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Announcements 
• Lab 4 Report and Prelab 5 due Mar 10
• Exam 1 Mar 7

• Covers material through Lecture 6
• Previous years’ exam 1s are posted on the website for 

reference

• Equalization overview and circuits papers are posted 
on the website
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Agenda
• Equalization theory and circuits

• Equalization overview
• Equalization implementations

• TX FIR
• RX FIR
• RX CTLE
• RX DFE

• TX FIR Equalization
• FIR filter in time and frequency domain
• MMSE Coefficient Selection
• Circuit Topologies

• Equalization overview paper posted on website
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High-Speed Electrical Link System
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Link with Equalization
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Channel Performance Impact
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Channel Performance Impact



Channel Equalization
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• Equalization goal is to flatten the frequency response out to the 
Nyquist Frequency and remove time-domain ISI



TX FIR Equalization
• TX FIR filter pre-distorts transmitted pulse in 

order to invert channel distortion at the cost of 
attenuated transmit signal (de-emphasis)
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6Gb/s TX FIR Equalization Example

• Pros
• Simple to implement
• Can cancel ISI in pre-

cursor and beyond filter 
span

• Doesn’t amplify noise
• Can achieve 5-6bit 

resolution

• Cons
• Attenuates low 

frequency content due 
to peak-power limitation

• Need a “back-channel” 
to tune filter taps
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RX Equalization #1: RX FIR

• Pros
• With sufficient dynamic range, can amplify 

high frequency content (rather than 
attenuate low frequencies)

• Can cancel ISI in pre-cursor and beyond 
filter span

• Filter tap coefficients can be adaptively 
tuned without any back-channel

• Cons
• Amplifies noise/crosstalk
• Implementation of analog delays
• Tap precision
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*

*D. Hernandez-Garduno and J. Silva-Martinez, “A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3rd-Order Delay Cells," 
ISSCC, 2007.



RX Equalization #2: RX CTLE
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Din- Din+

Vo-Vo+

• Pros
• Provides gain and 

equalization with low 
power and area 
overhead

• Can cancel both pre-
cursor and long-tail ISI

• Cons
• Generally limited to 1st 

order compensation
• Amplifies noise/crosstalk
• PVT sensitivity
• Can be hard to tune



RX Equalization #3: RX DFE
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• Pros
• No noise and crosstalk 

amplification
• Filter tap coefficients 

can be adaptively tuned 
without any back-
channel

• Cons
• Cannot cancel pre-

cursor ISI
• Critical feedback timing 

path
• Timing of ISI 

subtraction complicates 
CDR phase detection



Equalization Effectiveness

• Some observations:
• Big initial performance boost with 2-tap TX eq.
• With only TX eq., not much difference between 2 to 4-tap
• RX equalization, particularly DFE, allows for further performance 

improvement
• Caution – hard to build fast DFEs due to critical timing path
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Link with Equalization
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Channel Equalization
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• Equalization goal is to flatten the frequency response out to the 
Nyquist Frequency and remove time-domain ISI



TX FIR Equalization – Time Domain
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TX FIR Equalization – Freq. Domain
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• Equalizer has 14.4dB of frequency peaking
• Attenuates DC at -14.4dB and passes Nyquist frequency at 0dB

Note: Ts=Tb=100ps



TX FIR Coefficient Selection
• One approach to set the TX FIR coefficients is a 

Minimum Mean-Square Error (MMSE) Algorithm
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l input symbols, c

channel output vector, y
Rows = k+n+l-2 
where k = channel pulse model length

TX Eq “w” Matrix
Rows = n+l-1 where n = tap number
Columns = l = input symbol number

Channel “h” Matrix
Rows = k+n+l-2
Columns = n+l-1 



TX FIR Coefficient Selection

• Multiplying input symbols by TX Eq., wc=w*c
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Lone-Pulse Equalization Example 
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• With lone-pulse equalization, 
l=1 input symbols, i.e. c=[1]
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TX FIR Coefficient Selection

• Differentiating this w.r.t. tap matrix taps to find taps which yield 
minimum error norm2
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• Computing the error matrix norm2 

• This will yield a W matrix to produce a value of “1” at the output cursor, 
i.e. an FIR filter with gain
• Need to normalize by the total abs(tap) sum for TX FIR realization
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TX FIR Tap Resolution
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• Using the above MMSE algorithm for the Refined 
Server Channel at 10Gb/s 
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TX FIR Circuit Architectures
• Direct FIR vs Segmented DAC
• Direct FIR

• Parallel output drivers for output taps
• Each parallel driver must be sized to 

handle its potential maximum current
• Lower power & complexity
• Higher output capacitance 

• Segmented DAC
• Minimum sized output transistors to 

handle peak output current
• Lowest output capacitance
• Most power & complexity

• Need mapping table (RAM)
• Very flexible in equalization
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Segmented DAC

Direct FIR

[Zerbe]

[Zerbe]



Direct FIR Equalization

25

L

L L

L

L

L

L

L

L

1x 4x 2x 1x

1/4 1 1/2 1/4IDACs
&

Bias
Control

sgn-1 sgn0 sgn1 sgn2

50Ω

Out-P

Out-N

4:2
MUX

2

2

2

21

D0

D1

D2

D3

VDDA=1.2VVDD=1.0V

VDDIO=1.0V

VDDA=1.2V

1

1

1

C2 (5GHz)
From on-chip PLL

2

(2
.5

G
b/

s)

(10Gb/s)

(5Gb/s)

ESD

L

L L

L

L

L

L

L

L

LL

LL LL

LL

LL

LL

LL

LL

LL

1x 4x 2x 1x

1/4 1 1/2 1/4IDACs
&

Bias
Control

sgn-1 sgn0 sgn1 sgn2

50Ω

Out-P

Out-N

4:2
MUX

2

2

2

21

D0

D1

D2

D3

VDDA=1.2VVDD=1.0V

VDDIO=1.0V

VDDA=1.2V

1

1

1

C2 (5GHz)
From on-chip PLL

2

(2
.5

G
b/

s)

(10Gb/s)

(5Gb/s)

ESD

           





  2

21010 2101
TERM

out
RDIDIDIDIV

“A Low Power 10Gb/s Serial Link Transmitter in 90-nm 
CMOS,” A. Rylyakov et al., CSICS 2005

I-1 I0 I1 I2

D(1) D(0) D(-1) D(-2)



Segmented DAC Example
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[Casper ISSCC 2006]

Row = 4-bit data pattern
Column = 6-bit weighting

For this 4-bit pattern, send this 6-bit number
Combining taps in digital domain, not at output

4 filtered bits 
(parallel) at 6-bit 

resolution

Sized only to 
deliver maximum 

total current



Voltage-Mode TX FIR Driver #1

• FIR equalization is typically more difficult to implement in voltage-mode 
drivers due to the series impedance

• An output voltage divider with a GND shunting path can realize the 
different voltage levels required by the FIR equalizer and also maintain 
impedance control

• Drawbacks to this approach
• Output segmentation requires significant pre-dive logic whose complexity 

grows with equalization tap resolution
• Time-varying current draw from the VREF supply
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[Wong JSSC 2004] [Sredojevic JSSC 2011]



Voltage-Mode TX FIR Driver #2

• Adding a channel shunting path can realize the different 
voltage levels required by the FIR equalizer, maintain 
impedance control, and produce a constant current draw 
from the VREF supply

• The major drawback to this approach is even more 
complex output segmentation pre-drive logic

28

[Dettloff ISSCC 2010] [Sredojevic JSSC 2011]



Hybrid Voltage-Mode Driver 
with Current-Mode Equalization 

• A hybrid voltage-mode driver with current-mode equalization provides 
the advantages of both drivers

• The main driver tap is voltage-mode, which allows for reduced 
current for a given voltage swing

• High-resolution pre-emphasis equalization taps at minimum pre-drive 
complexity are possible with parallel current-mode drivers

• Does have some dynamic current variation, but is less than the 
original VM TX FIR #1

29

[Song TCAS2 2012]



Impedance Modulated Equalization
• Signaling power reduces as de-emphasis increases
• Transition bits have 50 impedance
• Longer run length data has higher impedance

[2] R. Sredojevic, et al., JSSC 2011

Segmented Implementation [2]

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast 
Power-State Transitioning in 65nm CMOS

© 2014 IEEE 
International Solid-State Circuits Conference 9 of 27



Impedance Modulated Equalization

[2] R. Sredojevic, et al., JSSC 2011

Segmented Implementation [2]

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast 
Power-State Transitioning in 65nm CMOS

© 2014 IEEE 
International Solid-State Circuits Conference 10 of 27

• Signaling power reduces as de-emphasis increases
• Transition bits have 50 impedance
• Longer run length data has higher impedance



Relative Equalization Performance

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast 
Power-State Transitioning in 65nm CMOS

© 2014 IEEE 
International Solid-State Circuits Conference 11 of 27

• Relative equalization performance depends on the channel
• Channels with significant reflections (middle-trace 

backplane) can have >20% extra residual ISI
• Well-controlled impedance channels (single-board CPW) 

display almost identical performance
Channel Responses 10Gb/s Residual ISI w/ 2-tap EQ



Equalization Tap Control
• Segmented pre-driver and output driver significantly 

increases dynamic power consumption with increased 
equalization resolution

[2] R. Sredojevic, et al., JSSC 2011

Segmented Implementation [2]

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast 
Power-State Transitioning in 65nm CMOS

© 2014 IEEE 
International Solid-State Circuits Conference 12 of 27

Proposed non-segmented Implementation



TX Output Driver w/Analog Control  
• Global impedance modulation/control loops and voltage 

regulator allows for power amortization

* EQ OFF-Mode

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast 
Power-State Transitioning in 65nm CMOS

© 2014 IEEE 
International Solid-State Circuits Conference 13 of 27



Impedance Modulated EQ Mode
• Maximum transmitter output swing during a transition bit

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast 
Power-State Transitioning in 65nm CMOS

© 2014 IEEE 
International Solid-State Circuits Conference 14 of 27



Impedance Modulated EQ Mode
• De-emphasis transmitter output swing (Analog control) 

for run-length > 1

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast 
Power-State Transitioning in 65nm CMOS

© 2014 IEEE 
International Solid-State Circuits Conference 15 of 27



Next Time
• RX FIR
• RX CTLE
• RX DFE
• Alternate/Future Approaches
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