ECEN720: High-Speed Links Circuits and Systems Spring 2025

Lecture 4: Channel Pulse Model & Modulation Schemes

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

- Prelab 1 and Lab Report 1 due Feb 4
- Prelab 2, Lab Report 2, and Prelab 3 due Feb 11
- Lab Report 3 due Feb 18
- Reference material
 - Peak distortion analysis paper by Casper
 - Notes from H. Song, Arizona State
 - Papers posted on PAM-2/4 transceivers

- ISI and channel pulse model
- Peak distortion analysis
- Compare NRZ (PAM-2) and PAM-4 modulation

Inter-Symbol Interference (ISI)

- Previous bits residual state can distort the current bit, resulting in inter-symbol interference (ISI)
- ISI is caused by
 - Reflections, Channel resonances, Channel loss (dispersion)
- Pulse Response

$$y^{(1)}(t) = c^{(1)}(t) * h(t)$$

NRZ Data Modeling

 An NRZ data stream can be modeled as a superposition of isolated "1"s and "0"s

NRZ Data Modeling

 An NRZ data stream can be modeled as a superposition of isolated "1"s and "0"s

[Song]

Channel Response to NRZ Data

 Channel response to NRZ data stream is equivalent to superposition of isolated pulse responses

 $V_o(t) = H(V_i(t)) = \sum_{k=1}^{\infty} H(c_k^{(d_k)}(t)) = \sum_{k=1}^{\infty} y^{(d_k)}(t-kT)$

Channel Pulse Response

Channel Data Stream Response

Channel "FIR" Model

- ISI and channel pulse model
- Peak distortion analysis
- Compare NRZ (PAM-2) and PAM-4 modulation

Peak Distortion Analysis

- Can estimate worst-case eye height and data pattern from pulse response
- Worst-case "1" is summation of a "1" pulse with all negative non k=0 pulse responses

$$s_1(t) = y_0^{(1)}(t) + \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(d_k)}(t-kT)\Big|_{y(t-kT)<0}$$

 Worst-case "0" is summation of a "0" pulse with all positive non k=0 pulse responses

Peak Distortion Analysis

• Worst-case eye height is $s_1(t)-s_0(t)$

$$s(t) = s_{1}(t) - s_{0}(t) = \left(y_{0}^{(1)}(t) - y_{0}^{(0)}(t)\right) + \left(\sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(d_{k})}(t-kT)\Big|_{y(t-kT)<0} - \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(d_{k})}(t-kT)\Big|_{y(t-kT)>0}\right)$$

Because $y_{0}^{(0)}(t) = -1\left(y_{0}^{(1)}(t)\right)$
$$s(t) = 2\left(y_{0}^{(1)}(t) + \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(1)}(t-kT)\Big|_{y(t-kT)<0} - \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} y^{(1)}(t-kT)\Big|_{y(t-kT)>0}\right)$$

"1" pulse worst-case "1" edge "1" pulse worst-case "0" edge

• If symmetric "1" and "0" pulses (linearity), then only positive pulse response is needed

Peak Distortion Analysis Example 1

Worst-Case Bit Pattern

• Pulse response can be used to find the worst-case bit pattern

Pulse $a = [\dots a_{-2} \ a_{-1} \ a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ \dots]$

 Flip pulse matrix about cursor a₀ and the bits are the inverted sign of the pulse ISI

 $\left[\dots - sign(a_6) - sign(a_5) - sign(a_4) - sign(a_3) - sign(a_2) - sign(a_1) - sign(a_{-1}) - sign(a_{-2}) \dots\right]$

Worst-Case Bit Pattern Eye

10kbits Eye

Peak Distortion Analysis Example 2

$$y_{0}^{(1)}(t) = 0.426$$

$$\sum_{k=-\infty}^{\infty} y^{(1)}(t-kT)|_{y(t-kT)<0} = -0.053$$

$$\sum_{k\neq 0}^{\infty} y^{(1)}(t-kT)|_{y(t-kT)>0} = 0.542$$

$$s(t) = 2(0.426 - 0.053 - 0.542) = -0.338$$
Legacy BP 5Gb/s Eye
$$\int_{0.1}^{0.0} \int_{0.1}^{0.0} \int_{0.1}^{0.0} \int_{0.1}^{0.0} \int_{0.0}^{0.0} \int_{0.0}$$

- ISI and channel pulse model
- Peak distortion analysis
- Compare NRZ (PAM-2) and PAM-4 modulation

PAM-2 (NRZ) vs PAM-4 Modulation

- Binary, NRZ, PAM-2
 - Simplest, most common modulation format
- PAM-4
 - Transmit 2 bits/symbol
 - Less channel equalization and circuits run 1/2 speed

Modulation Frequency Spectrum

Nyquist Frequency

- Nyquist bandwidth constraint:
 - The theoretical minimum required system bandwidth to detect $\rm R_S$ (symbols/s) without ISI is $\rm R_S/2$ (Hz)
 - Thus, a system with bandwidth $W=1/2T=R_S/2$ (Hz) can support a maximum transmission rate of $2W=1/T=R_S$ (symbols/s) without ISI

$$\frac{1}{2T} = \frac{R_s}{2} \le W \Longrightarrow \frac{R_s}{W} \le 2 \quad \text{(symbols/s/Hz)}$$

• For ideal Nyquist pulses (sinc), the required bandwidth is only $R_S/2$ to support an R_S symbol rate

Modulation	Bits/Symbol	Nyquist Frequency
NRZ	1	$R_s/2=1/2T_b$
PAM-4	2	$R_s/2=1/4T_b$

NRZ vs PAM-4

- PAM-4 should be considered when
 - Slope of channel insertion loss (S_{21}) exceeds reduction in PAM-4 eye height
 - Insertion loss over an octave is greater than 20*log10(1/3)=-9.54dB
 - On-chip clock speed limitations

PAM-4 Receiver

[Stojanovic JSSC 2005]

3x the comparators of NRZ RX

NRZ vs PAM-4 – Desktop Channel

- Eyes are produced with 4-tap TX FIR equalization
- Loss in the octave between 2.5 and 5GHz is only 2.7dB
 - NRZ has better voltage margin

NRZ vs PAM-4 – T20 Server Channel

- Eyes are produced with 4-tap TX FIR equalization
- Loss in the octave between 2.5 and 5GHz is 15.8dB
 - PAM-4 "might" be a better choice

PAM-4 Peak Distortion Analysis

PAM4 modulation is more sensitive to residual ISI

Multi-Level PAM Challenges

- Receiver complexity increases considerably
 - 3x input comparators (2-bit ADC)
 - Input signal is no longer self-referenced at 0V differential
 - Need to generate reference threshold levels, which will be dependent on channel loss and TX equalization
- CDR can display extra jitter due to multiple "zero crossing" times
- Smaller eyes are more sensitive to cross-talk due to maximum transitions
- Advanced equalization (DFE) can allow NRZ signaling to have comparable (or better) performance even with >9.5dB loss per octave

Modulation Take-Away Points

- Loss-slope guidelines are a good place to start in consideration of alternate modulation schemes
- More advanced modulation trades-off receiver complexity versus equalization complexity
- Advanced modulation challenges
 - Peak TX power limitations
 - Setting RX comparator thresholds and controlling offsets
 - CDR complexity
 - Crosstalk sensitivity (PAM-4)
- Need link analysis tools that consider voltage, timing, and crosstalk noise to choose best modulation scheme for a given channel

Next Time

- Link Circuits
 - Termination structures
 - Drivers
 - Receivers