

deterministic jitter
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Mitigating Capacitive (On-Chip) Crosstalk
• Adjacent vertical metal layers should be routed 

perpendicular (Manhattan routing)
• Limit maximum parallel routing distance
• Avoid floating signals and use keeper transistors with 

dynamic logic
• Maximize signal transition time

• Trade-off with jitter sensitivity
• For differential signals, periodically “twist” routing to make 

cross-talk common-mode
• Separate sensitive signals
• Use shield wires
• Couple DC signals to appropriate supply
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Transmission Line Crosstalk
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• 2 coupled lines:
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• Capacitive coupling sends half the coupled energy in each direction with 
equal polarity
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Transmission Line Crosstalk
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• 2 coupled lines:

• Transient current signal on A is coupled to B through mutual inductance
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• Inductive coupling sends half the coupled energy in each direction 
with a negative forward traveling wave and a positive reverse 
traveling wave



Near- and Far-End Crosstalk
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[Hall]

• Near-end crosstalk (NEXT) is immediately 
observed starting at the aggressor transition 
time and continuing for a round-trip delay

• Due to the capacitive and inductive coupling 
terms having the same polarity, the NEXT signal 
will have the same polarity as the aggressor

• Far-end crosstalk (FEXT) propagates along the 
victim channel with the incident signal and is 
only observed once

• Due to the capacitive and inductive coupling 
terms having the opposite polarity, the FEXT 
signal can have either polarity, and in a 
homogeneous medium (stripline) cancel out



Near- and Far-End Crosstalk
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Off-Chip Crosstalk
 Occurs mostly in 

package and board-
to-board connectors

 FEXT is attenuated 
by channel response 
and has band-pass 
characteristic

 NEXT directly couples 
into victim and has 
high-pass 
characteristic



Signal Return Crosstalk
• Shared return path with finite impedance
• Return currents induce crosstalk occurs among signals  
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Common Noise Sources
• Power supply noise
• Receiver offset
• Crosstalk
• Inter-symbol interference
• Random noise
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Inter-Symbol Interference (ISI)
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y(1)(t) sampled relative to pulse peak:
[… 0.003 0.036 0.540 0.165 0.065 0.033 0.020 0.012 0.009 …]
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…

• Previous bits residual state can 
distort the current bit, resulting in 
inter-symbol interference (ISI)



Peak Distortion Analysis Example
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Worst-Case Eye vs Random Data Eye

• Worst-case data pattern can occur at very low probability!
• Considering worst-case is too pessimistic 

Worst-Case Eye
100 Random Bits
1000 Random Bits
1e4 Random Bits
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Constructing ISI Probability Density 
Function (PDF)

• Using ISI probability density 
function will yield a more accurate 
BER performance estimate

• In order to construct the total ISI 
PDF, need to convolve all of the 
individual ISI term PDFs together
• 50% probability of “1” symbol ISI and 

“-1” symbol ISI
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Convolving Individual ISI PDFs Together
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* =

* =

• Keep going until all individual PDFs convolved together



Complete ISI PDF
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Cursor PDF – Data 1
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* =

• Data 1 PDF is centered about the cursor value 
and varies from a maximum positive value to 
the worst-case value predicted by PDA
• This worst-case value occurs at a low probability!



Cursor Cumulative Distribution Function (CDF)

• For a given offset, what 
is the probability of a 
Data 1 error?
• Data 1 error probability 

for a given offset is equal 
to the Data 1 CDF 
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Combining Cursor CDFs

36



Bit-Error-Rate (BER) Distribution Eye
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• Statistical BER analysis 
tools use this technique 
to account for ISI 
distribution and also 
other noise sources
• Example from Stateye

• Note: Different channel & 
data rate from previous 
slides



Common Noise Sources
• Power supply noise
• Receiver offset
• Crosstalk
• Inter-symbol interference
• Random noise
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Random Noise
• Random noise is unbounded and modeled 

statistically
• Example: Circuit thermal and shot noise

• Modeled as a continuous random variable 
described by
• Probability density function (PDF)
• Mean, 
• Standard deviation, 
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Gaussian Distribution
• Gaussian distribution is normally assumed for random noise

• Larger sigma value results in increased distribution spread
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Signal with Added Gaussian Noise

• Finite probability of noise pushing signal 
past threshold to yield an error
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Cumulative Distribution Function (CDF)

• The CDF tells what 
is the probability 
that the noise 
signal is less than 
or equal to a 
certain value
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Error and Complimentary Error Functions

• Error Function:

• Relationship between normal 
CDF (0,1) and Error Function:

• The complementary error 
function gives the probability 
that the noise will exceed a 
given value
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Bit Error Rate (BER)
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• Using erfc to predict BER:

• Need a symbol of about 7 for BER=10-12

• Peak-to-peak value will be 2x this

[Dally]

w/ Normal (0,1) PDF

Conservative 
Upper-Bound 
Approximation



Noise Source Classifications
• Determining whether noise source is
• Proportional vs Independent
• Bounded vs Statistical

• is important in noise budgeting
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Noise Budget Example
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Value 
(BER=10-12)RMSKnParameter

0.4VPeak Differential 
Swing

5mVRX Offset + 
Sensitivity

5mVPower Supply 
Noise

20mV0.05Residual ISI
20mV0.05Crosstalk
14mV1mVRandom Noise
0.274V10dB = 0.684Attenuation
0.338VTotal Noise

62mVDifferential Eye 
Height Margin

• Peak TX differential swing of 400mVppd equalized down 10dB
• 200mV  63mV

+63mV

-63mV
31mV

31mV

• Conservative analysis
• Assumes all distributions 

combine at worst-case
• Better technique is to use 

statistical BER link simulators



Next Time
• Timing Noise
• BER Analysis Techniques
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