ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 31: CDR Architectures

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Announcements

- Project Preliminary Report #2 due now
 - Feedback meetings on Friday 10:30-12

Exam 2 is April 30

Final Project Report Due May 4

Agenda

- Analog & digital CDRs
- Analog dual-loop CDRs
- Digital dual-loop CDRs
- Phase Interpolators
- Delay-Locked Loops

Embedded Clock I/O Circuits

Multi-Channel Serial Link System

TX PLL

TX Clock Distribution

- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels

Embedded Clocking (CDR)

- Clock frequency and optimum phase position are extracted from incoming data
- Phase detection continuously running
- Jitter tracking limited by CDR bandwidth
 - With technology scaling we can make CDRs with higher bandwidths and the jitter tracking advantages of source synchronous systems is diminished
- Possible CDR implementations
 - Stand-alone PLL
 - "Dual-loop" architecture with a PLL or DLL and phase interpolators (PI)
 - Phase-rotator PLL

Analog PLL-based CDR

$$K_{P} = I_{C} \cdot R \qquad K_{i} = \frac{I_{C}}{C} \qquad \omega_{n} = \sqrt{K_{i} \cdot K_{PD} \cdot K_{VCO}} \qquad \zeta = \frac{K_{P}}{K_{i}} \cdot \frac{\omega_{n}}{2}$$

Analog PLL-based CDR

- CDR "bandwidth" will vary with input phase variation amplitude with a non-linear phase detector
- Final performance verification should be done with a time-domain non-linear model

Digital PLL-based CDR

Digital PLL-based CDR

Open-Loop Gain:

$$L(z^{-1}) = \left(\frac{K_{\rm PD}K_{\rm V}K_{\rm DPC}}{1 - z^{-1}}\right) \left(phug + \frac{frug}{(1 - z^{-1})}\right) z^{-N_{\rm EL}}.$$

$$\Phi_{\text{samp}}/\Phi_{\text{in}} = \left(L(e^{-j\omega})\right)/\left(1+L(e^{-j\omega})\right)$$

Digital PLL-based CDR

Single-Loop CDR Issues

- Phase detectors have limited frequency acquisition range
 - Results in long lock times or not locking at all
 - Can potentially lock to harmonics of correct clock frequency
- VCO frequency range varies with voltage and temperature

Phase and Frequency Tracking Loops

- Frequency tracking loop operates during startup or loss of phase lock
 - Ideally should be mostly off in normal operation
- Frequency loop bandwidth typically much smaller than phase loop bandwidth to prevent loop interaction

Analog Dual-Loop CDR w/ Two VCOs

- Frequency synthesis loop with replica VCO provides a "coarse" control voltage to set phase tracking loop frequency
- Frequency loop can be a global PLL shared by multiple channels
- Issues
 - VCO matching
 - VCO pulling
 - Distributing voltage long distances

[Hsieh]

Analog Dual-Loop CDR w/ One VCO

- Frequency loop operates during startup or loss of phase lock
 - Ideally should be mostly off in normal operation
- Input reference clock simplifies frequency loop design
- Care must be taken when switching between loops to avoid disturbing VCO control voltage and loose frequency lock

[Hsieh]

Phase Interpolator (PI) Based CDR

- Frequency synthesis loop produces multiple clock phases used by the phase interpolators
- Phase interpolator mixes between input phases to produce a fine sampling phase
 - Ex: Quadrature 90° PI inputs with 5 bit resolution provides sampling phases spaced by 90°/(2⁵-1)=2.9°
- Digital phase tracking loop offers advantages in robustness, area, and flexibility to easily reprogram loop parameters

[Hsieh]

Phase Interpolator (PI) Based CDR

- Frequency synthesis loop can be a global PLL
- Can be difficult to distribute multiple phases long distance
 - Need to preserve phase spacing
 - Clock distribution power increases with phase number
 - If CDR needs more than 4 phases consider local phase generation

DLL Local Phase Generation

- Only differential clock is distributed from global PLL
- Delay-Locked Loop (DLL) locally generates the multiple clock phases for the phase interpolators
 - DLL can be per-channel or shared by a small number (4)
- Same architecture can be used in a forwarded-clock system
 - Replace frequency synthesis PLL with forwarded-clock signals

Phase Rotator PLL

- Phase interpolators can be expensive in terms of power and area
- Phase rotator PLL places

 one interpolator in PLL
 feedback to adjust all VCO
 output phases
 simultaneously
- Now frequency synthesis and phase recovery loops are coupled
 - Need PLL bandwidth greater than phase loop
 - Useful in filtering VCO noise

Phase Interpolators

 Phase interpolators realize digital-to-phase conversion (DPC)

 Produce an output clock that is a weighted sum of two input clock phases

Tail current summation interpolation

Voltage-mode interpolation

 Interpolator code mapping techniques

- Sinusoidal
- Linear

Phase Interpolator Examples

Tail-Current Summation

[Bulzacchelli JSSC 2006]

Voltage-Mode Summation

[Joshi VLSI Symp 2009]

Delay-Locked Loop (DLL)

- DLLs lock delay of a voltage-controlled delay line (VCDL)
- Typically lock the delay to 1 or ½ input clock cycles
 - If locking to ½ clock cycle the DLL is sensitive to clock duty cycle
- DLL does not self-generate the output clock, only delays the input clock

Delay-Locked Loop (DLL)

- First-order loop as delay line doesn't introduce a pole
- VCDL doesn't accumulate jitter like a VCO
- DLL doesn't filter input jitter

Next Time

- CDR Wrap-Up
 - PI
 - DLL
 - Jitter Properties

Injection-Locked Oscillator De-Skew