### ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

#### Lecture 29: PLL Wrap-Up



#### Sam Palermo Analog & Mixed-Signal Center Texas A&M University

### Announcements

- Project Preliminary Report #2 due Monday April 26 in class
- Exam 2 is April 30
- Project feedback meetings
  - Wednesday 10:30-12
- Will post paper on Bandpass filtering of forwarded clocks

# Agenda

- Clock Dividers
- PLL Design Example
- CDR Introduction

# Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider



# Loop Divider



Time-domain model

$$\omega_{fb}(t) = \frac{1}{N} \omega_{out}(t)$$

$$\theta_{fb}(t) = \int \frac{1}{N} \omega_{out}(t) d\mathbf{t} = \frac{1}{N} \theta_{out}(t)$$

## Basic Divide-by-2



- Divide-by-2 can be realized by a flip-flip in "negative feedback"
- Divider should operate correctly up to the maximum output clock frequency of interest PLUS some margin



# Divide-by-2 with TSPC FF

#### True Single Phase Clock Flip-Flop



- Advantages
  - Reasonably fast, compact size, and no static power
  - Requires only one phase of the clock
- Disadvantages
  - Signal needs to propagate through three gates per input cycle
  - Need full swing CMOS inputs
  - Dynamic flip-flop may have issues at very low frequency operation (test mode) depending on process leakage

OUT

# Divide-by-2 with CML FF



- Advantages
  - Signal only propagates through two CML gates per input cycle
  - Accepts CML input levels
- Disadvantages
  - Larger size and dissipates static power
  - Requires differential input
  - Need tail current biasing
- Additional speedup (>50%) can be achieved with shunt peaking inductors

### Binary Dividers: Asynchronous vs Synchronous

#### Asynchronous Divider



- Advantages
  - Each stage runs at lower frequency,
     resulting in reduced power
  - Reduced high frequency clock loading
- Disadvantage
  - Jitter accumulation
- Advantage
  - Reduced jitter
  - Disadvantage
    - All flip-flops work at maximum frequency, resulting in high power
    - Large loading on high frequency clock

#### Synchronous Divider



### Jitter in Asynchronous vs Synchronous Dividers

#### Asynchronous



- Jitter accumulates with the clock-to-Q delays through the divider
- Extra divider delay can also degrade PLL phase margin



- Divider output is "sampled" with high frequency clock
- Jitter on divider clock is similar to VCO output
- Minimal divider delay

## **Dual Modulus Prescalers**



 For /15, first prescaler circuit divides by 3 once and 4 three times during the 15 cycles

# **Injection-Locked Frequency Dividers**





Ring-oscillator type (/3)



[Verma JSSC 2003, Rategh JSSC 1999]

[Lo CICC 2009]

- Superharmonic injection-locked oscillators (ILOs) can realize frequency dividers
- Faster and lower power than flip-flop based dividers
- Injection locking range can be limited

# Example PLL Design Procedure

- Design procedure for a 100-300MHz frequency synthesizer
- Step 1 Determine VCO Tuning Range
  - Needs to be at least the output frequency range plus some margin (10-20%) dependent on PVT tolerance

#### VCO Tuning Range = 100 - 300MHz\*

- \*Note if you want the frequency extremes (100 or 300MHz) you probably want to add some margin here
- Step 2 Determine Loop Division Ratio, N
  - This is a function of what reference clocks you have access to, loop bandwidth, dominant noise sources

$$N = 32$$

- Step 3 Determine Damping Factor
  - Damping factors between 0.5 and 2 are reasonable, with 0.7 or 1 commonly chosen

$$\zeta = \frac{1}{\sqrt{2}} \approx 0.707$$

# Example PLL Design Procedure

- Step 4 Determine natural frequency, ω<sub>n</sub>
  - This is a function of the desired loop bandwidth and also the damping factor
  - Maximum loop bandwidth should be less than 1/10<sup>th</sup> the input reference clock for the loop to act as a continuoustime system

Lowest Input Reference Frequency =  $\frac{100 \text{MHz}}{32}$  = 3.125MHz

• Set the loop bandwidth with some margin - 75% of max value

$$\omega_{3dB} = (0.75)(2\pi)312.5$$
kHz = 1.47 *Mrad*/s

• For a damping factor of 0.707

$$\omega_n = \frac{\omega_{_{3dB}}}{2.06} = \frac{1.47 \, Mrad}{2.06} = 714 \, krad_s$$

# Example PLL Design Procedure

- Step 5 Determine K<sub>vco</sub>
  - This is a function of the VCO and charge pump operating voltage range
  - Here I use a combination of discrete tuning caps, resulting in multiple frequency bands over the total frequency range



$$K_{VCO} = \frac{(2\pi)65\text{MHz}}{1.6\text{V}} = 255 \text{Mrad}/\text{sV}$$

• Step 6 – Determine Charge Pump Current & Filter Cap

Set 
$$I = 25\mu A$$
  

$$C_1 = \frac{\left(25\mu A\right)\left(255\frac{Mrad}{sV}\right)}{2\pi \left(32\right)\left(714\frac{krad}{s}\right)^2} = 62.2\,pF$$

Step 7 – Determine Filter R and Secondary Cap

$$R = \frac{2\zeta}{\omega_n C_1} = \frac{2(0.707)}{\left(714\frac{krad}{s}\right)(62.2\,pF)} = 31.8k\Omega$$

$$C_2 < \frac{C_1}{10} = 6.22\,pF \Longrightarrow C_2 = 6\,pF$$

### PLL Linear Phase Model



#### PLL Linear Phase Model: Frequency Step Response



## PLL Behavioral Model

- From my MSc thesis: <u>http://www.ece.tamu.edu/~spalermo/docs/msc thesis sam palermo.pdf</u>
- Written in SpectreHDL
- Also look at CppSim: <u>http://www.cppsim.com/</u>

// Multi-Band Phase Locked Loop Frequency Synthesizer Macromodel // Main Spectre File // Samuel Palermo simulator lang=spectre include "/home/samuel/research/pll/macromodels/pd/dig pfd/dig pfd.def" include "/home/samuel/research/pll/macromodels/lpf/lpf.def" ahdl\_include "/home/samuel/research/pll/macromodels/vco/vco.def" ahdl include "/home/samuel/research/pll/macromodels/vco/switch vco.def" ahdl include + "/home/samuel/research/pll/macromodels/divider/divider.def" include "/home/samuel/research/pll/macromodels/vco/reference.def" // Power Supply vdd dd 0 vsource dc=1 // Reference Signal xref 0 control fref reference vcontrol control 0 vsource type=pwl wave=[0 0.64 lu 0.64] // Digital Tri-State Phase/Frequency Comparator xdig pfd 0 dd fref fvco up upbar down downbar dig pfd // Charge Pump iup dd 1 isource dc=25u idown 2 0 isource dc=25u gup 1 vd up 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m gupbar 1 0 upbar 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m gdown vd 2 down 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m gdownbar dd 2 downbar 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m // Loop Filter xfilter 0 vd lpf gvdgnd vd 0 vd\_gnd 0 relay vt1=0 vt2=1 ropen=100M rclosed=10 // Voltage Controlled Oscillator //xvco vd out vco (gain=40e6 fc=256e6) xvco 0 vd out nv temp vd qnd + switch\_vco (u=0.8 d=-0.8 gain=40e6 fc=256e6) // Divider xdivider 0 out fvco buffer n\_temp divider (divisor=32) op dc

timedom tran stop=20u step=20p ic=all maxstep=20p skipdc=yes relref=alllocal simulator lang=spice ic vd=0 save vd control fref fvco nv\_temp vd\_gnd .OPTIONS rawfmt=psfbin save=selected diagnose=yes vabstol=.01 + reltol = 99 // Digital Phase Frequency Detector Macromodel // Samuel Palermo subckt dig\_pfd (gnd dd fref fvco up upbar down downbar) ahdl\_include "/home/samuel/research/pll/macromodels/pd/dig\_pfd/dff.def" ahdl include + "/home/samuel/research/pll/macromodels/pd/dig\_pfd/nand.def" xdffup gnd dd fref up upbar r dff xdffdown gnd dd fvco down downbar r dff xnand qnd up down r nand ends dig pfd // D Flip Flop Macromodel // Samuel Palermo module dff(gnd, D, CLK, Q, QBAR, R) () node [V, I] gnd, D, CLK, Q, QBAR, R ; real 0 temp; real QBAR\_temp; initial { Q\_temp=0; QBAR temp=1; analog { if (\$threshold (V(CLK, gnd)-1, 1)) { if (V(D,gnd)==1) { Q\_temp=1; OBAR temp=0; else { Q\_temp=0; QBAR\_temp=1; if (V(R, gnd)==0) { Q\_temp=0; OBAR temp=1;

#### PLL Frequency Step Response: Linear vs Behavioral Model



## PLL Lab Results

| C  | Scope            | Scope Channel                  |                               | Autoscale Can                    |                                          | el Run                                 |
|----|------------------|--------------------------------|-------------------------------|----------------------------------|------------------------------------------|----------------------------------------|
|    | Input<br>C1      | V/Div<br>500 mV                | Offset<br>ov                  | Probe                            | Coupli<br>1MΩ /                          | ng<br>DC Preset<br>User                |
|    | s/Div<br>1.00 us | Delay<br>2.4500 u              | Display<br>Options            | )                                | T                                        | x = -544.00 ns<br>o = 3.4600 us        |
| X- | -62,5mV<br>391mV |                                |                               |                                  |                                          |                                        |
|    |                  |                                | /                             |                                  |                                          |                                        |
|    |                  |                                |                               |                                  |                                          |                                        |
| I  | <u> :</u>        |                                | ; ; <u>;</u>                  | <del>_</del>                     | : :                                      | ::                                     |
| C  | Scope            | Scope A                        | uto Measure                   | ) (Autosc                        | ale) (Cano                               | el Run                                 |
|    | Input<br>C1      | Period<br>Risetime<br>Falltime | 4.00 ns<br>1.20 ns<br>1.16 ns | Freq 250<br>+Width 1<br>-Width 2 | .00 MHz Vp.<br>.97 ns Pri<br>2.03 ns Ovi | _p 205 mV<br>eshoot 0 %<br>ershoot 0 % |
|    | s/Div<br>1.00 ns | Delay<br>O                     | s Display<br>Options          | Sample<br>Period                 | Data acqui<br>Next acqui                 | red at: 1 ns<br>sition: 1 ns           |
|    | C1               |                                |                               |                                  |                                          |                                        |
|    |                  |                                |                               |                                  |                                          |                                        |
|    |                  |                                |                               |                                  |                                          |                                        |
|    |                  |                                |                               |                                  |                                          |                                        |

## Embedded Clock I/O Circuits



#### • TX PLL

- TX Clock Distribution
- CDR
  - Per-channel PLL-based
  - Dual-loop w/ Global PLL &
    - Local DLL/PI
    - Local Phase-Rotator PLLs
    - Global PLL requires RX clock distribution to individual channels

# Embedded Clocking (CDR)



- Clock frequency and optimum phase position are extracted from incoming data
- Phase detection continuously running
- Jitter tracking limited by CDR bandwidth
  - With technology scaling we can make CDRs with higher bandwidths and the jitter tracking advantages of source synchronous systems is diminished
- Possible CDR implementations
  - Stand-alone PLL
  - "Dual-loop" architecture with a PLL or DLL and phase interpolators (PI)
  - Phase-rotator PLL

## Next Time

CDRs