ECEN720: High-Speed Links Circuits and Systems Spring 2025

Lecture 15: Die-to-Die Transceivers

Sam Palermo Analog & Mixed-Signal Group Texas A&M University

Announcements

Project Final Report due Apr 29

- Exam 2 May 2
 - 1PM-3PM for in-person sections
 - Focuses on material from Lectures 7-15
 - Previous years' Exam 2s are posted on the website for reference

Outline

- Die-to-Die Transceiver Motivation
- Packaging Options
- Standard Package Links
- Advanced Package Links
- 3D Package Links
- Conclusion

Chiplet Evolution

[Naffziger ISSCC 2020]

- Architectures are evolving from a massive single monolithic die in the most advanced process to smaller specialized chiplets
- Allows use of the most advanced technology only where it is needed most (xPUs)

Die-to-Die Interconnects

- Yield concerns make it more expensive to build large chips in advanced CMOS nodes
- Domain-specific accelerators offer significant performance benefits
- Motivates chiplet system-inpackage architectures
- Dense energy-efficient die-to-die interconnects are required

Die-to-Die Interconnect Signaling Challenges

- Single-ended PAM2 transceivers are most common to improve bandwidth density, but impose circuit and signal integrity challenges
- Simultaneous bidirectional (SBD) transceivers can double the bandwidth density, but require efficient front-ends with hybrid structures that separate inbound and outbound signals
- Simultaneous switching noise degrades link performance
- Scaled bump and interposer trace pitch increases crosstalk
- Low-power clocking architectures required to meet aggressive power efficiency targets

Outline

- Die-to-Die Transceiver Motivation
- Packaging Options
- Standard Package Links
- Advanced Package Links
- 3D Package Links
- Conclusion

2D, 2.5D, and 3D Packaging

[Das Sharma Nature Elec 2024]

- Packaging technology is evolving to support higher-density and finerpitch interconnects
- 3D packaging with hybrid bonding offers the ultimate in areal density

Standard 2D Packaging

- Chiplets connected via standard package substrate
- Typical 80um diameter bumps with 110-130um pitch
- ~25um interconnect pitch
- Distances can be >50mm and loss >10dB
- Cost-effective, but limited bandwidth density

2.5D with Silicon Interposer

[Das Sharma Nature Elec 2024]

[Pantano ISSCC 2025]

Si Interposer

- Large silicon substrate used to interconnect chiplets
- Silicon BEOL metal routing technology with up to 5 metal layers and ~0.4um line width/spacing
- Able to achieve large substrates with reticle stitching
 - Future designs are projected at >120mm X 120mm

2.5D with Silicon Bridge

- Large silicon interposer can be expensive
- Silicon bridge technology allows the use of highdensity Si only where you need it

[Das Sharma Nature Elec 2024]

[Pantano ISSCC 2025]

2.5D with Fanout RDL Interposer

https://ase.aseglobal.com/focos/ [Pantano ISSCC 2025] 1µm Line/Space Dual Damascene M1/V1/M2 Cu D3 M2 -----D3 M2 VI D2 VI D2 DI MI MI DI Substrate

FOCoS-CL (Chip Last)

FOCoS-Bridge

- RDL-based interposers offer a lower-cost option without reticle size constraint
- Possible to also insert silicon bridges
- Advanced processing techniques are being explored to enable 0.5um line/space

3D Packaging

- Microbumps are currently offered at ~50um pitch, with scaling possible to ~5um
- Higher density (<1um pitch) is possible with hybrid bonding

Source: TechInsights

Oxide to Oxide Internal

[wu ISSCC 2025]

Oxide

Oxide

Silicon

Metal

Meta

Silicon

Oxide

Outline

- Die-to-Die Transceiver Motivation
- Packaging Options
- Standard Package Links
- Advanced Package Links
- 3D Package Links
- Conclusion

Die-to-Die Transceiver Standards

	UCIE	BOW	OpenHBI	XSR
Data Rate	8/16/32Gb/s	8/16/32Gb/s	8/16Gb/s	112/224Gb/s
Signaling	Single-Ended NRZ	Single-Ended NRZ	Single-Ended NRZ	Differential PAM4
Channel	2D/2.5D	2D/2.5D	2D/2.5D	2D
Clocking	Clock Forwarding	Clock Forwarding	Clock Forwarding	Recovered Clock
Reach	2mm-25mm	5mm-50mm	4mm	Up to 50mm
Loss	3dB	4dB	3dB	10dB

15

113Gb/s PAM4 XSR XCVR (Std. Package)

[Gangasani ISSCC 2022]

- 8-port I/O core
- ¹/₄-rate clocks from global PLL
- TX
 - Tailless 4:1 mux and CML output driver with $550mV_{ppd}$ swing
 - 4-tap analog FFE with <1mV/LSB for -1-to-2 ISI terms
 - 2 independent roaming taps between 3-22 ISI terms
- RX
 - Gm-TIA CTLE provides 5dB peaking with 0.2dB steps for the majority of ISI cancellation
 - 5 samplers per 1/4-rate segment (3 data, 1 edge, 1 error)
 - PI-based BB-CDR
- RX-driven dynamic adaptation of TX & RX equalization settings with token-based backchannel

113Gb/s PAM4 XSR XCVR (Std. Package)

Samsung 48Gb/s/wire Die-to-Die Link in 4nm (Std. Package)

4 Die-to-Die Slices

RX w/ 1-tap DFE

- Single-ended PAM2 links
- Differential forwarded-clock shared among 10 lanes
- TX 4:1 mux employs source-follower-based feedback equalizer
- TX low-swing NMOS main driver and parallel capacitive equalizer
- RX utilizes 1-tap DFE implemented in slicer second stage
- 10mm package substrate with -3dB loss
- 0.67pJ/b and 1.85Tb/s/mm edge bandwidth density

[Seong ISSCC 2024] 18

Outline

- Die-to-Die Transceiver Motivation
- Packaging Options
- Standard Package Links
- Advanced Package Links
- 3D Package Links
- Conclusion

32Gb/s/wire Die-to-Die Link (Adv. Package)

- Single-ended PAM2 links
- 1/2-rate forwarded-clock shared among 39 lanes
- Nominal deskew set with global deskew block in RX DQS channel
- RX clock path delay provides per-channel deskew

[Seong ISSCC 2023]

32Gb/s/wire Die-to-Die Link (Adv. Package)

Reflection-Cancellation Driver

Reflection-cancellation driver allows for unterminated RX

- Receiver utilizes 1-tap DFE embedded in 2-stage latch
- Implementation uses 50um bump pitch
- 3mm silicon interposer channel has -3.9dB loss and -29.3dB crosstalk at 16GHz
- 0.44pJ/b
- 8Tb/s/mm edge density

RX 1-tap DFE

	[1] VLSI19	[2] ISSCC21	[3] ISSCC22	[4] VLIS21	[5] VLSI22	This work
Technology	7nm	7nm	5nm	7nm	5nm	4nm
(hannel longth (mm)	0.5	20	5-to-80	1	1.2	3
channel length (mm)	(Interposer)	(MCM)	(MCM)	(Interposer)	(Interposer**)	(Interposer)
Bump pitch (um)	40	130	-	40	55	50
Data rate (Gbps/pin)	8	40	113	20	50.4	32
Bandwidth of beach front (Tbps/mm)	0.625	0.45	0.46	5.31	2.68	8
Power efficiency (pJ/bit)	0.56	1.17	1.55	0.46	0.297	0.44
FoM ((Tbps/mm)/(pJ/bit))	1.11	0.38	0.296	11.5	9	18.2
** An on-chip channel that simulates the characteristics of the interposer was used.						

[Seong ISSCC 2023]

21

Marvell 32Gb/s/wire Die-to-Die Link in 3nm (Adv. Package)

- Single-ended PAM2 links
- Differential forwarded-clock shared among 18 lanes
- TX SST drivers
- RX clock channel distributes data (min delay), edge (0.5UI delay), and EOM (0.5-1.5UI delay) clocks
- Per-lane CDR sets delay codes for RX data paths
- 1mm & 2mm 2.5D CoWoS package channels
 - -2.4dB loss and -18.1dB crosstalk
- 0.36pJ/bit and 3.84Tb/s/mm edge bandwidth density

PreDRV

DRV

Correlated NRZ (5b6w)

Multi-Input Combiner

- 5 bits over 6 wires
 - Maintains common-mode and crosstalk noise resilience
 - Has same ISI ratio=1 as NRZ
 - Sensitive to skew between wires
- Lower 3/5X Nyquist frequency
- 16nm implementation achieved 20.8Gb/s/wire over a 6dB channel at 1pJ/b

Simultaneous Bidirectional Signaling

- Requires efficient in/outbound signal separation
- CTLE compensates for channel loss, but doesn't help echoes
- Echo cancellation is necessary

32Gb/s PAM2 Simultaneous Bidirectional XCVR

- 32Gb/s SBD source-synchronous NRZ transceiver supporting channel loss of ~10dB
- VM TX driver combining with R-gm hybrid for signal separation
- Echo cancellation adaptation
- Achieved 1.83pJ/b in 28nm CMOS

50.4Gb/s/wire Simultaneous Bidirectional Die-to-Die Link

[Nishi VLSI 2022]

- Inverter-based voltage-mode driver and replica driver with complementary data
- Replica driver and pad signals connected to analog voltage adder (TIA)
- Resistor values set to cancel outbound signal and only amplify inbound signal
- 2 uni-directional forwarded clock channels shared among 14 (or 18) lanes

50.4Gb/s/wire Simultaneous Bidirectional Die-to-Die Link

[Nishi VLSI 2022]

- Current implementation uses 55um bump pitch that limits density
- Planned interposer has 12.14um signal-to-signal pitch across 4 routing layers
- 12.6GHz IL=-4.0dB, FEXT=-49.1dB, NEXT=-40.7dB
- Projected 18 DQ lanes and 4-rank
 - 0.281pJ/b •
 - 5.73Tb/s/mm² areal density ٠
 - 11.0Tb/s/mm edge density ٠

Ð

	Our work	Y-Y Hsu VLSI21	M-S Lin VLSI19	B.Dehlaghi JSSC16
Technology	5nm	7nm	7nm	28nm
µbump pitch	55µm*	40µm 🗸	40µm 🗸	100µm
Interposer Channel	1.2mm**	1.0mm	0.5mm	2.5mm 🗸
Supply[V]	0.75 🗸	0.8	0.8,0.3	NA
Data Rate/wire [Gb/s]	50.4 (SBD)	20 (NRZ)	8 (NRZ)	20 (NRZ)
Energy Efficiency [pJ/bit]	<mark>0.281</mark> 🗸	0.46	0.56	0.3***
Areal Density [Tb/s/mm ²]	<mark>5.73</mark> 🗸	2.25	0.8	NA
Edge Density [Tb/s/mm]	<mark>11.0</mark> 🗸	5.31	0.67	NA

Outline

- Die-to-Die Transceiver Motivation
- Packaging Options
- Standard Package Links
- Advanced Package Links
- 3D Package Links
- Conclusion

UCIe-3D

Characteristics / KPIs	UCIe-S (2D)	UCIe-A (2.5D)	UCIe 3D	Comments for UCIe 3D	
Characteristics					
Data Rate (GT/s)	4, 8, 12, 16, 24, 32		Up to 4	= SoC Logic frequency – power efficiency is critical	
Width (each cluster)	16	64	80	Options or reduced width to 70, 60	
Bump Pitch (µm)	100 - 130	25 - 55	<pre><_10 (optimized) > 10 - 25 (functional)</pre>	Must scale so that UCIe-3D fits within the bump area, must support hybrid bonding	
Channel Reach (mm)	<u><</u> 25	<u><</u> 2	3D vertical	FtF bonding initially; FtB, BtB, multi-stack possible	
Target for Key Metrics					
BW Shoreline (GB/s/mm)	28 - 224	165 - 1317	N/A (vertical)		
BW Density (GB/s/mm ²)	22 - 125	188 - 1350	4,000 - 300,000	4TB/s/mm ² @ 9μm, ~12TB/s/mm ² @ 5μm, ~35TB/s/mm ² @ 3μm, ~300TB/s/mm ² @ 1 μm	
Power Efficiency Target (pJ/b)	0.5	0.25	<0.05 at 9µm -> 0.01 at 1 µm	Conservatively estimated at 9µm pitch <0.02 for 3µm pitch	
Low-Power Entry/Exit	0.5nS <u><</u> 16G, 0.5-1nS <u>></u> 24G		0nS	No preamble or post-amble	
Reliability (FIT)	0 < FIT (Failure in Time) << 1		0 < FIT << 1	BER < 1E-27	
ESD	30V CDM		$5V \text{ CDM} \rightarrow \underline{<} 3V$	5V CDM at introduction, no ESD for W2W hybrid bonding possible	

[Wu ISSCC 2025]

- Extremely low-lower (0.01pJ/b) and high-density (<10um pitch) interface for 3D-stacked dies
- Orders of magnitude improvement in density over 2.5D UCIe
- Reduced ESD requirements, with potential for no ESD with hybrid bonding

[Das Sharma Nature Elec 2024]

Proposed UCIe-3D PHY

- Simple inverter-based flop-flop transceiver architecture
- Forwarded clock without any skew adjustment
- Nominal 4Gb/s operation with no SERDES
- Projecting $>10^5$ Gb/s/mm² and 0.01pJ/b as bump pitch scales to 1um
 - Potential for lower-power operation with fractional operation ٠ frequency (2X wires at 2Gb/s)

Ē

8

Conclusion

- Splitting large monolithic chips into chiplets provides yield advantages and flexibility in process choice
- Dense energy-efficient interconnects are required to support dieto-die communication
- Differential XSR links are options for longer 2D packaging links
- Single-ended links offer bandwidth density and energy efficiency advantages for shorter 2D and advanced 2.5D packaging
- 3D packaging allows for simple inverter-buffer transceivers that are projected to achieve extremely high bandwidth density and excellent energy efficiency