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Announcements 
• Lab Report 5 and Prelab 6 due Mar 25

• Equalization overview and circuits papers are 
posted on the website
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Agenda
• RX FIR equalization
• RX CTLE equalization
• RX DFE equalization
• Equalization adaptation techniques
• Advanced modulation/other techniques
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Link with Equalization
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TX FIR Equalization
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• TX FIR filter pre-distorts transmitted pulse in order to invert channel 
distortion at the cost of attenuated transmit signal (de-emphasis)



RX FIR Equalization
• Delay analog input signal and 

multiply by equalization 
coefficients

• Pros
• With sufficient dynamic range, can 

amplify high frequency content 
(rather than attenuate low 
frequencies)

• Can cancel ISI in pre-cursor and 
beyond filter span

• Filter tap coefficients can be 
adaptively tuned without any 
back-channel

• Cons
• Amplifies noise/crosstalk
• Implementation of analog delays
• Tap precision
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[Hall]



RX Equalization Noise Enhancement
• Linear RX equalizers don’t discriminate between 

signal, noise, and cross-talk
• While signal-to-distortion (ISI) ratio is improved, SNR 

remains unchanged
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[Hall]



Analog RX FIR Equalization Example
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D. Hernandez-Garduno and J. Silva-Martinez, “A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3rd-Order Delay Cells," 
ISSCC, 2007.

• 5-tap equalizer with tap spacing of Tb/2

1Gb/s experimental results

3rd-order delay cell



Digital RX FIR Equalization
• Digitize the input signal with high-speed low/medium 

resolution ADC and perform equalization in digital domain
• Digital delays, multipliers, adders
• Limited to ADC resolution

• Power can be high due to very fast ADC and digital filters
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[Hanumolu]



Digital RX FIR Equalization Example
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[Harwood ISSCC 2007]• 12.5GS/s 4.5-bit Flash ADC in 65nm CMOS
• 2-tap FFE & 5-tap DFE
• XCVR power (inc. TX) = 330mW, Analog = 245mW, Digital = 85mW



Agenda
• RX FIR equalization
• RX CTLE equalization
• RX DFE equalization
• Equalization adaptation techniques
• Advanced modulation/other techniques
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Link with Equalization
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RX Continuous-Time Linear Equalizer (CTLE)

• Passive R-C (or L) can implement 
high-pass transfer function to 
compensate for channel loss

• Cancel both precursor and long-tail 
ISI

• Can be purely passive or combined 
with an amplifier to provide gain

13

Din- Din+

Vo-Vo+

Passive CTLE Active CTLE

[Hanumolu]



Passive CTLE
• Passive structures offer excellent linearity, 

but no gain at Nyquist frequency
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Active CTLE
• Input amplifier with RC 

degeneration can provide 
frequency peaking with gain 
at Nyquist frequency

• Potentially limited by gain-
bandwidth of amplifier

• Amplifier must be designed 
for input linear range
• Often TX eq. provides some 

low frequency attenuation
• Sensitive to PVT variations 

and can be hard to tune
• Generally limited to 1st-order 

compensation 15
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Active CTLE Example
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Din- Din+

Vo-Vo+



Active CTLE Tuning
• Tune degeneration resistor and capacitor to adjust zero 

frequency and 1st pole which sets peaking and DC gain
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• Increasing CS moves zero and 
1st pole to a lower frequency 
w/o impacting (ideal) peaking

• Increasing RS moves zero to 
lower frequency and increases 
peaking (lowers DC gain)
• Minimal impact on 1st pole



Agenda
• RX FIR equalization
• RX CTLE equalization
• RX DFE equalization
• Equalization adaptation techniques
• Advanced modulation/other techniques
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Link with Equalization
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RX Decision Feedback Equalization (DFE)
• DFE is a non-linear

equalizer

• Slicer makes a symbol 
decision, i.e. 
quantizes input

• ISI is then directly 
subtracted from the 
incoming signal via a 
feedback FIR filter

20

  nknnknkkk dwdwdwyz  
~

1

~

11

~

1 



RX Decision Feedback Equalization (DFE)
• Pros

• Can boost high frequency 
content without noise and 
crosstalk amplification

• Filter tap coefficients can be 
adaptively tuned without any 
back-channel

• Cons
• Cannot cancel pre-cursor ISI
• Chance for error propagation

• Low in practical links (BER=10-12)
• Critical feedback timing path
• Timing of ISI subtraction 

complicates CDR phase 
detection
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DFE Example
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• If only DFE equalization, DFE tap coefficients 
should equal the unequalized channel pulse 
response values [a1 a2 … an]

• With other equalization, DFE tap coefficients 
should equal the pre-DFE pulse response values

• DFE provides flexibility in the optimization of other 
equalizer circuits

• i.e., you can optimize a TX equalizer without caring 
about the ISI terms that the DFE will take care of

a1

a2

[w1 w2]=[a1 a2]



Direct Feedback DFE Example (TI)
• 6.25Gb/s 4-tap DFE

• ½ rate architecture
• Adaptive tap algorithm
• Closes timing on 1st 

tap in ½ UI for 
convergence of both 
adaptive equalization 
tap values and CDR
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Direct Feedback DFE Critical Path

• Must resolve data and feedback in 1 bit period
• TI design actually does this in ½UI for CDR
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DFE Loop Unrolling

• Instead of feeding back and 
subtracting ISI in 1UI

• Unroll loop and pre-compute 2 
possibilities (1-tap DFE) with 
adjustable slicer threshold

• With increasing tap number, 
comparator number grows as 2#taps
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DFE Resistive-Load Summer

• Summer performance is critical for DFE operation

• Summer must settle within a certain level of accuracy 
(>95%) for ISI cancellation

• Trade-off between summer output swing and settling time

• Can result in large bias currents for input and taps
26
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DFE Integrating Summer

• Integrating current onto load capacitances eliminates RC settling time

• Since T/C > R, bias current can be reduced for a given output swing
• Typically a 3x bias current reduction

27

[Park ISSCC 2007]



Digital RX FIR & DFE Equalization Example

28

[Harwood ISSCC 2007]• 12.5GS/s 4.5-bit Flash ADC in 65nm CMOS
• 2-tap FFE & 5-tap DFE
• XCVR power (inc. TX) = 330mW, Analog = 245mW, Digital = 85mW



DFE with Feedback FIR Filter
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[Liu ISSCC 2009]

• DFE with 2-tap FIR filter in feedback will 
only cancel ISI of the first two post-cursors



“Smooth” Channel

30

[Liu ISSCC 2009]

• A DFE with FIR feedback requires many taps to cancel ISI

• Smooth channel long-tail ISI can be approximated as 
exponentially decaying
• Examples include on-chip wires and silicon carrier wires
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DFE with IIR Feedback
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[Liu ISSCC 2009]

• Large 1st post-cursor H1 is canceled with normal FIR 
feedback tap

• Smooth long tail ISI from 2nd post-cursor and beyond is 
canceled with low-pass IIR feedback filter

• Note: channel needs to be smooth (not many reflections) in 
order for this approach to work well



DFE with IIR Feedback RX Architecture
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[Liu ISSCC 2009]



• Integrating summer with regeneration PMOS devices to 
realize partial slicer operation

Merged Summer & Partial Slicer
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[Liu ISSCC 2009]



• Low-pass response (time constant) implemented by RD and CD
• Amplitude controlled by RD and ID
• 2 UI delay implemented through mux to begin cancellation at 2nd

post-cursor

Merged Mux & IIR Filter
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[Liu ISSCC 2009]



Agenda
• RX FIR equalization
• RX CTLE equalization
• RX DFE equalization
• Equalization adaptation techniques
• Advanced modulation/other techniques
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Setting Equalizer Values
• Simplest approach to setting equalizer values (tap weights, 

poles, zeros) is to fix them for a specific system
• Choose optimal values based on lab measurements
• Sensitive to manufacturing and environment variations

• An adaptive tuning approach allows the optimization of the 
equalizers for varying channels, environmental conditions, 
and data rates

• Important issues with adaptive equalization
• Extracting equalization correction (error) signals
• Adaptation algorithm and hardware overhead
• Communicating the correction information to the equalizer circuit

36



TX FIR Adaptation Error Extraction
• While we are adapting the TX 

FIR, we need to measure the 
response at the receiver input

• Equalizer adaptation (error) 
information is often obtained 
by comparing the receiver 
input versus the desired 
symbol levels, dLev

• This necessitates additional 
samplers at the receiver with 
programmable threshold levels

37
[Stojanovic JSSC 2005]



TX FIR Adaptation Algorithm
• The sign-sign LMS algorithm is 

often used to adapt equalization 
taps due to implementation 
simplicity
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TX FIR Common-Mode Back-Channel
• In order to communicate FIR tap update information 

back to the TX, a back-channel is necessary
• One option is to use low data rate (~10Mb/s) common-

mode signaling from the RX to TX on the same 
differential channel

39[Stojanovic JSSC 2005]



TX FIR Data Encoder Back-Channel
• Another option is to use a high-speed TX channel on the 

RX side that communicates data back to the TX under 
adaptation

• Flexibility in data encoding (8B10B/Q) allows low data 
rate tap adaptation information to be transmitted back 
without data rate overhead

40[Stonick JSSC 2003]



CTLE Tuning with PSD Measurement
• One approach to CTLE tuning is to compare low-frequency 

and high-frequency spectrum content of random data
• For ideal random data, there is a predictable ratio between 

the low-frequency power and high-frequency power
• The error between these power components can be used in 

a servo loop to tune the CTLE

41[Lee JSSC 2006]
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CTLE Tuning 
w/ Output Amplitude Measurement

• CTLE tuning can also be done by comparing low-frequency and high-
frequency average amplitude

• Approximating the equalized data as a sine wave, a predictable ratio 
exists between the low frequency average and high-frequency average

• Equalizer settings are adjusted until the high frequency peak-to-peak 
swing matches the low-frequency peak-to-peak swing

42[Uchiki ISSCC 2008]



CTLE Tuning 
w/ Data Edge Distribution Monitoring

• The width and shape of the data 
edge distribution can be used to 
reliably calibrate an equalizer

• By oversampling the data bits 
with sub-period accuracy, this 
information can be obtained

• Objective is to maximize eye 
opening, or equivalently 
minimizing the standard 
deviation of the edge distribution

43[Gerfers JSSC 2008]



DFE Tuning – FIR Feedback

• 2x oversampling the equalized signal at the edges can be 
used to extract information to adapt a DFE and drive a 
CDR loop

• Sign-sign LMS algorithm used to adapt DFE tap values

44[Payne JSSC 2005]



DFE Tuning – IIR Feedback

45[Huang ISSCC 2011]



Agenda
• RX FIR equalization
• RX CTLE equalization
• RX DFE equalization
• Equalization adaptation techniques
• Advanced modulation/other techniques
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Advanced Modulation
• In order to remove ISI, we attempt to 

equalize or flatten the channel response 
out to the Nyquist frequency

• For less frequency-dependent loss, move 
the Nyquist frequency to a lower value via 
more advance modulation
• 4-PAM (or higher)
• Duo-binary

• Refer to lecture 4 for more details
47



Multi-tone Signaling

• Instead equalizing out to baseband Nyquist frequency
• Divide the channel into bands with less frequency-dependent loss
• Should result in less equalization complexity for each sub-band
• Requires up/down-conversion
• Discrete Multi-tone used in DSL modems with very challenging channels

• Lower data rates allow for high performance DSP
• Recently seeing this in some high-speed link research prototypes 48

[Beyene AdvPack 2008]
10Gb/s duo-binary 2 Quarature

10Gb/s duo-binary

30Gb/s total in 2 bands 56Gb/s total in 15 bands

[Kim ISSCC 2019]



Next Time
• Link Noise and BER Analysis
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