ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 19: RX DFE Equalization

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Announcements

- HW5 now due Friday (in class)
 - Any issues?

- Reading
 - Will post some DFE papers

Agenda

RX DFE Equalization

Future Approaches

Link with Equalization

TX FIR Equalization

 TX FIR filter pre-distorts transmitted pulse in order to invert channel distortion at the cost of attenuated transmit signal (de-emphasis)

RX FIR Equalization

- Delay analog input signal and multiply by equalization coefficients
- Pros
 - With sufficient dynamic range, can amplify high frequency content (rather than attenuate low frequencies)
 - Can cancel ISI in pre-cursor and beyond filter span
 - Filter tap coefficients can be adaptively tuned without any back-channel
- Cons
 - Amplifies noise/crosstalk
 - Implementation of analog delays
 - Tap precision

RX CTLE Equalization

- - Provides gain and equalization with low power and area overhead
 - Can cancel both precursor and long-tail ISI
- Cons
 - Generally limited to 1st order compensation
 - Amplifies noise/crosstalk
 - **PVT** sensitivity
 - Can be hard to tune

RX Decision Feedback Equalization (DFE)

- DFE is a non-linear equalizer
- Slicer makes a symbol decision, i.e. quantizes input
- ISI is then directly subtracted from the incoming signal via a feedback FIR filter

RX Decision Feedback Equalization (DFE)

Pros

- Can boost high frequency content without noise and crosstalk amplification
- Filter tap coefficients can be adaptively tuned without any back-channel

Cons

- Cannot cancel pre-cursor ISI
- Chance for error propagation
 - Low in practical links (BER=10⁻¹²)
- Critical feedback timing path
- Timing of ISI subtraction complicates CDR phase detection

$$z_k = y_k - w_1 d_{k-1} \cdots - w_{n-1} d_{k-(n-1)} - w_n d_{k-n}$$

[Payne]

DFE Example

- If only DFE equalization, DFE tap coefficients should equal the unequalized channel pulse response values [a₁ a₂ ... a_n]
- With other equalization, DFE tap coefficients should equal the pre-DFE pulse response values

Voltage

 $[w_1 \ w_2] = [a_1 \ a_2]$

Direct Feedback DFE Example (TI)

- 6.25Gb/s 4-tap DFE
 - ½ rate architecture
 - Adaptive tap algorithm
 - Closes timing on 1st tap in ½ UI for convergence of both adaptive equalization tap values and CDR

Direct Feedback DFE Critical Path

- Must resolve data and feedback in 1 bit period
 - TI design actually does this in ½UI for CDR

DFE Loop Unrolling

- Instead of feeding back and subtracting ISI in 1UI
- Unroll loop and pre-compute 2 possibilities (1-tap DFE) with adjustable slicer threshold
- With increasing tap number, comparator number grows as 2^{#taps}

$$\tilde{d}_{k} = \begin{cases} sgn(y_{k} - w_{1}) \text{ "if" } \tilde{d}_{k-1} = 1\\ sgn(y_{k} + w_{1}) \text{ "if" } \tilde{d}_{k-1} = -1 \end{cases}$$

DFE Resistive-Load Summer

- Summer performance is critical for DFE operation
- Summer must settle within a certain level of accuracy (>95%) for ISI cancellation
- Trade-off between summer output swing and settling time
- Can result in large bias currents for input and taps

DFE Integrating Summer

- Integrating current onto load capacitances eliminates RC settling time
- Since ΔT/C > R, bias current can be reduced for a given output swing
 - Typically a 3x bias current reduction

Digital RX FIR & DFE Equalization Example

12.5GS/s 4.5-bit Flash ADC in 65nm CMOS

[Harwood ISSCC 2007]

- 2-tap FFE & 5-tap DFE
- XCVR power (inc. TX) = 330mW, Analog = 245mW, Digital = 85mW

Advanced Modulation

- In order to remove ISI, we attempt to equalize or flatten the channel response out to the Nyquist frequency
- For less frequency-dependent loss, move the Nyquist frequency to a lower value via more advance modulation
 - 4-PAM (or higher)
 - Duo-binary
- Refer to lecture 9 for more details

Multi-tone Signaling

- Instead equalizing out to baseband Nyquist frequency
- Divide the channel into bands with less frequency-dependent loss
- Should result in less equalization complexity for each sub-band
- Requires up/down-conversion
- Discrete Multi-tone used in DSL modems with very challenging channels
 - Lower data rates allow for high performance DSP
 - High-speed links don't have this option (yet)

Next Time

Link Noise and BER Analysis