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Announcements

e HW1 due NOW

e Labl tomorrow in ZACH 203
 Prelab 1 due tomorrow

e Reference Material Posted on Website
 TDR theory application note
e S-parameter notes



Agenda

e Channel Components
 |C Packages, PCBs, connectors, vias, PCB Traces

 Wire Models
* Resistance, capacitance, inductance

e Transmission Lines

* Propagation constant
Characteristic impedance
Loss
Reflections
Termination examples
Differential transmission lines



Channel Components

Packaged SerDes

Backplane trace

Line card trace

[Meghelli (IBM) 1SSCC 2006]
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|C Packages

» Package style depends Package Type Pin Count
on application and pm Small Outline Package (SOP) 8 — 56
count Quad Flat Package (QFP) 64 - 304

Plastic Ball Grid Array (PBGA) 256 - 420
Enhanced Ball Grid Array (EBGA) 352 - 896

e Packaging technology Flip Chip Ball Grid Array (FC-BGA) | 1089 - 2116

hasn’'t been able to SOPp OFP

Increase pin count at
same rate as on-chip
aggregate bandwidth

e Leads to 1/0 constrained
designs and higher data
rate per pin

[Package Images - Fujitsu]




|IC Package Examples

® Wirebonding IS most Standard Wirebond Package
common die attach method T
e Flip-chip packaging allows
for more efficient heat Flip-Chip/Wirebond Package
removal PR
e L
E%%%:%é;;;
e 2D solder ball array on e

chip allows for more
signals and lower signal
and supply impedance e ] 50w o

Glass Caramic [hick-nm)

[Package Images - Fujitsu]



|C Package Model

Package Trace
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Printed Circuit Boards

e Components soldered on
top (and bottom)

e Typical boards have 4-8
signal layers and an
equal number of power
and ground planes

e Backplanes can have
over 30 layers



PCB Stackup

e Signals typically on top and
bottom layers

0507 coppear fodl
£-mil Pragrag

T (forst) wiring layar
Cangu rcl prlnict —
= 5-mil Care,

e GND/Power plane pairs and e
signal layer pairs alternate in  seom s oo o c —w

board interior oo PR e
Ground plans — 1";{&_.. :;Tl::,&n
Pomwar plans — ——— +Oz copper
e Typical copper trace thickness Soton oty weeg e LKL 17 T
e “0.50z” (17.5um) for signal layers [Dally]

* “loz” (35um) for power planes



connectors

e Connectors are used
to transfer signals
from board-to-board

e Typical differential
pair density between
16-32 pairs/10mm
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connectors

e Important to maintain proper differential
Impedance through connector

e Crosstalk can be an issue In the connectors

Victim: E4F4
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Vias

e Used to connect PCB layers

e Made by drilling a hole through

the board which is plated with o= -
copper A R-—A4b
« Pads connect to signal layers/traces "™ r - HI! T mermal e

» Clearance holes avoid power planes

e Expensive in terms of signal
density and integrity
* Consume multiple trace tracks

* Typically lower impedance and create
“stubs”

| Ik
14 i |E | s

L 'I 1
P |= 1 :'.\.'i- :! LT
e=—l | |

Signal v Powar and growund wia

[Dally]
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Impact of Via Stubs at Connectors

Packaged SerDes
Backplane trace

Channel Responses

o

Line card trace
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> 4 68 1':0 2 1':4 16
Frequency (GHz)

e Legacy BP has default straight vias
* Creates severe nulls which kills signal integrity

e Refined BP has expensive backdrilled vias
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PCB Trace Configurations

e Microstrips are signal

Microsirip

traces on PCB outer ' conductor
surfaces " _. Dislectric
: - —— Ground plane
e Trace is not enclosed I
and susceptible to
cross-talk Stripline
e Striplines are - Ground plane

<~ . Dieleetrie

sandwiched between Ef* oot
two parallel ground ——— Ground plane

planes [Johnson]
 Has increased isolation
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Wire Models

e Resistance

e Capacitance

e Inductance

e Transmission line theory
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Wire Resistance

e Wire resistance Is determined by material
resistivity, p, and geometry

e Causes signal loss and propagation delay

TABLE 3-1 Resistivity of Common
_L Conductive Materials
—_— O s
T __Jlt-:"'

| Silver 1.6 x 1078
Copper 1.7 x 10°®
22 x 107
27 x 1078
55x10°"

Guold

21

Pl _ P Pl _ .

B A wh A ar’ [Dally]
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Wire Capacitance

e Wire capacitance Is determined | masies-z Permistivity of
. i . ' Some Typical Insulators
by dielectric permittivity, &, -
and geometry P :
Teflon 2
» Best to use lowest ¢, * Polyimide 3
. [ Silicon dioxide 19
e Lower capacitance Im-rmm:m 4
! ] ] Alnmhl 10
 Higher propagation velocity Bocer. 1
+0 { 4;’* { f
F mm— H EN—
: ©
= — pE r~{~ [Dally]
Paralle] Plate Coaxjal Wire Pair Rectangle over ground
we 27E e we 27e

s “log(r,/r,) = log(s/r) =t log(4s/h)
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Wire Inductance

e Wire inductance Is determined by material
permeability, 4, and closed-loop geometry

e For wire iIn homogeneous medium

CL=¢cu

. Generally 4= iy =47 x10""H/m
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Wire Models

 Model Types

Ideal

* |deal W
e« Lumped C, R, L Rebine T
e RC transmission line Lc Li:“_-l-_
e LC transmission line i
e RLGC transmission line RLGC Line T
f, > R
e Condition for LC or RLGC model (vs RC) 0 = ﬁ
Wire R L C >f (LC wire)
AWG24 Twisted Pair 0.08€2/m | 400nH/m | 40pF/m 32kHz
PCB Trace 5Q/m | 300nH/m | 100pF/m 2.7TMHz
g_"l%ziﬁ] '\é:\;‘ b\évfézel\)% 40kQ/m | 4uH/m | 300pF/m |  1.6GHz
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RLGC Transmission Line Model

V(x) = Vi(x) + Vi(x)

X=0< (} }'X = 0
" Rdx L&x .
I yWW—m — !
| I(x,t) [(x+dx,t) + :
iV(x,t) Cdx= ZGdx V(x+dx)!
i\ dx »| ’i
Asdx —>0 ) 0o
oV (X,t ol (x,t
o —RI (X’ t)_ L ot (1) General

= Transmission

al(xt) _ GV(xt)-C oV éx,t) o Line Equations
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Time-Harmonic Transmission Line Egs.

e Assuming a traveling sinusoidal wave with angular frequency, w
dv (x)
dx

d:j(xx) G+ @

=—(R+ joL)I(x) 3

e Differentiating (3) and plugging in (4) (and vice versa)
d3V () N
dx*
d?1(x)
dx®
e where y is the propagation constant

ly=a+ip=JR+joL)G+jeC) (m*)

2

=7 V(X) () Time-Harmonic

~ Transmission
Line Equations

=7°1(x) (o)

—
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Transmission Line Propagation Constant

e Solutions to the Time-Harmonic Line Equations:

V(x)=V, (X)+V. (X)=V, e +V "

1(X)=1,(x)+1.(x)=1,,7+1 "

where [y =a+ =R+ joL)G+jeC) (m”)

e What does the propagation constant tell us?
e Real part (o) determines attenuation/distance (Np/m)
e [maginary part (B) determines phase shift/distance (rad/m)
e Signal phase velocity

lo=0/p (mis)|
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Transmission Line Impedance, Z,

e For an infinitely long line, the voltage/current ratio is Z,
e From time-harmonic transmission line eqgs. (3) and (4)

" V(x)  |R+jol
ZO_K)Q_\/G+;wC (Q)

e Driving a line terminated by Z, is the same as driving an
Infinitely long line

B -z

[Dally]



Lossless LC Transmission Lines

e |f Rdx=Gdx=0 Ldx Ldx
. . see Mm . m ese
y=a+|B=jovLC
o =0 mmp NoO Loss! CdX-[ Cdx —
ﬂ =+ LC oo : voe
e Waves propagate w/o distortion Lg;gggg?gggggggjm
) VelOCIty and Impedance I _____ f'" At point X, the step
iIndependent of frequency g l [ A
' X
e Impedance is purely real - — e
1 pro } "
D= w — . Y j———
B ALC 4 -
L ; i Time delay ¢, - ¢, = (¥ - X)~/IC
2o = C o [Johnson]
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Low-Loss LRC Transmission Lines

y=a+jf=+J(R+joL)G+ joC)

1
~ JO)\/E(].—] RC+GLJ2

olLC

e If R/owL and G/wC << 1

e Behave similar to ideal N TP
LC transmission line, =2z, L‘{ (QJ *5(%”
bUt =ag+ap+|f

* Experience resistive and [, - R
: - 2z,
dielectric loss GZ,| Dielectric Loss

* Frequency dependent 2

propagation velocity { 1( 5 j 1( G ”

: : . B=oVLC|1+=| — | +=

results in dispersion o) 8
 Fast step, followed by slow

oC tail | oo 24 2]

Resistive Loss

ap =

@C

25



Skin Effect (Resistive LosS)

= High-frequency current density falls 4 % T
off exponentially from conductor :_’i
surface a W]

e Skin depth, 9o, is where current falls
by e-! relative to full conductor

J = e_g o= (ﬂ'f,UG)_E

* Decreases proportional to For rectangular conductor:
sqrt(frequency) -
e Relevant at critical frequency f, e w[h 2
where skin depth equals half S
conductor height (or radius) R(f)=Ruc fi

« Above f, resistance/loss increases T
proportional to sqrt(frequency) N _h(ijz
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Skin Effect (Resistive LosS)

- - - 103 ]
5-mil Stripguide  __  }
Roc =7Q/m, f,=43MHz & 4o' | Stripguide =
30 AWG Pair g wE 30 AWG Pair ]
Ry =0.08Q/m, f.=67kHz @ | . i
2 S
€ 10"l SN ——
10 10 10 10 10 10
10° BI}AWGPair

Stripguide

Attenwation (1/m)

[
-l

e ol

—
o

100 10 10° 10° 10
Frequency Hz)  [Dally]

—
n{l
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Dielectric Absorption (Loss)

e An alternating electric field
causes dielectric atoms to
rotate and absorb signal

tan o, = ——

energy in the form of heat |7t fermndicioniese
. . . W&mﬂm Wr:sm(‘FR-_‘F"’)‘_."z.: : 4.1. ; oo:.zs‘kg
e Dielectric loss Is expressed .f,z:;ﬁ:?,:mz:;:;;m(m- A e
. Woven glass, PTFE resin (Te ﬂon} ISR ..2255 m:;_i.(},ms
In terms of the loss Nurops DU By ) 15 € RO,
tangent [Dally]
. : GZ, 2xCtano,/L/C
e Loss increases directly oy = 20 = ; ovL/
roportional to frequenc
Prop d y =7f tano,+/LC
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Total Wire LosS

Attenuation

1.0

IR

0.6

0.4

0.2

. }/ Dielectric Loss

Conductor Loss

Calculated Attenuation
Measured Attenuation
I EED T T T THVFI 1T T 1ri1in I i 1 1T TTHI I I'E]I
1 MHz 10 MHz 100 MHz 1 GHz 6 GHz
Frequency [Dally]
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Reflections & Telegrapher’s Eq.

— ) . W
# Q z ? /
’ Ly 2ViX¥man ) ’ ZT* T
- [Dally]

e With a Thevenin-equivalent model of the line:
2V

;=
Ly+Z;

Termination Current:

e KCL at Termination:

|, =1, -1 Telegrapher’s Equation or
Reflection Coefficient
V. 2V,

"7, Z,+1Z, e Ve _Z -7,
j NV, Z,+Z,
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Termination Examples - Ideal

Rs = 50Q
Z, =50Q, t; = 1ns
Ry = 50Q

in (step begins at 1ns)

termination
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Termination Examples - Open

R, = 500

R; ~— 00 (1MQ)

Z, =50Q, t; = 1ns

term

in (step begins at 1ns)

nation
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Termination Examples - Short

Rgs = 50Q
Z, =50Q, t; = 1ns
R; = 0Q
- fin = fload fsource
1325
' in (step begins at 1ns)
1.0 - y
75-
S
54
254
. termination
e s S R S S S e S B S S s PSSR
| Tns| 905, 93my tifme (ns)

33




Arbitrary Termination Example

— fin

Rs = 400Q
Z, =50Q, t; = 1ns
R; = 600Q

— fload Jsource

125

1.0+

73

in (step begins at 1ns)

termination 0.340

0.205V |

50 s
V. =1V =0.111V g
(400+50j S
. 600 -50 _0.846 N
600+50
~400-50 0.778 l:ﬁ-jfl

" 400+50
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Lattice Diagram

Rs = 400Q
Z, =50Q, t; = 1ns
k,s=0.778 k,+=0.846
0.111v  x=0 x=¢ R; = 600Q
t=1ns t=1ns
vs=ul1 11V VT'=UV — fin — fload {source
t=2ns 125,
V;=0.205V _ _
t=3ns In (step begins at 1ns)
Vs=0.278V 1.0; - : :
t=4ns : ]
V;=0.340V ] Rings up to 0.6V
ol (DC voltage division)
t=5ns 1
Vs=0.388V = \
t=6ns 5 jI;;:
Vy=0.429V j =
t=7ns ' N
Vs=0.461V 25
a,e- —r T 7+
0 5.0 10 15 20 25
[ 12.4ns] 1.0% time [ns)
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Termination Reflection Patterns

_r’irn — fload — {source RS — 259’ RT — 259 — fin — fload — Jsource
1.2 1.25

krg & kry <O
1.0+ 1.0+

Voltages Converge

' / SEEY fagpemm termination
] | source / . .- |
s SRR - |
> | = source
54 I ﬁ - .s-l
T Rs = 25Q, RT = 100Q
termination
- krg <0 &kr;>0
. Voltages Oscillate i
o 25 ' 50 ' 75 ' % 0 25 =0 75
=T ————— = = timafm o m time f{fs)
— fin — fload — fsource — g — fiwau — FRuMILT
Rs = 100Q, RT =25Q =
krg >0 &kr; <0
Ly 1,0+
Voltages Oscillate
754 / .75
g ' / s

termination

| source Rs = 100Q, RT = 100Q
] _|_t|ermination

+— kr >0&kr; >0 /
Voltages Ring Up .

[¥] 2.5 5.0 7.5 (] 2.5 7.5

: .0
4.9553n5 Lo time s [assons]  Lov time (ns) 36

A §s LSm1iERd
! source

(i I S|




Termination Schemes

» No Termination t_/-1
- Little to absorb line energy Iﬁr z, kir>0
e Can gfenerate oscillating rs<0 7
waveform
- Line must be very short t > T gung—rip = 2NIVLC
relative to signal transition time
*nN=4-6

e Limited off-chip use

porch — 2' v LC

e Source Termination _|_ J‘IE; —|-1
e Source output takes 2 steps up l:u zﬁo 7 0 {>

e Used in moderate speed point-
to-point connections

LY J

Krs= k>0



Termination Schemes

e Receiver Termination

1 1
* No reflection from receiver u-l_ Zo 0—|_
[ 3
« Watch out for intermediate |> K.<<0 .
: : o rs Zy k=0
impedance discontinuities '
» Little to absorb reflections at driver
e Double Termination
* Best configuration for min
reflections
» Reflections absorbed at both driver 1
and receiver _|_ 0.5 0.5
. . 04 z D-r Z, U—I_
- Get half the swing relative to |>_Wﬂ,« [ }
single termination kes= 2= k=0

 Most common termination scheme
for high performance serial links
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Differential Transmission Lines

» Differential signaling advantages A N ANI/AYALN
« Self-referenced — \ n

. L [ f \' — 7T\ | / I w \
« Common-mode noise rejection | { | 1 1/ \illUHf}‘ | |
d ] | SWIng E|ECtrICfIE|d Gdd miode Electric field: Even mode
* Increased signa e
» Reduced self-induced power- // = m\mé ~$\T |/”}”ﬂ_.—_-’5\\|
supply noise “* Ao—_ ==
Pply NN N
I"."Iagnetlc field: Odd mode Magnetic field: Even mode
e Requires 2x the number of e Even mode
signaling pins relative to single- » When equal voltages drive both
ended signaling lines, only one mode propagates
« But, smaller ratio of called even more
supply/signal (return) pins
PP1Yy/SIg ( )P « 0dd mode

« Total pin overhead is typically

1.3-1.8x (Vs 2x) = When equal in magnitude, but out

of phase, voltages drive both lines,
only one mode propagates called
odd mode
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Balanced Transmission Lines

e Even (common) mode

. : [y  Addx _L
excitation Y —np—4—

» Effective C = C, lr’:_rm_:mI o

Fidr Addx

e Effective L =L + M T-L“-h-dl
e Odd (differential) mode (4) Model of 2 Balsnced Line
excitation M
» Effective C = C. + 2C, Con :[ C. j
o Effective L=L - M IRYIR%
7o =27 7. =Zem N :(Cc +2Cd]

2
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PlI-Termination

R
Vem —7J JW‘ v

Even Mode
Equivalent |Zeven = Rll

Ve &—5—=W 3
R

R
= R

Vo —o
+

5y ——
W Roj2 B B
R1 Odd Mode 2 ZOdd T Rl || R2/2 _ Zeven || R2/2
Equivalent
V R2/2 R, — 2( ZoddZeven j
I s 2 —
2 — R, Zeven o Zodd
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T-Termination

R, 2R
VCMr_J JW \WJ,

Even Mode
Equivalent VA — Rz + 2R1

even

Ve T——W—»MW—

R 2R

Vo . R
"‘2(_; \NV+

Odd Mode

Equivalent 1
Rl — E(Zeven o Zodd )

Vo ——
T —— JW‘J,
Rz

42



Next Time

e Channel modeling
 Time domain reflectometer (TDR)
* Network analysis
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