ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Lecture 14: RX Comparator Circuits

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- HW3 due now
- HW4 will be posted shortly
 - Involves transistor-level circuit design
 - Use 90nm or more advanced CMOS technology
 - Instructions on how to access 90nm CMOS models on website for students who don't already have access to a design kit
- Exam 1 is March 12
 - 9:10-10:10AM (10 extra minutes)
 - Closed book w/ one standard note sheet
 - 8.5"x11" front & back
 - Bring your calculator
- Reading
 - Dally 11.1-11.3
 - Papers posted on TX drivers and RX comparator analysis

Agenda

- RX Circuits
 - Clocked comparators
 - Circuits
 - Characterization techniques
 - Integrating receivers
 - RX sensitivity
 - Offset correction
 - Demultiplexing receivers

High-Speed Electrical Link System

RX Block Diagram

- RX must sample the signal with high timing precision and resolve input data to logic levels with high sensitivity
- Input pre-amp can improve signal gain and improve input referred noise
 - Can also be used for equalization, offset correction, and fix sampler common-mode
 - Must provide gain at high-bandwidth corresponding to full data rate
- Comparator can be implemented with static amplifiers or clocked regenerative amplifiers
 - Clocked regenerative amplifiers are more power efficient for high gain
- Decoder used for advanced modulation (PAM4, Duo-binary)

Clocked Comparator LTV Model

- Comparator can be viewed as a noisy nonlinear filter followed by an ideal sampler and slicer (comparator)
- Small-signal comparator response can be modeled with an ISF $\Gamma(\tau) = h(t, \tau)$

Clocked Comparator ISF

 Comparator ISF is a subset of a time-varying impulse response h(t, τ) for LTV systems:

$$y(t) = \int_{-\infty}^{\infty} h(t,\tau) \cdot x(\tau) d\tau$$

- $h(t,\tau)$: system response at t to a unit impulse arriving at τ
- For LTI systems, $h(t,\tau)=h(t-\tau)$ (convolution)
- ISF $\Gamma(\tau) = h(t_0, \tau)$
 - For comparators, t_0 is before decision is made
 - Output voltage of comparator

$$v_o(t_{obs}) = \int_{-\infty}^{\infty} v_i(\tau) \cdot \Gamma(\tau) d\tau$$

Comparator decision

$$D_{k} = \operatorname{sgn}(v_{k}) = \operatorname{sgn}(v_{o}(t_{obs} + kT)) = \operatorname{sgn}\left(\int_{-\infty}^{\infty} v_{i}(\tau) \cdot \Gamma(\tau) d\tau\right)$$

Clocked Comparator ISF

- ISF shows sampling aperture or timing resolution
- In frequency domain, it shows sampling gain and bandwidth

Characterizing Comparator ISF

1. Find Metastable $V_{ms}(\tau) = V_{os}(t \rightarrow \infty, \tau)$ such that V(out+) = V(out-)

[Jeeradit VLSI 2008]

Comparator ISF Measurement Setup

[Jeeradit VLSI 2008]

Comparison of SA & CML Comparator (1)

[Jeeradit VLSI 2008]

- CML latch has higher sampling gain with small input pair
- StrongARM latch has higher sampling bandwidth
 - For CML latch increasing input pair also directly increases output capacitance
 - For SA latch increasing input pair results in transconductance increasing faster than capacitance

Comparison of SA & CML Comparator (2)

 Sampling time of SA latch varies with VDD, while CML isn't affected much

Low-Voltage SA – Schinkel ISSCC 2007

- Does require clk & clk_b
 - How sensitive is it to skew?

Low-Voltage SA – Schinkel ISSCC 2007

Low-Voltage SA – Schinkel ISSCC 2007

90nm CMOS simulations. Δ Vin=50mV. Circuits designed for equal offset σ_{os} =10mV at V_{cm}=1.1V

Low-Voltage SA – Goll TCAS2 2009

- Similar stacking to conventional SA latch
- However, now P0 and P1 are initially on during evaluation which speeds up operation at lower voltages
- Does require clk & clk_b
 - How sensitive is it to skew?

Low-Voltage SA – Goll TCAS2 2009

Integrating RX & High-Frequency Noise

- A small aperture time is desired in most receiver samplers
- However, high-frequency noise can degrade performance at sampling time
 - Can be an issue in single-ended systems with excessive LdI/dt switching noise
- Integrating the input signal over a sampling interval reduces the high-frequency noise impact

Integrating Amplifier

 Differential input voltage converted to a differential current that is integrated on the sense nodes' capacitance

Windowed Integration

 Windowing integration time can minimize transition noise and maximize integration of valid data

RX Sensitivity

 RX sensitivity is a function of the input referred noise, offset, and minimum latch resolution voltage

 $v_{S}^{pp} = 2v_{n}^{rms}\sqrt{SNR} + v_{\min} + v_{offset^{*}}$

- Gaussian (unbounded) input referred noise comes from input amplifiers, comparators, and termination
 - A minimum signal-to-noise ratio (SNR) is required for a given biterror-rate (BER)

For BER = 10^{-12} (\sqrt{SNR} = 7)

 Minimum latch resolution voltage comes from hysteresis, finite regeneration gain, and bounded noise sources

Typical $v_{\min} < 5mV$

 Input offset is due to circuit mismatch (primarily V_{th} mismatch) & is most significant component if uncorrected

RX Sensitivity & Offset Correction

 RX sensitivity is a function of the input referred noise, offset, and min latch resolution voltage

 $v_{S}^{pp} = 2v_{n}^{rms}\sqrt{SNR} + v_{min} + v_{offset^{*}}$ Typical Values : $v_{n}^{rms} = 1mV_{rms}$, $v_{min} + v_{offset^{*}} < 6mV$ For BER = 10⁻¹² ($\sqrt{SNR} = 7$) $\Rightarrow v_{S}^{pp} = 20mV_{pp}$

 Circuitry is required to reduce input offset from a potentially large uncorrected value (>50mV) to near 1mV

Next Time

- Receiver Circuits
 - Demultiplexing receivers
- Equalization theory and circuits