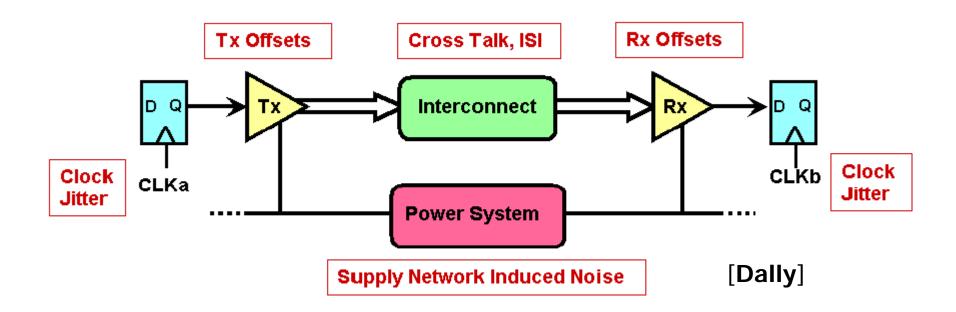
ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 20: Noise Sources

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Announcements


- HW5 now due now
- HW6 will be posted this weekend and due Monday April 5
- Reading
 - DFE papers posted
 - Advanced signaling paper posted (reference only)
 - Dally 6.1-6.3

Agenda

Noise source overview

Common noise sources

Noise in High-Speed Link Systems

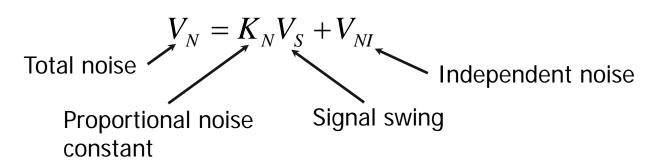
 Multiple noise sources can degrade link timing and amplitude margin

Noise Source Overview

- Common "noise" sources
 - Power supply noise
 - Receiver offset
 - Crosstalk
 - Inter-symbol interference
 - Random noise
- Power supply noise
 - Switching current through finite supply impedance causes supply voltage drops that vary with time and physical location
- Receiver offset
 - Caused by random device mismatches

- Crosstalk
 - One signal (aggressor) interfering with another signal (victim)
 - On-chip coupling (capacitive)
 - Off-chip coupling (t-line)
 - Near-end
 - Far-end
- Inter-symbol interference
 - Signal dispersion causes signal to interfere with itself
- Random noise
 - Thermal & shot noise
 - Clock jitter components

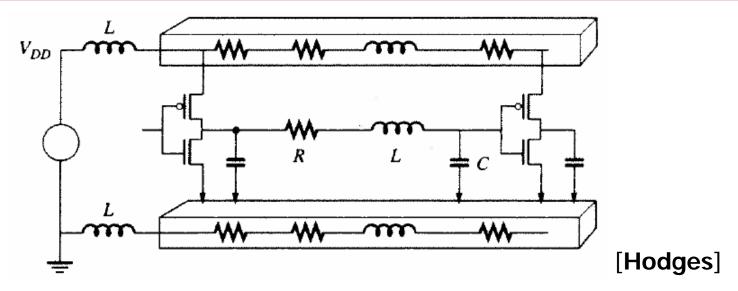
Bounded and Statistical Noise Sources


- Bounded or *deterministic* noise sources
 - Have theoretically predictable values with defined worst-case bounds
 - Allows for simple (but pessimistic) worst-case analysis
 - Examples
 - Crosstalk to small channel count
 - ISI
 - Receiver offset

- Statistical or random noise sources
 - Treat noise as a random process
 - Source may be psuedo-random
 - Often characterized w/ Gaussian stats
 - RMS value
 - Probability density function (PDF)
 yields probability noise will exceed
 a certain value
 - Examples
 - Thermal noise
 - Clock jitter components
 - Crosstalk to large channel count
- Understanding whether noise source is bounded or random is critical to accurate link performance estimation

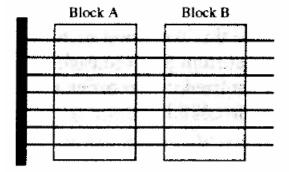
Proportional and Independent Noise Sources

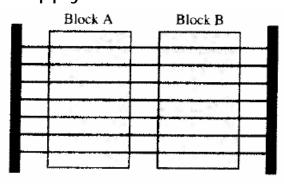
- Some noise is *proportional* to signal swing
 - Crosstalk
 - Simultaneous switching power supply noise
 - ISI
- Can't overpower this noise
 - Larger signal = more noise


- Some noise is *independent* to signal swing
 - RX offset
 - Non-IO power supply noise
- Can overpower this noise

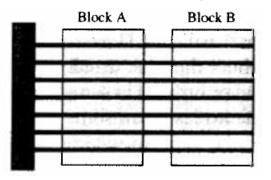
Common Noise Sources

- Power supply noise
- Receiver offset
- Crosstalk
- Inter-symbol interference
- Random noise

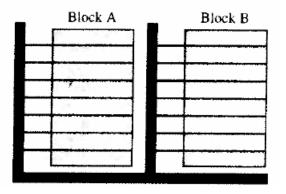

Power Supply Noise


- Circuits draw current from the VDD supply nets and return current to the GND nets
- Supply networks have finite impedance
- Time-varying (switching) currents induce variations on the supply voltage
- Supply noise a circuit sees depends on its location in supply distribution network

Power Routing

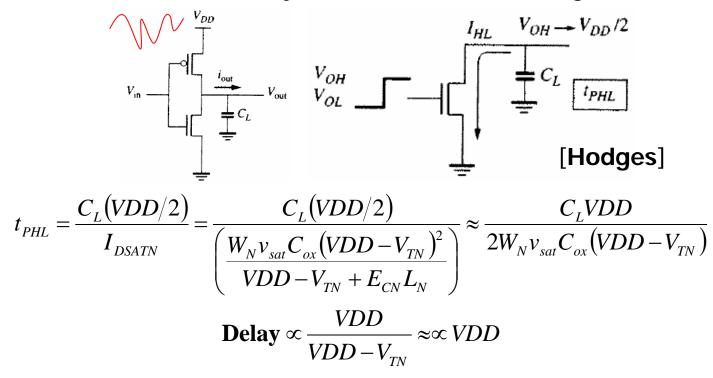

Bad – Block B will experience excessive supply noise

Even Better – Block A & B will experience similar supply noise



Better – Block B will experience 1/2 supply noise, but at the cost of double the power routing through blocks

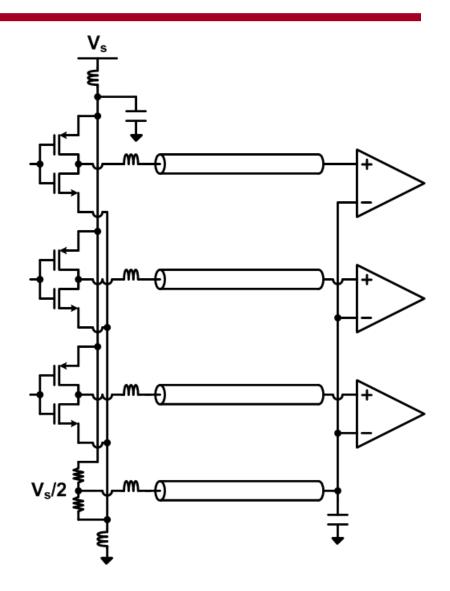
[Hodges]


Best – Block A & B are more isolated

[Hodges]

Supply Induced Delay Variation

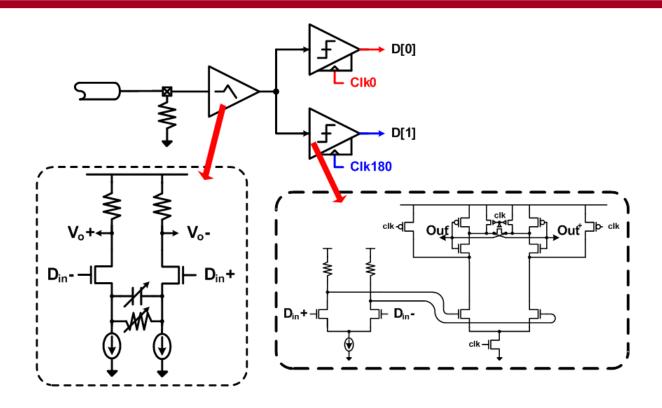
- Supply noise can induce variations in circuit delay
 - Results in deterministic jitter on clocks & data signals



- CMOS delay is approximately directly proportional to VDD
 - More delay results in more deterministic jitter

Simultaneous Switching Noise

- Finite supply impedance causes significant Simultaneous Switching Output (SSO) noise (xtalk)
- SSO noise is proportional to number of outputs switching, n, and inversely proportional to signal transition time, t_r


$$V_N = L \frac{i}{t_r} = n \frac{LV_s}{Z_0 t_r}$$

Common Noise Sources

- Power supply noise
- Receiver offset
- Crosstalk
- Inter-symbol interference
- Random noise

Receiver Input Referred Offset

• The input referred offset is primarily a function of V_{th} mismatch and a weaker function of β (mobility) mismatch

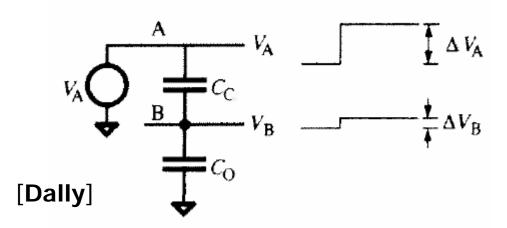
$$\sigma_{V_t} = rac{A_{V_t}}{\sqrt{WL}}, \quad \sigma_{\Deltaeta/eta} = rac{A_eta}{\sqrt{WL}}$$

Receiver Input Referred Offset

$$\sigma_{V_t} = rac{A_{V_t}}{\sqrt{WL}}, \quad \sigma_{\Deltaeta/eta} = rac{A_eta}{\sqrt{WL}}$$

- To reduce input offset 2x, we need to increase area 4x
 - Not practical due to excessive area and power consumption
 - Offset correction necessary to efficiently achieve good sensitivity
- Ideally the offset "A" coefficients are given by the design kit and Monte Carlo is performed to extract offset sigma
- If not, here are some common values:
 - $A_{Vt} = 1mV\mu m \text{ per nm of } t_{ox}$
 - For our default 90nm technology, $t_{ox}=2.8nm \rightarrow A_{Vt} \sim 2.8mV\mu m$
 - A_β is generally near 2%μm

Common Noise Sources

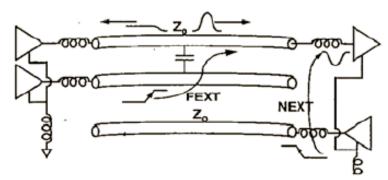

- Power supply noise
- Receiver offset
- Crosstalk
- Inter-symbol interference
- Random noise

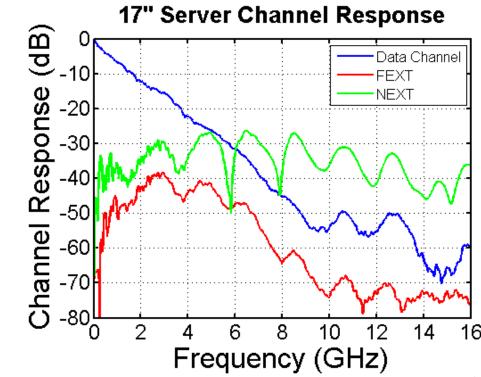
Crosstalk

- Crosstalk is noise induced by one signal (aggressor) that interferes with another signal (victim)
- Main crosstalk sources
 - Coupling between on-chip (capacitive) wires
 - Coupling between off-chip (t-line/channel) wires
 - Signal return coupling
- Crosstalk is a proportional noise source
 - Cannot be reduced by scaling signal levels
 - Addressed by using proper signal conventions, improving channel and supply network, and using good circuit design and layout techniques

Crosstalk to Capacitive Lines

- On-chip wires have significant capacitance to adjacent wires both on same metal layer and adjacent vertical layers
- Floating victim
 - Examples: Sample-nodes, domino logic
 - When aggressor switches
 - Signal gets coupled to victim via a capacitive voltage divider
 - Signal is not restored




$$\Delta V_B = k_c \Delta V_A$$

$$k_c = \frac{C_C}{C_C + C_O}$$

Off-Chip Crosstalk

- Occurs mostly in package and boardto-board connectors
- FEXT is attenuated by channel response and has band-pass characteristic
- NEXT directly couples into victim and has high-pass characteristic

Next Time

- Noise Sources
- Timing Noise
- BER Analysis Techniques