ECEN720: High-Speed Links Circuits and Systems Spring 2025

Lecture 2: Channel Components, Wires, & Transmission Lines

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- Prelab 1 and Lab Report 1 due Feb 4
- Reference Material Posted on Website
 - TDR theory application note
 - S-parameter notes

Agenda

- Channel Components
 - IC Packages, PCBs, connectors, vias, PCB Traces
- Wire Models
 - Resistance, capacitance, inductance
- Transmission Lines
 - Propagation constant
 - Characteristic impedance
 - Loss
 - Reflections
 - Termination examples
 - Differential transmission lines

Channel Components

IC Packages

- Package style depends on application and pin count
- Packaging technology hasn't been able to increase pin count at same rate as on-chip aggregate bandwidth
 - Leads to I/O constrained designs and higher data rate per pin

[Package Images - Fujitsu]

Package Type	Pin Count	
Small Outline Package (SOP)	8 – 56	
Quad Flat Package (QFP)	64 - 304	
Plastic Ball Grid Array (PBGA)	256 - 420	
Enhanced Ball Grid Array (EBGA)	352 - 896	
Flip Chip Ball Grid Array (FC-BGA)	1089 - 2116	

SOP

QFP

FC-BGA

IC Package Examples

- Wirebonding is most common die attach method
- Flip-chip packaging allows for more efficient heat removal
- 2D solder ball array on chip allows for more signals and lower signal and supply impedance

Standard Wirebond Package

Flip-Chip/Wirebond Package

Flip-Chip/Solder Ball Package

[Package Images - Fujitsu]

IC Package Model

IC Package Model Comparisons

FC-PGA

0.06

0.013

120 2.329

1.707

38.5

20

29

N/A

N/A

N/A

N/A

10.0 - 42.6

N/A

Printed Circuit Boards

- Components soldered on top (and bottom)
- Typical boards have 4-8 signal layers and an equal number of power and ground planes
- Backplanes can have over 30 layers

PCB Stackup

- Signals typically on top and bottom layers
- GND/Power plane pairs and signal layer pairs alternate in board interior
- Typical copper trace thickness
 - "0.5oz" (17.5um) for signal layers
 - "1oz" (35um) for power planes

[Dally]

Connectors

 Connectors are used to transfer signals from board-to-board

 Typical differential pair density between 16-32 pairs/10mm

Connectors

- Important to maintain proper differential impedance through connector
- Crosstalk can be an issue in the connectors

Vias

- Used to connect PCB layers
- Made by drilling a hole through the board which is plated with copper
 - Pads connect to signal layers/traces
 - Clearance holes avoid power planes
- Expensive in terms of signal density and integrity
 - Consume multiple trace tracks
 - Typically lower impedance and create "stubs"

[Dally]

Impact of Via Stubs at Connectors

- Legacy BP has default straight vias
 - Creates severe nulls which kills signal integrity
- Refined BP has expensive backdrilled vias

PCB Trace Configurations

- Microstrips are signal traces on PCB outer surfaces
 - Trace is not enclosed and susceptible to cross-talk
- Striplines are sandwiched between two parallel ground planes
 - Has increased isolation

Wire Models

Resistance

- Capacitance
- Inductance

Transmission line theory

Wire Resistance

- Wire resistance is determined by material resistivity, ρ, and geometry
- Causes signal loss and propagation delay

 $R = \frac{\rho l}{4} = \frac{\rho l}{\pi r^2}$

TABLE 3-1 Resistivity of Common Conductive Materials			
Material	Symbol	ρ(Ω-m)	
Silver	Ag	1.6 × 10 ⁻¹	
Copper	Cu	1.7 × 10-5	
Gold	Au	2.2 × 10-8	
Aluminum	Al	2.7×10^{-8}	
Tungsten	W	5.5 × 10-1	

[Dally]

Wire Capacitance

- Wire capacitance is determined by dielectric permittivity, ε, and geometry
- Best to use lowest ε_r
 - Lower capacitance
 - Higher propagation velocity

Parallel Plate

Coaxial

Wire Pair

TABLE 3-2 Permittivit Some Typical Insulators	ty of
Material	E,
Air	1
Teflon	2
Polyimide	3
Silicon dioxide	3.9
Glass-epoxy (PC board)	4
Alumina	10
Silicon	11.7

[Dally]

Rectangle over ground

Wire Inductance

- Wire inductance is determined by material permeability, μ, and closed-loop geometry
- For wire in homogeneous medium $CL = \mathcal{E}\mu$
- Generally $\mu = \mu_0 = 4\pi \times 10^{-7} \,\mathrm{H/m}$

Wire Models

- Model Types
 - Ideal
 - Lumped C, R, L
 - RC transmission line
 - LC transmission line
 - RLGC transmission line

Condition for LC or RLGC model (vs RC)

Wire	R	L	С	>f (LC wire)
AWG24 Twisted Pair	0.08Ω/m	400nH/m	40pF/m	32kHz
PCB Trace	5Ω/m	300nH/m	100pF/m	2.7MHz
On-Chip Min. Width M6 (0.18µm CMOS node)	40kΩ/m	4µH/m	300pF/m	1.6GHz

RLGC Transmission Line Model

Time-Harmonic Transmission Line Eqs.

• Assuming a traveling sinusoidal wave with angular frequency, ω

$$\frac{dV(x)}{dx} = -(R + j\omega L)I(x) \quad (3)$$
$$\frac{dI(x)}{dx} = -(G + j\omega C)V(x) \quad (4)$$

• Differentiating (3) and plugging in (4) (and vice versa)

$$\frac{d^{2}V(x)}{dx^{2}} = \gamma^{2}V(x) \quad (5)$$

$$\frac{d^{2}I(x)}{dx^{2}} = \gamma^{2}I(x) \quad (6)$$
Time-Harmonic
Transmission
Line Equations

where γ is the propagation constant

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} \quad (m^{-1})$$

Transmission Line Propagation Constant

• Solutions to the Time-Harmonic Line Equations:

$$V(x) = V_{f}(x) + V_{r}(x) = V_{f0}e^{-\gamma x} + V_{r0}e^{\gamma x}$$
$$I(x) = I_{f}(x) + I_{r}(x) = I_{f0}e^{-\gamma x} + I_{r0}e^{\gamma x}$$

here
$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$
 (m⁻¹)

- What does the propagation constant tell us?
 - Real part (α) determines attenuation/distance (Np/m)
 - Imaginary part (β) determines phase shift/distance (rad/m)
 - Signal phase velocity

W

$$v = \omega/\beta$$
 (m/s)

Transmission Line Impedance, Z₀

- For an infinitely long line, the voltage/current ratio is Z₀
- From time-harmonic transmission line eqs. (3) and (4)

$$Z_0 = \frac{V(x)}{I(x)} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \quad (\Omega)$$

Driving a line terminated by Z₀ is the same as driving an infinitely long line

Lossless LC Transmission Lines

- If Rdx=Gdx=0 $\gamma = \alpha + j\beta = j\omega\sqrt{LC}$ $\alpha = 0$ \longrightarrow No Loss! $\beta = \omega\sqrt{LC}$
- Waves propagate w/o distortion
 - Velocity and impedance independent of frequency
 - Impedance is purely real

$$\upsilon = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$
$$Z_0 = \sqrt{\frac{L}{C}}$$

Low-Loss LRC Transmission Lines

- If R/ ω L and G/ ω C << 1
- Behave similar to ideal LC transmission line, but ...
 - Experience resistive and dielectric loss
 - Frequency dependent propagation velocity results in dispersion
 - Fast step, followed by slow DC tail

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$

$$\approx j\omega\sqrt{LC} \left(1 - j\frac{RC + GL}{\omega LC}\right)^{\frac{1}{2}}$$

$$\approx \frac{R}{2Z_0} + \frac{GZ_0}{2} + j\omega\sqrt{LC} \left[1 + \frac{1}{8}\left(\frac{R}{\omega L}\right)^2 + \frac{1}{8}\left(\frac{G}{\omega C}\right)^2\right]$$

$$= \alpha_R + \alpha_D + j\beta$$

 $\alpha_{R} \approx \frac{R}{2Z_{0}}$ $\alpha_{D} \approx \frac{GZ_{0}}{2}$ Resistive Loss
Dielectric Loss $\beta \approx \omega \sqrt{LC} \left[1 + \frac{1}{8} \left(\frac{R}{\omega L} \right)^{2} + \frac{1}{8} \left(\frac{G}{\omega C} \right)^{2} \right]$ $\upsilon \approx \left(\sqrt{LC} \left[1 + \frac{1}{8} \left(\frac{R}{\omega L} \right)^{2} + \frac{1}{8} \left(\frac{G}{\omega C} \right)^{2} \right]$

Frequency-Dependent Loss Mechanisms

• The resistive (α_R) and dielectric (α_D) loss terms cause a signal propagating down a transmission-line to become attenuated with distance

- Resistive loss term is due to conductor skin effect
- Dielectric loss term is due to dielectric absorption
- Both terms increase with frequency, although at different rates

Skin Effect (Resistive Loss)

- High-frequency current density falls off exponentially from conductor surface
- Skin depth, δ, is where current falls by e⁻¹ relative to full conductor
 - Decreases proportional to sqrt(frequency)
- Relevant at critical frequency f_s where skin depth equals half conductor height (or radius)
 - Above f_s resistance/loss increases proportional to sqrt(frequency)

For rectangular conductor:

Skin Effect (Resistive Loss)

Dielectric Absorption (Loss)

- An alternating electric field causes dielectric atoms to rotate and absorb signal energy in the form of heat
- Dielectric loss is expressed in terms of the loss tangent
- Loss increases directly proportional to frequency

$$\tan \delta_D = \frac{G}{\omega C}$$

	kacci kai i rope	and the second		
Material	P.	Search Strange	8 ₁	tan d _D
Woven glass, e	poxy resin ("FR-4"))	4.7	0.035
Woven glass, J	olyimide resin		4.4	0.025
Woven glass, J	olyphenylene oxide	resin (GETEK) 3.9	0.010
	TEE main (Taflon)	the state of the	0.00	0.000
Woven glass, I	TLP ICONT (ICHOII)	Carl Start Starting	2.33	0.005

[Dally]

$$\alpha_D = \frac{GZ_0}{2} = \frac{2\pi fC \tan \delta_D \sqrt{L/C}}{2}$$
$$= \pi f \tan \delta_D \sqrt{LC}$$

Total Wire Loss

Advanced Board Dielectrics

- Tachyon 25dB loss is 15.6"
- PTFE (Teflon) 25dB loss is 22.7"
- Cabled interconnects can support ~1.5m

Cabled Backplane

 Cabled backplane with short daughter cards can support ~1m distances at 224Gb/s

Reflections & Telegrapher's Eq.

• With a Thevenin-equivalent model of the line:

Termination Current: I

$$V_T = \frac{2V_i}{Z_0 + Z_T}$$

• KCL at Termination:

$$I_f = \frac{V_i}{Z_0}, \quad I_r = I_f - I_T$$

$$I_{r} = \frac{V_{i}}{Z_{0}} - \frac{2V_{i}}{Z_{T} + Z_{0}}$$

$$I_{r} = \frac{V_{i}}{Z_{0}} \left(\frac{Z_{T} - Z_{0}}{Z_{T} + Z_{0}} \right)$$

Telegrapher's Equation or **Reflection Coefficient**

$$k_{r} = \frac{I_{r}}{I_{f}} = \frac{V_{r}}{V_{i}} = \frac{Z_{T} - Z_{0}}{Z_{T} + Z_{0}}$$

Termination Examples - Ideal

Termination Examples - Open

Termination Examples - Short

$$V_{i} = 1V \left(\frac{50}{50+50}\right) = 0.5V$$
$$k_{rT} = \frac{0-50}{0+50} = -1$$
$$k_{rS} = \frac{50-50}{50+50} = 0$$

$$R_{s} = 50Ω$$

 $Z_{0} = 50Ω, t_{d} = 1ns$
 $R_{T} = 0Ω$

Arbitrary Termination Example

$$V_{i} = 1V \left(\frac{50}{400 + 50}\right) = 0.111V$$
$$k_{rT} = \frac{600 - 50}{600 + 50} = 0.846$$
$$k_{rS} = \frac{400 - 50}{400 + 50} = 0.778$$

 $R_{s} = 400Ω$ $Z_{0} = 50Ω, t_{d} = 1ns$ $R_{T} = 600Ω$

Lattice Diagram

 $R_s = 400Ω$ $Z_0 = 50Ω, t_d = 1ns$ $R_T = 600Ω$

Termination Reflection Patterns

Termination Schemes

- No Termination
 - Little to absorb line energy
 - Can generate oscillating waveform
 - Line must be very short relative to signal transition time
 - n = 4 6
 - Limited off-chip use
- Source Termination
 - Source output takes 2 steps up
 - Used in moderate speed pointto-point connections

Termination Schemes

- Receiver Termination
 - No reflection from receiver
 - Watch out for intermediate impedance discontinuities
 - Little to absorb reflections at driver
- Double Termination
 - Best configuration for min reflections
 - Reflections absorbed at both driver and receiver
 - Get half the swing relative to single termination
 - Most common termination scheme for high performance serial links

Differential Signaling

- Differential signaling advantages
 - Self-referenced
 - Common-mode noise rejection
 - Increased signal swing
 - Reduced self-induced power-supply noise
- Requires 2x the number of signaling pins relative to single-ended signaling
 - But, smaller ratio of supply/signal (return) pins
 - Total pin overhead is typically 1.3-1.8x (vs 2x)

Odd & Even Modes

- Even mode
 - When equal voltages drive both lines, only one mode propagates called even more
- Odd mode
 - When equal in magnitude, but out of phase, voltages drive both lines, only one mode propagates called odd mode
- For a differential pair (odd mode), a virtual reference plane exists between the conductors that provides a continuous return current path
 - Electric field is perpendicular to the virtual plane
 - Magnetic field is tangent to the virtual plane

Balanced Transmission Lines

- Even (common) mode excitation
 - Effective $C = C_C$
 - Effective L = L + M
- Odd (differential) mode excitation
 - Effective $C = C_C + 2C_d$
 - Effective L = L M

$$Z_{DIFF} = 2Z_{odd}, \quad Z_{CM} = \frac{Z_{even}}{2}$$

(a) Model of a Balanced Line

$$\begin{split} Z_{even} = & \left(\frac{L+M}{C_c}\right)^{\frac{1}{2}} \\ Z_{odd} = & \left(\frac{L-M}{C_c+2C_d}\right)^{\frac{1}{2}} \end{split}$$

PI-Termination

T-Termination

Next Time

- Channel modeling
 - Time domain reflectometer (TDR)
 - Network analysis