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Announcements
• Prelab 1 and Lab Report 1 due Feb 4

• Reference Material Posted on Website
• TDR theory application note 
• S-parameter notes
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Agenda
• Channel Components
• IC Packages, PCBs, connectors, vias, PCB Traces

• Wire Models
• Resistance, capacitance, inductance

• Transmission Lines
• Propagation constant
• Characteristic impedance
• Loss
• Reflections
• Termination examples
• Differential transmission lines
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Channel Components
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[Meghelli (IBM) ISSCC 2006]



IC Packages
• Package style depends 

on application and pin 
count

• Packaging technology 
hasn’t been able to 
increase pin count at 
same rate as on-chip 
aggregate bandwidth
• Leads to I/O constrained 

designs and higher data 
rate per pin
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Pin CountPackage Type
8 – 56Small Outline Package (SOP)

64 - 304Quad Flat Package (QFP)
256 - 420Plastic Ball Grid Array (PBGA)
352 - 896Enhanced Ball Grid Array (EBGA)

1089 - 2116Flip Chip Ball Grid Array (FC-BGA)

SOP

PBGA

QFP

FC-BGA

[Package Images - Fujitsu]



IC Package Examples
• Wirebonding is most 

common die attach method

• Flip-chip packaging allows 
for more efficient heat 
removal

• 2D solder ball array on 
chip allows for more 
signals and lower signal 
and supply impedance
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Standard Wirebond Package

Flip-Chip/Wirebond Package

Flip-Chip/Solder Ball Package

[Package Images - Fujitsu]



IC Package Model
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Bondwires
• L ~ 1nH/mm
•Mutual L “K”
• Ccouple

~ 20fF/mm

Package Trace
• L ~ 0.7-1nH/mm
•Mutual L “K”
• Clayer

~ 80-90fF/mm
•Ccouple

~ 40fF/mm

[Dally]



IC Package Model Comparisons
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• FCB packaging allows 
for much less chip 
interface impedance

[Intel]



Printed Circuit Boards
• Components soldered on 

top (and bottom)

• Typical boards have 4-8 
signal layers and an 
equal number of power 
and ground planes

• Backplanes can have 
over 30 layers
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PCB Stackup
• Signals typically on top and 

bottom layers

• GND/Power plane pairs and 
signal layer pairs alternate in 
board interior

• Typical copper trace thickness
• “0.5oz” (17.5um) for signal layers
• “1oz” (35um) for power planes
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[Dally]



Connectors
• Connectors are used 

to transfer signals 
from board-to-board

• Typical differential 
pair density between 
16-32 pairs/10mm
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[Tyco]



Connectors
• Important to maintain proper differential 

impedance through connector

12

• Crosstalk can be an issue in the connectors

[Tyco]



Vias
• Used to connect PCB layers

• Made by drilling a hole through 
the board which is plated with 
copper
• Pads connect to signal layers/traces
• Clearance holes avoid power planes

• Expensive in terms of signal 
density and integrity
• Consume multiple trace tracks
• Typically lower impedance and create 

“stubs”
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[Dally]



Impact of Via Stubs at Connectors
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• Legacy BP has default straight vias
• Creates severe nulls which kills signal integrity

• Refined BP has expensive backdrilled vias

Edge connector

Packaged SerDes

Line card trace
Backplane trace

Via stub



PCB Trace Configurations
• Microstrips are signal 

traces on PCB outer 
surfaces
• Trace is not enclosed 

and susceptible to 
cross-talk

• Striplines are 
sandwiched between 
two parallel ground 
planes
• Has increased isolation
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[Johnson]



Wire Models
• Resistance

• Capacitance

• Inductance

• Transmission line theory
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Wire Resistance
• Wire resistance is determined by material 

resistivity, ρ, and geometry

• Causes signal loss and propagation delay 

17

wh
l

A
lR 
 2r

l
A
lR





[Dally]



Wire Capacitance
• Wire capacitance is determined 

by dielectric permittivity, ε,
and geometry

• Best to use lowest εr
• Lower capacitance
• Higher propagation velocity
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Wire Inductance
• Wire inductance is determined by material 

permeability, µ, and closed-loop geometry

• For wire in homogeneous medium

• Generally 
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Wire Models
• Model Types

• Ideal
• Lumped C, R, L
• RC transmission line
• LC transmission line
• RLGC transmission line

• Condition for LC or RLGC model (vs RC)
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L
Rf
20 

>f (LC wire)CLRWire
32kHz40pF/m400nH/m0.08Ω/mAWG24 Twisted Pair
2.7MHz100pF/m300nH/m5Ω/mPCB Trace

1.6GHz300pF/m4µH/m40kΩ/mOn-Chip Min. Width M6 
(0.18µm CMOS node)



RLGC Transmission Line Model

21

     
t
txILtxRI

x
txV







 ,,,

     
t
txVCtxGV

x
txI







 ,,,

0 dx  As 
(1)

(2)

General 
Transmission 
Line Equations



Time-Harmonic Transmission Line Eqs.

• Assuming a traveling sinusoidal wave with angular frequency, ω
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• Differentiating (3) and plugging in (4) (and vice versa)
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• where  is the propagation constant
    -1m   CjGLjRj  

(5)

(6)

Time-Harmonic 
Transmission 
Line Equations

(3)

(4)



Transmission Line Propagation Constant

• Solutions to the Time-Harmonic Line Equations: 
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• What does the propagation constant tell us?
• Real part () determines attenuation/distance  (Np/m)
• Imaginary part () determines phase shift/distance (rad/m)
• Signal phase velocity
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Transmission Line Impedance, Z0

• For an infinitely long line, the voltage/current ratio is Z0 
• From time-harmonic transmission line eqs. (3) and (4) 
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• Driving a line terminated by Z0 is the same as driving an 
infinitely long line

[Dally]



Lossless LC Transmission Lines
• If Rdx=Gdx=0
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No Loss!

• Waves propagate w/o distortion
• Velocity and impedance

independent of frequency
• Impedance is purely real

[Johnson]



Low-Loss LRC Transmission Lines
• If R/L and G/C << 1

• Behave similar to ideal 
LC transmission line, 
but …
• Experience resistive and 

dielectric loss
• Frequency dependent 

propagation velocity 
results in dispersion
• Fast step, followed by slow 

DC tail
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Resistive Loss

Dielectric Loss



Frequency-Dependent Loss Mechanisms

• The resistive (R) and dielectric (D) loss terms 
cause a signal propagating down a transmission-
line to become attenuated with distance
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 xDRe
V
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• Resistive loss term is due to conductor skin effect
• Dielectric loss term is due to dielectric absorption
• Both terms increase with frequency, although at 

different rates



Skin Effect (Resistive Loss)
• High-frequency current density falls 

off exponentially from conductor 
surface

• Skin depth, , is where current falls 
by e-1 relative to full conductor
• Decreases proportional to 

sqrt(frequency)
• Relevant at critical frequency fs

where skin depth equals half 
conductor height (or radius)
• Above fs resistance/loss increases 

proportional to sqrt(frequency)
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Skin Effect (Resistive Loss)
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[Dally]
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Dielectric Absorption (Loss)
• An alternating electric field 

causes dielectric atoms to 
rotate and absorb signal 
energy in the form of heat

• Dielectric loss is expressed 
in terms of the loss 
tangent

• Loss increases directly 
proportional to frequency
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Total Wire Loss
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[Dally]



Advanced Board Dielectrics
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~1.6dB/in
@ 56GHz

50GHz
• Megtron 6 25dB loss is 12.5”
• Tachyon 25dB loss is 15.6”
• PTFE (Teflon) 25dB loss is 22.7”
• Cabled interconnects can support ~1.5m

[Samtec]

~1.1dB/in
@ 56GHz

~2dB/in 
@ 56GHz
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Cabled Backplane

• Cabled backplane with short daughter cards can 
support ~1m distances at 224Gb/s

[Ghiasi IEEE802.3 2017]



Reflections & Telegrapher’s Eq.
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Termination Current:

• With a Thevenin-equivalent model of the line:

• KCL at Termination:
Telegrapher’s Equation or 
Reflection Coefficient

[Dally]



Termination Examples - Ideal
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Termination Examples - Open
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RT ~ ∞ (1M)
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Termination Examples - Short
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Arbitrary Termination Example
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RS = 400
Z0 = 50, td = 1ns
RT = 600
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Lattice Diagram
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RS = 400

RT = 600
Z0 = 50, td = 1ns

in (step begins at 1ns)

Rings up to 0.6V
(DC voltage division)



Termination Reflection Patterns
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RS = 25, RT = 25
krS & krT < 0
Voltages Converge

RS = 25, RT = 100
krS < 0 & krT > 0
Voltages Oscillate

RS = 100, RT = 25
krS > 0 & krT < 0
Voltages Oscillate

RS = 100, RT = 100
krS > 0 & krT > 0
Voltages Ring Up

source

termination

source
termination

source

termination

source

termination



Termination Schemes
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• No Termination
• Little to absorb line energy
• Can generate oscillating 

waveform
• Line must be very short 

relative to signal transition time
• n = 4 - 6 

• Limited off-chip use

• Source Termination
• Source output takes 2 steps up
• Used in moderate speed point-

to-point connections

LCnlnTt triproundr 2 

LClt porch 2



Termination Schemes

42

• Receiver Termination
• No reflection from receiver
• Watch out for intermediate 

impedance discontinuities
• Little to absorb reflections at driver

• Double Termination
• Best configuration for min 

reflections
• Reflections absorbed at both driver 

and receiver
• Get half the swing relative to 

single termination
• Most common termination scheme 

for high performance serial links



Differential Signaling
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• Differential signaling advantages
• Self-referenced 
• Common-mode noise rejection
• Increased signal swing
• Reduced self-induced power-supply noise

• Requires 2x the number of signaling pins 
relative to single-ended signaling
• But, smaller ratio of supply/signal (return) pins
• Total pin overhead is typically 1.3-1.8x (vs 2x)



Odd & Even Modes
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[Hall]

• Even mode
• When equal voltages drive both lines, only one mode propagates called even more

• Odd mode
• When equal in magnitude, but out of phase, voltages drive both lines, only one 

mode propagates called odd mode
• For a differential pair (odd mode), a virtual reference plane exists between 

the conductors that provides a continuous return current path
• Electric field is perpendicular to the virtual plane
• Magnetic field is tangent to the virtual plane



Balanced Transmission Lines
• Even (common) mode 

excitation
• Effective C = CC 
• Effective L = L + M

• Odd (differential) mode 
excitation
• Effective C = CC + 2Cd 
• Effective L = L – M
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PI-Termination
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T-Termination
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Next Time
• Channel modeling
• Time domain reflectometer (TDR)
• Network analysis
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