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Announcements 

• HW1 due NOW 
 

• Lab1 tomorrow in ZACH 203 
• Prelab 1 due tomorrow 

 
• Reference Material Posted on Website 

• TDR theory application note  
• S-parameter notes 
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Agenda 

• Channel Components 
• IC Packages, PCBs, connectors, vias, PCB Traces 

• Wire Models 
• Resistance, capacitance, inductance 

• Transmission Lines 
• Propagation constant 
• Characteristic impedance 
• Loss 
• Reflections 
• Termination examples 
• Differential transmission lines 
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Channel Components 
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IC Packages 

• Package style depends 
on application and pin 
count 
 

• Packaging technology 
hasn’t been able to 
increase pin count at 
same rate as on-chip 
aggregate bandwidth 
• Leads to I/O constrained 

designs and higher data 
rate per pin 
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Package Type Pin Count 

Small Outline Package (SOP) 8 – 56 

Quad Flat Package (QFP) 64 - 304 

Plastic Ball Grid Array (PBGA) 256 - 420 

Enhanced Ball Grid Array (EBGA) 352 - 896 

Flip Chip Ball Grid Array (FC-BGA) 1089 - 2116 

SOP 

PBGA 

QFP 

FC-BGA 

[Package Images - Fujitsu] 



IC Package Examples 

• Wirebonding is most 
common die attach method 
 

• Flip-chip packaging allows 
for more efficient heat 
removal 
 

• 2D solder ball array on 
chip allows for more 
signals and lower signal 
and supply impedance 
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Standard Wirebond Package 

Flip-Chip/Wirebond Package 

Flip-Chip/Solder Ball Package 

[Package Images - Fujitsu] 



IC Package Model 
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Bondwires 
• L ~ 1nH/mm 
•Mutual L “K” 
• Ccouple

 ~ 20fF/mm 

Package Trace 
• L ~ 0.7-1nH/mm 
•Mutual L “K” 
• Clayer

 ~ 80-90fF/mm 
•Ccouple

 ~ 40fF/mm 

[Dally] 



Printed Circuit Boards 

• Components soldered on 
top (and bottom) 
 

• Typical boards have 4-8 
signal layers and an 
equal number of power 
and ground planes 
 

• Backplanes can have 
over 30 layers 
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PCB Stackup 

• Signals typically on top and 
bottom layers 
 

• GND/Power plane pairs and 
signal layer pairs alternate in 
board interior 
 

• Typical copper trace thickness 
• “0.5oz” (17.5um) for signal layers 
• “1oz” (35um) for power planes 
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[Dally] 



Connectors 

• Connectors are used 
to transfer signals 
from board-to-board 
 

• Typical differential 
pair density between 
16-32 pairs/10mm 
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[Tyco] 



Connectors 

• Important to maintain proper differential 
impedance through connector 
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• Crosstalk can be an issue in the connectors 

[Tyco] 



Vias 

• Used to connect PCB layers 
 

• Made by drilling a hole through 
the board which is plated with 
copper 
• Pads connect to signal layers/traces 
• Clearance holes avoid power planes 

 

• Expensive in terms of signal 
density and integrity 
• Consume multiple trace tracks 
• Typically lower impedance and create 

“stubs” 
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[Dally] 



Impact of Via Stubs at Connectors 
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• Legacy BP has default straight vias 
• Creates severe nulls which kills signal integrity 

• Refined BP has expensive backdrilled vias 

Edge connector 

Packaged SerDes 

Line card trace 

Backplane trace 

Via stub 



PCB Trace Configurations 

• Microstrips are signal 
traces on PCB outer 
surfaces 
• Trace is not enclosed 

and susceptible to 
cross-talk 

• Striplines are 
sandwiched between 
two parallel ground 
planes 
• Has increased isolation 

14 

[Johnson] 



Wire Models 

• Resistance 
 

• Capacitance 
 

• Inductance 
 

• Transmission line theory 
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Wire Resistance 

• Wire resistance is determined by material 
resistivity, ρ, and geometry 
 

• Causes signal loss and propagation delay  
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Wire Capacitance 

• Wire capacitance is determined 
by dielectric permittivity, ε, 
and geometry 

• Best to use lowest εr
 

• Lower capacitance 
• Higher propagation velocity 

17 

s
wC ε

= ( )12log
2

rr
C πε
= ( )rs

C
log
πε

= ( )hss
wC

4log
2πεε

+=

[Dally] 



Wire Inductance 

• Wire inductance is determined by material 
permeability, µ, and closed-loop geometry 
 

• For wire in homogeneous medium 
 
 

• Generally  
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Wire Models 

• Model Types 
• Ideal 
• Lumped C, R, L 
• RC transmission line 
• LC transmission line 
• RLGC transmission line 

 

• Condition for LC or RLGC model (vs RC) 
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L
Rf
π20 ≥

Wire R L C >f (LC wire) 

AWG24 Twisted Pair 0.08Ω/m 400nH/m 40pF/m 32kHz 

PCB Trace 5Ω/m 300nH/m 100pF/m 2.7MHz 

On-Chip Min. Width M6 
(0.18µm CMOS node) 40kΩ/m 4µH/m 300pF/m 1.6GHz 



RLGC Transmission Line Model 
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Time-Harmonic Transmission Line Eqs. 

• Assuming a traveling sinusoidal wave with angular frequency, ω 
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Transmission Line Propagation Constant 

• Solutions to the Time-Harmonic Line Equations:  
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• What does the propagation constant tell us? 
• Real part (α) determines attenuation/distance  (Np/m) 
• Imaginary part (β) determines phase shift/distance (rad/m) 
• Signal phase velocity 
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x
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(m/s)   βωυ =



Transmission Line Impedance, Z0 

• For an infinitely long line, the voltage/current ratio is Z0    
• From time-harmonic transmission line eqs. (3) and (4)  
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• Driving a line terminated by Z0  is the same as driving an 

infinitely long line 

[Dally] 



Lossless LC Transmission Lines 

• If Rdx=Gdx=0 
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No Loss! 

• Waves propagate w/o distortion 
• Velocity and impedance 

independent of frequency 
• Impedance is purely real 

[Johnson] 



Low-Loss LRC Transmission Lines 

• If R/ωL and G/ωC << 1 
 

• Behave similar to ideal 
LC transmission line, 
but … 
• Experience resistive and 

dielectric loss 
• Frequency dependent 

propagation velocity 
results in dispersion 

• Fast step, followed by slow 
DC tail 
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Skin Effect (Resistive Loss) 

• High-frequency current density falls 
off exponentially from conductor 
surface 

• Skin depth, δ, is where current falls 
by e-1 relative to full conductor 
• Decreases proportional to 

sqrt(frequency) 

• Relevant at critical frequency fs  
where skin depth equals half 
conductor height (or radius) 
• Above fs resistance/loss increases 

proportional to sqrt(frequency) 
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Skin Effect (Resistive Loss) 
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Dielectric Absorption (Loss) 

• An alternating electric field 
causes dielectric atoms to 
rotate and absorb signal 
energy in the form of heat 
 

• Dielectric loss is expressed 
in terms of the loss 
tangent 
 

• Loss increases directly 
proportional to frequency 
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Total Wire Loss 
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[Dally] 



Reflections & Telegrapher’s Eq. 
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Termination Current: 

• With a Thevenin-equivalent model of the line: 

• KCL at Termination: 
Telegrapher’s Equation or 
Reflection Coefficient 

[Dally] 



Termination Examples - Ideal 
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Termination Examples - Open 
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RS  = 50Ω 
Z0 = 50Ω, td  = 1ns 
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Termination Examples - Short 
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RS  = 50Ω 
Z0 = 50Ω, td  = 1ns 
RT  = 0Ω 

0
5050
5050

1
500
500

5.0
5050

501

=
+
−

=

−=
+
−

=

=







+
=

rS

rT

i

k

k

VVV

in (step begins at 1ns) 

source 

termination 



Arbitrary Termination Example 

34 

RS  = 400Ω 
Z0 = 50Ω, td  = 1ns 
RT  = 600Ω 
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Lattice Diagram 
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RS  = 400Ω 

RT  = 600Ω 
Z0 = 50Ω, td  = 1ns 

in (step begins at 1ns) 

Rings up to 0.6V 
(DC voltage division) 



Termination Reflection Patterns 
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RS  = 25Ω, RT = 25Ω 

krS & krT < 0 

Voltages Converge 

RS  = 25Ω, RT = 100Ω 

krS  < 0 & krT > 0 

Voltages Oscillate 

RS  = 100Ω, RT = 25Ω 

krS  > 0 & krT < 0 

Voltages Oscillate 

RS  = 100Ω, RT = 100Ω 

krS  > 0 & krT > 0 

Voltages Ring Up 

source 

termination 

source 
termination 

source 

termination 

source 

termination 



Termination Schemes 

37 

• No Termination 
• Little to absorb line energy 
• Can generate oscillating 

waveform 
• Line must be very short 

relative to signal transition time 
• n = 4 - 6  

• Limited off-chip use 
 

• Source Termination 
• Source output takes 2 steps up 
• Used in moderate speed point-

to-point connections 

 

LCnlnTt triproundr 2=> −

LClt porch 2≅



Termination Schemes 
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• Receiver Termination 
• No reflection from receiver 
• Watch out for intermediate 

impedance discontinuities 
• Little to absorb reflections at driver 

 

• Double Termination 
• Best configuration for min 

reflections 
• Reflections absorbed at both driver 

and receiver 

• Get half the swing relative to 
single termination 

• Most common termination scheme 
for high performance serial links 

 



Differential Transmission Lines 
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• Differential signaling advantages 
• Self-referenced  
• Common-mode noise rejection 
• Increased signal swing 
• Reduced self-induced power-

supply noise 
 

• Requires 2x the number of 
signaling pins relative to single-
ended signaling 
• But, smaller ratio of 

supply/signal (return) pins 
• Total pin overhead is typically 

1.3-1.8x (vs 2x) 

[Hall] 

• Even mode 
• When equal voltages drive both 

lines, only one mode propagates 
called even more 
 

• Odd mode 
• When equal in magnitude, but out 

of phase, voltages drive both lines, 
only one mode propagates called 
odd mode 



Balanced Transmission Lines 

• Even (common) mode 
excitation 
• Effective C = CC   
• Effective L = L + M 

• Odd (differential) mode 
excitation 
• Effective C = CC  + 2Cd   
• Effective L = L – M 
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PI-Termination 
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T-Termination 
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Next Time 

• Channel modeling 
• Time domain reflectometer (TDR) 
• Network analysis 
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