ECEN720: High-Speed Links Circuits and Systems Spring 2025

Lecture 7: Equalization Introduction & TX FIR Eq

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- Lab Report 4 and Prelab 5 due Mar 4
- Exam 1 Mar 6
 - Covers material through Lecture 6
 - Previous years' exam 1s are posted on the website for reference

 Equalization overview and circuits papers are posted on the website

Agenda

- Equalization theory and circuits
 - Equalization overview
 - Equalization implementations
 - TX FIR
 - RX FIR
 - RX CTLE
 - RX DFE
- TX FIR Equalization
 - FIR filter in time and frequency domain
 - MMSE Coefficient Selection
 - Circuit Topologies

High-Speed Electrical Link System

Link with Equalization

Channel Performance Impact

 (\mathbf{V})

Θ

Voltag

Channel Performance Impact

Channel Equalization

 Equalization goal is to flatten the frequency response out to the Nyquist Frequency and remove time-domain ISI

TX FIR Equalization

 TX FIR filter pre-distorts transmitted pulse in order to invert channel distortion at the cost of attenuated transmit signal (de-emphasis)

6Gb/s TX FIR Equalization Example

6Gb/s Pulse Responses

- Pros
 - Simple to implement
 - Can cancel ISI in precursor and beyond filter span
 - Doesn't amplify noise
 - Can achieve 5-6bit resolution
- Cons
 - Attenuates low frequency content due to peak-power limitation
 - Need a "back-channel" to tune filter taps

6Gb/s Eye - Refined BP Channel w/ TX FIR Eq

RX Equalization #1: RX FIR

- Pros
 - With sufficient dynamic range, can amplify high frequency content (rather than attenuate low frequencies)
 - Can cancel ISI in pre-cursor and beyond filter span
 - Filter tap coefficients can be adaptively tuned without any back-channel
- Cons
 - Amplifies noise/crosstalk
 - Implementation of analog delays
 - Tap precision

Eye-Pattern Diagrams at 1Gb/s on CAT5e*

Before Equalizer: 23meters

After Equalizer: 23meters

*D. Hernandez-Garduno and J. Silva-Martinez, "A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3rd-Order Delay Cells," ISSCC, 2007.

RX Equalization #2: RX CTLE

0.5

0.4

0.3

0.2

0.3

-0.1

-0.2

-0.3

-0.4

-0.5<mark>L</mark>

50

0

- Pros
 - Provides gain and • equalization with low power and area overhead
 - Can cancel both pre-٠ cursor and long-tail ISI
- Cons
- Voltage (V) Generally limited to 1st order compensation
 - Amplifies noise/crosstalk
 - **PVT** sensitivity •
 - Can be hard to tune •

6Gb/s Eye - Refined BP Channel w/ No Eq 6Gb/s Eye - Refined BP Channel w/ RX CTLE Ec

RX Equalization #3: RX DFE

0.5

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5<mark>L</mark>

50

C

 \geq

Voltage

- Pros
 - No noise and crosstalk amplification
 - Filter tap coefficients can be adaptively tuned without any backchannel
- Cons
 - Cannot cancel precursor ISI
 - Critical feedback timing path
 - Timing of ISI subtraction complicates CDR phase detection

6Gb/s Eye - Refined BP Channel w/ No Eq 6Gb/s Eye - Refined BP Channel w/ RX DFE Eq

150

Time (ps)

100

200

Equalization Effectiveness

- Some observations:
 - Big initial performance boost with 2-tap TX eq.
 - With only TX eq., not much difference between 2 to 4-tap
 - RX equalization, particularly DFE, allows for further performance improvement
 - Caution hard to build fast DFEs due to critical timing path

Link with Equalization

Channel Equalization

 Equalization goal is to flatten the frequency response out to the Nyquist Frequency and remove time-domain ISI

TX FIR Equalization – Time Domain

For 10Gbps :
$$W(z) = -0.131 + 0.595z^{-1} - 0.274z^{-2}$$

 $\mathbf{W} = \begin{bmatrix} -0.131 & 0.595 & -0.274 \end{bmatrix}$

Low Frequency Response (Sum Taps) [... 1 1 1 ...]* $[-0.131 \ 0.595 \ -0.274] = [... \ 0.190 \ 0.190 \ 0.190 \ ...]$

Nyquist Frequency Response (Sum Taps w/ Alternating Polarity) [... $-1 \ 1 \ -1 \ ...$]*[$-0.131 \ 0.595 \ -0.274$]=[... $1 \ -1 \ 1 \ ...$]

TX FIR Equalization – Freq. Domain

- Equalizer has 14.4dB of frequency peaking Note: Ts=Tb=100ps
 - Attenuates DC at -14.4dB and passes Nyquist frequency at 0dB

TX FIR Coefficient Selection

 One approach to set the TX FIR coefficients is a Minimum Mean-Square Error (MMSE) Algorithm

$$c_k \longrightarrow \begin{array}{c} \mathsf{TX} \ \mathsf{Eq}. \\ w_k \end{array} \xrightarrow{\mathsf{Channel}} h_k \\ h_k \end{array} \xrightarrow{\mathsf{V}_k} y_k$$

channel output vector, y Rows = $k+n+\ell-2$

where k = channel pulse model length

TX Eq "w" Matrix Rows = $n+\ell-1$ where n = tap number Columns = ℓ = input symbol number

$$\begin{bmatrix} y(0) \\ y(1) \\ \dots \\ y(l+n+k-3) \end{bmatrix} = \begin{bmatrix} h(0) & 0 & 0 & \dots & 0 & 0 \\ h(1) & h(0) & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & h(k-1) & h(k-2) \\ 0 & 0 & 0 & \dots & 0 & h(k-1) \end{bmatrix} \begin{bmatrix} w(0) & 0 & 0 & \dots & 0 & 0 \\ w(1) & w(0) & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & w(n-1) & w(n-2) \\ 0 & 0 & 0 & \dots & 0 & w(n-1) \end{bmatrix} \begin{bmatrix} c(0) \\ c(1) \\ \dots \\ c(l-1) \end{bmatrix}$$

Channel "h" Matrix Rows = $k+n+\ell-2$ Columns = $n+\ell-1$

 ℓ input symbols, c

TX FIR Coefficient Selection

- Total system $\begin{bmatrix} y(0) \\ y(1) \\ \dots \\ y(l+n+k-3) \end{bmatrix} = \begin{bmatrix} h(0) & 0 & 0 & \dots & 0 & 0 \\ h(1) & h(0) & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & h(k-1) & h(k-2) \\ 0 & 0 & 0 & \dots & 0 & h(k-1) \end{bmatrix} \begin{bmatrix} w(0) & 0 & 0 & \dots & 0 & 0 \\ w(1) & w(0) & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & w(n-1) & w(n-2) \\ 0 & 0 & 0 & \dots & 0 & w(n-1) \end{bmatrix} \begin{bmatrix} c(0) \\ c(1) \\ \dots \\ c(l-1) \end{bmatrix}$
 - Multiplying input symbols by TX Eq., wc=w*c

$$\begin{bmatrix} y(0) \\ y(1) \\ \dots \\ y(l+n+k-3) \end{bmatrix} = \begin{bmatrix} h(0) & 0 & 0 & \dots & 0 & 0 \\ h(1) & h(0) & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & h(k-1) & h(k-2) \\ 0 & 0 & 0 & \dots & 0 & h(k-1) \end{bmatrix} \begin{bmatrix} wc(0) \\ wc(1) \\ \dots \\ wc(n+l-1) \end{bmatrix}$$

• We desire the output vector, y, to be ISI free

 $y_{des} = \begin{cases} y_{des}(n) = 1, n = \text{Channel pre-cursor sample } \# + \text{Eq precursor tap } \# + 1\\ y_{des}(n) = 0, n \neq \text{Channel pre-cursor sample } \# + \text{Eq precursor tap } \# + 1 \end{cases}$

Lone-Pulse Equalization Example

• With lone-pulse equalization, ℓ=1 input symbols, i.e. c=[1] Channel pulse matrix H with 5 precursor samples and 10 post-cursor samples, 3 columns for 3 eq taps

TX FIR Coefficient Selection

• We can calculate the error w.r.t. a desired output

$$E = Y - Y_{des} = HW_C - Y_{des} = HW - Y_{des}$$
 with pulse input

• Computing the error matrix norm²

$$\left\|E\right\|^{2} = W^{T}H^{T}HW - 2Y_{des}^{T}HW + Y_{des}^{T}Y_{des}$$

 Differentiating this w.r.t. tap matrix taps to find taps which yield minimum error norm²

$$\frac{d}{dW} \left\| E \right\|^2 = 2W^T H^T H - 2Y_{des}^T H = 0$$
$$W^T H^T H = Y_{des}^T H$$

• Solving for optimum TX Eq taps, W

$$W_{ls} = \left(H^T H\right)^{-1} H^T Y_{des}$$

- This will yield a W matrix to produce a value of "1" at the output cursor, i.e. an FIR filter with gain
 - Need to normalize by the total abs(tap) sum for TX FIR realization

$$W_{lsnorm}(n) = \frac{W_{ls}(n)}{\sum_{i=1}^{n} |W_{ls}(n)|}$$

TX FIR Tap Resolution

 Using the above MMSE algorithm for the Refined Server Channel at 10Gb/s
17" Refined Server 10Gb/s Pulse Response

- Generally, TX DAC resolution is limited to between 4 to 6bits
- Mapping these equalization coefficients with this resolution may impact performance

TX FIR Circuit Architectures

- Direct FIR vs Segmented DAC
- Direct FIR
 - Parallel output drivers for output taps
 - Each parallel driver must be sized to handle its potential maximum current
 - Lower power & complexity
 - Higher output capacitance
- Segmented DAC
 - Minimum sized output transistors to handle peak output current
 - Lowest output capacitance
 - Most power & complexity
 - Need mapping table (RAM)
 - Very flexible in equalization

Segmented DAC

Direct FIR Equalization

Segmented DAC Example

Voltage-Mode TX FIR Driver #1

[Wong JSSC 2004]

[Sredojevic JSSC 2011]

- FIR equalization is typically more difficult to implement in voltage-mode drivers due to the series impedance
- An output voltage divider with a GND shunting path can realize the different voltage levels required by the FIR equalizer and also maintain impedance control
- Drawbacks to this approach
 - Output segmentation requires significant pre-dive logic whose complexity grows with equalization tap resolution
 - Time-varying current draw from the VREF supply

Voltage-Mode TX FIR Driver #2

- Adding a channel shunting path can realize the different voltage levels required by the FIR equalizer, maintain impedance control, and produce a constant current draw from the VREF supply
- The major drawback to this approach is even more complex output segmentation pre-drive logic

Hybrid Voltage-Mode Driver with Current-Mode Equalization

Fig. 7. 4.8-Gbit/s eye diagrams with a channel that has 6-dB loss at 2.4 GHz. (a) Without equalization. (b) With equalization.

- A hybrid voltage-mode driver with current-mode equalization provides the advantages of both drivers
- The main driver tap is voltage-mode, which allows for reduced current for a given voltage swing
- High-resolution pre-emphasis equalization taps at minimum pre-drive complexity are possible with parallel current-mode drivers
- Does have some dynamic current variation, but is less than the original VM TX FIR #1

Impedance Modulated Equalization

- Signaling power reduces as de-emphasis increases
- Transition bits have 50Ω impedance
- Longer run length data has higher impedance

[2] R. Sredojevic, et al., JSSC 2011

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast Power-State Transitioning in 65nm CMOS

Impedance Modulated Equalization

- Signaling power reduces as de-emphasis increases
- Transition bits have 50Ω impedance
- Longer run length data has higher impedance

[2] R. Sredojevic, et al., JSSC 2011

Relative Equalization Performance

- Relative equalization performance depends on the channel
- Channels with significant reflections (middle-trace backplane) can have >20% extra residual ISI
- Well-controlled impedance channels (single-board CPW) display almost identical performance

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast Power-State Transitioning in 65nm CMOS

Equalization Tap Control

 Segmented pre-driver and output driver significantly increases dynamic power consumption with increased equalization resolution

Proposed non-segmented Implementation

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast Power-State Transitioning in 65nm CMOS

TX Output Driver w/Analog Control

Global impedance modulation/control loops and voltage regulator allows for power amortization

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast Power-State Transitioning in 65nm CMOS

Impedance Modulated EQ Mode

• Maximum transmitter output swing during a transition bit

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast Power-State Transitioning in 65nm CMOS

Impedance Modulated EQ Mode

 De-emphasis transmitter output swing (Analog control) for run-length > 1

26.5: An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-Tap Impedance-Modulated Voltage-Mode Transmitter with Fast Power-State Transitioning in 65nm CMOS

Next Time

- RX FIR
- RX CTLE
- RX DFE
- Alternate/Future Approaches