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Announcements

e HW3 due now

e HW4 will be posted shortly
* Involves transistor-level circuit design
e Use 90nm or more advanced CMOS technology

e Instructions on how to access 90nm CMOS models on website for
students who don’t already have access to a design kit

e Exam 1 is March 12
e 9:10-10:10AM (10 extra minutes)
e Closed book w/ one standard note sheet
e 8.5”x11” front & back
* Bring your calculator

e Reading
e Dally 11.1-11.3
» Papers posted on TX drivers and RX comparator analysis



Agenda

e RX Circuits

* Clocked comparators
e Circuits
e Characterization technigues

 Integrating receivers
* RX sensitivity

 Offset correction
 Demultiplexing receivers



High-Speed Electrical Link System
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RX Block Diagram

Pre-Amplifier cgﬁ-.np‘.ap:?t*’;r
Vin = :l: peeeer
clk

RX must sample the signal with high timing precision and resolve
Input data to logic levels with high sensitivity

Input pre-amp can improve signal gain and improve input referred
noise

« Can also be used for equalization, offset correction, and fix sampler
common-mode

* Must provide gain at high-bandwidth corresponding to full data rate

Comparator can be implemented with static amplifiers or clocked
regenerative amplifiers

» Clocked regenerative amplifiers are more power efficient for high gain
Decoder used for advanced modulation (PAM4, Duo-binary)



Clocked Comparator LTV Model
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e Comparator can be viewed as a noisy nonlinear filter
followed by an ideal sampler and slicer (comparator)

e Small-signal comparator response can be modeled with
an ISF I'(r)=h(t,7)



Clocked Comparator ISF

e Comparator ISF is a subset of a time-varying impulse
response A(t,t) for LTV systems:

y(t)= J‘_o:o h(t,7)-x(z)dz

o A(t ). system response at fto a unit impulse arriving at 7
e For LTI systems, A(t,z)=h(t-z) (convolution)

e ISF I'(z)=h(t, )
e For comparators, t,is before decision is made
e Output voltage of comparator

Vo (tops ) = J.: Vi(z)-T(z)dz

e Comparator decision
D, =sgn(v, ) =590t +KT ) =san] [ v (r)-T(r)dr)



Clocked Comparator ISF

e ISF shows sampling aperture or timing resolution

e In frequency domain, it shows sampling gain and
bandwidth
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Characterizing Comparator ISF

1. Find Metastable V,5(1t) = Vos(t=2 =, ) such that V(out+) = V(out-)
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3. Derive ISF
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[Jeeradit VLSI 2008]




Comparator ISF Measurement Setup
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Sim w/o Channel 23 14.9 67.6
Sim w Channel 300 1.4 56.6
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CML Aperture Sampling | Sampling
Comparator | Time [ps] BW [GHz] | Gain [dB]
[Sim w/o Channel 50 6.8 858
Sim w Channel 300 1.4 58.0
Lab 280 1.4 N/A

Note: the aperture time is defined as the width that contains 80%
of the sensitivity similar to [1]

[Jeeradit VLSI 2008]

%00 400 B00 800 1000 1200 1400

time [ps]
9 Normalized CML ISF comparison
-I-Sifn w/o input channel

s e . =8=Sim w/ residual channel
=#=Lab measurement

%00 400 600 800 1000

time [ps]

1200 1400

Strong-Arm Latch

CML Latch

Vad

vout

voutb

W

=y [Toifl]

10



Comparison of SA & CML Comparator (1)

[Jeeradit VLSI 2008]
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e CML latch has higher sampling gain with small input pair

e StrongARM latch has higher sampling bandwidth

e For CML latch increasing input pair also directly increases output
capacitance

* For SA latch increasing input pair results in transconductance

increasing faster than capacitance
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Comparison of SA & CML Comparator (2)

[Jeeradit VLSI 2008]
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e Sampling time of SA latch varies with VDD, while CML
Isn’t affected much
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Low-VoItage SA — Schinkel ISSCC 2007

cn<—| Advantages:

* Less stacking
Out+ I—I Out- » Wide tail for fast latching
L. -
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* More isolation between in-
and output

Clk :"‘J }
« Small tail = input stage in
In+—] —In- weak inversion = less offset
from latch

e Does require clk & clk_b
 How sensitive is it to skew?

13



Low-Voltage SA — Schinkel 1ISSCC 2007

VDD
Clk—]| ~ m12
AV,: 200.0m
M2 Mil > 14 0
Out+ ]:"—l —— Out- S X
x
_II:,_:Ili M;I —':II_ ';-"2 L
M10 M11 .
i | <
Di V., Di+ =
M7 T M8 0.0 L
Clk :“J | 147
] S
e
| |
n+—|___IM5 ) me_||—In 02
800.0p




Low-Voltage SA — Schinkel 1ISSCC 2007
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90nm CMOS simulations. AVin=50mV.

Circuits designed for equal offset 6,,=10mV at V,=1.1V

1.2
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Low-Voltage SA — Goll TCAS2 2009
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e Similar stacking to conventional SA latch
« However, now PO and P1 are initially on during evaluation
which speeds up operation at lower voltages

e Does require clk & clk_b
 How sensitive is it to skew?
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Low-Voltage SA — Goll TCAS2 2009
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Integrating RX & High-Frequency Noise
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e A small aperture time is desired in most receiver samplers

e However, high-frequency noise can degrade performance
at sampling time

» Can be an issue in single-ended systems with excessive Ldl/dt
switching noise

e Integrating the input signal over a sampling interval
reduces the high-frequency noise impact
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Integrating Amplifier
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e Differential input voltage converted to a
differential current that is integrated on the
sense nodes’ capacitance
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Windowed Integration
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e Windowing integration time can minimize transition noise
and maximize integration of valid data

:Input Data
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RX Sensitivity

e RX sensitivity is a function of the input referred noise,
offset, and minimum latch resolution voltage
vEP =2v ™ A/SNR +V . +V

e Gaussian (unbounded) input referred noise comes from
Input amplifiers, comparators, and termination

* A minimum signal-to-noise ratio (SNR) is required for a given bit-
error-rate (BER)
For BER =10 (+/SNR =7)

e Minimum latch resolution voltage comes from hysteresis,
finite regeneration gain, and bounded noise sources

Typicalv_.. <5mV

e Input offset is due to circuit mismatch (primarily Vi,
mismatch) & is most significant component if uncorrected
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RX Sensitivity & Offset Correction

e RX sensitivity is a function of the input referred noise,
offset, and min latch resolution voltage

VP =2vI™SNR +V_ . +V .. Typical Values:v,™ =1mV,_ .,V .. +V ¢ .. <6mV
For BER =10" (vSNR =7) = v{’ = 20mV

e Circuitry iIs required to reduce input offset from a
potentially large uncorrected value (=50mV) to near 1mV
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Next Time

e Recelver Circuits
 Demultiplexing receivers

e Equalization theory and circuits
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