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Announcements 
• Lab Report 6 due Apr 3

• Project Preliminary Report due Apr 15

• Project Final Report due Apr 29
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Agenda
• Clocking Architectures

• PLLs
• Modeling
• Noise transfer functions
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References
• High-speed link clocking tutorial paper, PLL 

analysis paper, and PLL thesis posted on 
website

• Posted PLL models in project section
• Website has additional links on PLL and 

jitter tutorials
• Majority of today’s PLL material comes 

from Fischette tutorial and M. Mansuri’s
PhD thesis (UCLA)

4



High-Speed Electrical Link System
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Clocking Terminology
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Synchronous
• Every chip gets same frequency AND phase
• Used in low-speed busses

Mesochronous
• Same frequency, but unknown phase
• Requires phase recovery circuitry

• Can do with or without full CDR
• Used in fast memories, internal system interfaces, 

MAC/Packet interfaces

Plesiochronous
• Almost the same frequency, resulting in slowly 

drifting phase
• Requires CDR
• Widely used in high-speed links

Asynchronous
• No clocks at all
• Request/acknowledge handshake procedure
• Used in embeddded systems, Unix, Linux[Poulton]



I/O Clocking Architectures
• Three basic I/O architectures

• Common Clock (Synchronous)
• Forward Clock (Source Synchronous)
• Embedded Clock (Clock Recovery)

• These I/O architectures are used for varying applications 
that require different levels of I/O bandwidth

• A processor may have one or all of these I/O types

• Often the same circuitry can be used to emulate different 
I/O schemes for design reuse
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Common Clock I/O Architecture
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• Common in original computer systems
• Synchronous system by design (no active deskew)
• Common bus clock controls chip-to-chip transfers
• Requires equal length routes to chips to minimize clock skew
• Data rates typically limited to ~100Mb/s

[Krauter]



Common Clock I/O Cycle Time
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[Krauter]



Common Clock I/O Limitations
• Difficult to control clock skew and propagation delay

• Need to have tight control of absolute delay to meet a given 
cycle time

• Sensitive to delay variations in on-chip circuits and board 
routes

• Hard to compensate for delay variations due to low 
correlation between on-chip and off-chip delays

• While commonly used in on-chip communication, offers 
limited speed in I/O applications
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Forward Clock I/O Architecture
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• Common high-speed reference 
clock is forwarded from TX chip 
to RX chip
• Mesochronous system

• Used in processor-memory 
interfaces and multi-processor 
communication
• Intel QPI
• Hypertransport

• Requires one extra clock 
channel

• “Coherent” clocking allows low-
to-high frequency jitter tracking

• Need good clock receive 
amplifier as the forwarded clock 
is attenuated by the channel



Forward Clock I/O Limitations
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• Clock skew can limited forward 
clock I/O performance
• Driver strength and loading 

mismatches
• Interconnect length 

mismatches

• Low pass channel causes jitter 
amplification

• Duty-Cycle variations of 
forwarded clock



Forward Clock I/O De-Skew
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• Per-channel de-skew allows for 
significant data rate increases

• Sample clock adjusted to center 
clock on the incoming data eye

• Implementations
• Delay-Locked Loop and Phase 

Interpolators
• Injection-Locked Oscillators

• Phase Acquisition can be 
• BER based – no additional 

input phase samplers
• Phase detector based 

implemented with additional 
input phase samplers 
periodically powered on



Forward Clock I/O Circuits
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• TX PLL

• TX Clock Distribution

• Replica TX Clock Driver

• Channel

• Forward Clock Amplifier

• RX Clock Distribution

• De-Skew Circuit
• DLL/PI
• Injection-Locked Oscillator



Embedded Clock I/O Architecture
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• Can be used in mesochronous
or plesiochronous systems

• Clock frequency and optimum 
phase position are extracted 
from incoming data stream

• Phase detection continuously 
running

• CDR Implementations
• Per-channel PLL-based
• Dual-loop w/ Global PLL &

• Local DLL/PI
• Local Phase-Rotator PLLs



Embedded Clock I/O Limitations
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• Jitter tracking limited by 
CDR bandwidth
• Technology scaling allows 

CDRs with higher 
bandwidths which can 
achieve higher frequency 
jitter tracking

• Generally more hardware 
than forward clock 
implementations
• Extra input phase samplers



Embedded Clock I/O Circuits
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• TX PLL

• TX Clock Distribution

• CDR
• Per-channel PLL-based
• Dual-loop w/ Global PLL &

• Local DLL/PI
• Local Phase-Rotator PLLs
• Global PLL requires RX 

clock distribution to 
individual channels



Xilinx 0.5-32Gb/s Transceiver Clocking
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• LC-PLL with 2 LC-VCOs used to cover high data rates 
(8-32Gb/s)

• Ring-PLL used for lower data rates
• CML clock distribution with active inductive loads used 

for low jitter

Active Inductor based Clock Distribution

Frac-N LC PLL1, 2

Ring PLL

DCC
IQ CAL

Receiver

DCC
Transmitter

Channels 1-4

I/Q1, I/Q2

∑

VCOLB

PPF

VCOHB

2
PI (D,X,S)

Technology CMOS 16nm FinFET 
Power Supply (Vavcc, Vavtt, Vaux) 0.9 V, 1. 2V, 1.8 V 

Frequency range 500 Mb/s – 32.75 Gb/s 
Transceiver Quad area 2.625 mm × 2.218 mm 

LC PLL range 8-16.375 GHz 
Ring PLL range 2-6.25 GHz 

TX PRBS7 jitter at 32.75Gb/s  TJ: 5.39 ps, RJ: 190 fs  
32.75Gb/s  RX JTOL @ 30MHz 

                                      @ 100MHz 
0.45 UI  
0.6 UI 

Channel loss at 32.75Gb/s 30 dB  
Measured BER at 32.75Gb/s < 10-15 

Power at 32.75Gb/s with DFE 577mW/ch (17.6pJ/b)  

[Upadhyaya VLSI 2016]



PLLs
• PLL modeling

• PLL noise transfer functions
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PLL Block Diagram
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[Perrott]

• A phase-locked loop (PLL) is a negative feedback system 
where an oscillator-generated signal is phase AND 
frequency locked to a reference signal



PLL Applications
• PLLs applications
• Frequency synthesis

• Multiplying a 100MHz reference clock to 10GHz

• Skew cancellation
• Phase aligning an internal clock to an I/O clock

• Clock recovery
• Extract from incoming data stream the clock frequency and 

optimum phase of high-speed sampling clocks

• Modulation/De-modulation
• Wireless systems
• Spread-spectrum clocking
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Forward Clock I/O Circuits
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• TX PLL

• TX Clock Distribution

• Replica TX Clock Driver

• Channel

• Forward Clock Amplifier

• RX Clock Distribution

• De-Skew Circuit
• DLL/PI
• Injection-Locked Oscillator



Embedded Clock I/O Circuits
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• TX PLL

• TX Clock Distribution

• CDR
• Per-channel PLL-based
• Dual-loop w/ Global PLL &

• Local DLL/PI
• Local Phase-Rotator PLLs
• Global PLL requires RX 

clock distribution to 
individual channels



PLL Design Challenges
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• Board-level reference clock frequencies don’t scale often
• 156MHz is a common frequency

• RX CDR bandwidth is hard to scale with PAM4 signaling and 
ADC-based front-ends 
• Typically 2-4MHz

• PLL bandwidth must be kept less than 10MHz for stability 
and to filter reference jitter

• VCO phase noise at low-frequency offsets due to flicker 
noise must be suppressed

32.75Gbps Transceiver PLL Simulated Jitter Numbers

RJ in UIRJCDR BWPLL PN @1MHzReceiver Type
5.26mUI160.7fs12.7MHz-92.4dBc/HzAnalog based RX
13.3mUI407fs2MHz-92.4dBc/HzADC based RX

[Turker ISSCC 2019]



Charge Pump PLL
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• Charge pump PLL is a common implementation
• Type-2 (2 integrators) allows for ideally zero phase error between 

the input and feedback phase
• Requires a stabilizing zero that is realized with the filter resistor
• A secondary capacitor C2 is often added for additional filtering to 

reduce reference spurs
• Modeled as a third-order system

UP

D
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R

D
Q

R

PFD

DN
Vctrl

R

C1

C2

VCO

1/N
Divider

ICP

ICP

in(t)

fb(t)

Fin

out(t)

Fout = N*Fin



Linear PLL Model
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fb
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Loop Filter VCO

Divider

• Phase is the key variable of interest
• Output phase response to a stimulus injected at a given point in the loop
• Phase error response is also informative

• Linear “small-signal” analysis is useful for understand PLL dynamics if
• PLL is locked (or near lock)
• Input phase deviation amplitude is small enough to maintain operation in 

lock range



Understanding PLL Frequency Response

• Frequency domain analysis can tell us how well the PLL 
tracks the input phase as it changes at a certain frequency

• PLL transfer function is different depending on which point 
in the loop the output is responding to
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Linear PLL Model
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For Charge Pump PLL:



14GHz PLL Closed-Loop Transfer Function
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156.25MHzFref
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3.1MHzf3dB
2π*1GHz/VKvco

4kR

74pFC1
5.8pFC2
310uAIcp

𝐻 𝑠 ൌ
𝜙௨௧ 𝑠
𝜙 𝑠 ൌ

𝐾𝐾ை
𝐶ଶ

𝑠  1
𝑅𝐶ଵ

𝑠ଷ  𝐶ଵ  𝐶ଶ
𝑅𝐶ଵ𝐶ଶ

𝑠ଶ  𝐾𝐾ை
𝑁𝐶ଶ

𝑠  𝐾𝐾ை
𝑁𝑅𝐶ଵ𝐶ଶ



Common PLL Noise Sources
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Noise Transfer Functions
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• Input reference and charge pump noise is low-pass filtered
• Loop filter noise (VCO input noise) is band-pass filtered
• VCO output phase noise is high-pass filtered



PLL Phase Noise & Jitter

• PLL time-domain jitter is obtained by 
integrating the output phase noise
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[Turker ISSCC 2018]
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Wireline Transceiver Jitter Modeling

• Relative jitter (dynamic phase error) between the RX CDR-generated 
sampling clock and input data sets the system timing margin

• This CDR high-pass response provides additional filtering
• Modeled as a 4MHz 1st-order response (IEEE 802.3 & OIF-CEI)
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[Richmond SiLabs]
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Input Reference Noise

• Reference jitter j,in = 226fsrms (10kHz – 10MHz)
34

Silicon Labs Ultra Low 
Jitter Crystal Oscillator

Phase Noise at 156.26MHz



Input Reference Noise

35

𝑁𝑇𝐹ூே 𝑠 ൌ

𝐾𝐾ை
𝐶ଶ

𝑠  1
𝑅𝐶ଵ

𝑠ଷ  𝐶ଵ  𝐶ଶ
𝑅𝐶ଵ𝐶ଶ

𝑠ଶ  𝐾𝐾ை
𝑁𝐶ଶ

𝑠  𝐾𝐾ை
𝑁𝑅𝐶ଵ𝐶ଶ

• After PLL: j,in = 217fsrms (10kHz – 10MHz)
• Including CDR: j,in = 45fsrms (100Hz – 7GHz)



Charge Pump Noise

• Charge pump noise current is 
injected into the loop filter during 
the PFD reset time

• Transistor noise PSD convolved 
with pulse frequency spectrum

• White noise scaled by (Trst/Tref) 
and 1/f noise scaled by (Trst/Tref)2
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[Lacaita 2007]
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Charge Pump Noise
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• After PLL: j,CP = 61fsrms (10kHz – 10MHz)
• Including CDR: j,CP = 22fsrms (100Hz – 7GHz)
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Loop Filter R Noise
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w/ 4k Resistor

• Trade-off between resistor noise, loop filter 
capacitor size, and charge pump noise
• Smaller resistor results in larger capacitors (higher area) 

and larger charge pump current (higher SiCP)
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Loop Filter R Noise
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• After PLL: j,R = 128fsrms (10kHz – 10MHz)
• Including CDR: j,R = 81fsrms (100Hz – 7GHz)
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VCO Noise

• LC-VCO phase noise sources
• Finite tank quality factor
• Cross-coupled pair
• Tail current source 40

M1 M2
in,M1 in,M2

in,M3

M3

L1

Rp

in,Rp

C1

Vbias

Vout

LC-Oscillator 
w/ Differential Tank & Noise Sources



VCO Noise
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• After PLL: j,VCO = 257fsrms (10kHz – 10MHz)
• Including CDR: j,R = 125fsrms (100Hz – 7GHz)
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Total Noise

42

• After PLL: j,Total = 365fsrms (10kHz – 10MHz)
• Reference clock noise dominates at low frequency
• VCO dominates near loop bandwidth and higher

• Including CDR: j,Total = 157fsrms (100Hz – 7GHz)
• Now VCO noise clearly dominates total
• Loop resistor noise is a larger percentage

Jitter 
Variance

PLL Output

After CDR

Ref Clk
35%

Charge Pump
3%

Loop Filter
12%

VCO
50%

Ref Clk
8%

Charge Pump
2%

Loop Filter
27%

VCO
63%



PLL Noise Transfer Function Take-Away Points

• The way a PLL shapes phase noise depends 
on where the noise is introduced in the loop

• Optimizing the loop bandwidth for one noise 
source may enhance other noise sources

• Generally, the PLL low-pass shapes input 
phase noise, band-pass shapes VCO input 
voltage noise, and high-pass shapes 
VCO/clock buffer output phase noise
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Oscillator Noise
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Jitter

[McNeill]



Oscillator Phase Noise Model
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[Perrott]



Open-Loop VCO Jitter

• Measure distribution of clock threshold crossings
• Plot  as a function of delay T
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[McNeill]

�T



Open-Loop VCO Jitter

• Jitter  is proportional to sqrt(T)
•  is VCO time domain figure of merit
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   TTOLT  

[McNeill]



VCO in Closed-Loop PLL Jitter
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• PLL limits  for delays longer than loop bandwidth L

LL f 21

[McNeill]



Ref Clk-Referenced vs Self-Referenced
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[McNeill]

Ref Clock for 
Frequency Synthesis PLL

• Generally, we care about the jitter w.r.t. the ref. clock (x)
• However, may be easier to measure w.r.t. delayed version of output clk

• Due to noise on both edges, this will be increased by a sqrt(2) factor relative 
to the reference clock-referred jitter

CDR Example



Converting Phase Noise to Jitter
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• Actual integration range depends on application bandwidth
• fmin set by assumed CDR tracking bandwidth
• fmax set by Nyquist frequency (f0/2)

• Most exact approach

• RMS jitter for T accumulation

• As T goes to ∞    2
2 2
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2 20T
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[Mansuri]
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Time Domain Model
• Time domain models captures the discrete-time operation 

of the PLL architectures
• Interaction between charge pump and loop filter
• Cycle slipping behavior

• Allows modeling of non-linear control systems
• Dynamic loop bandwidth control
• Automatic frequency band selection

• Potential implementation tools
• Matlab Simulink
• CppSim
• Cadence

51



Simulink Model

52

PFD
Loop Filter



Frequency Step w/ Simulink Model
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• VCO control voltage response to input frequency step
KVCO=2*1GHz/V (LC Osc) KVCO=2*10GHz/V (Ring Osc)

• Voltage spikes due to charge pump current driving loop filter resistor 
• Cycle slipping occurs during lock acquisition due to large initial 

frequency difference



CppSim Model
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• https://cppsim.com/
• C++ based allows for rapid 

simulation of advanced architectures
• Many useful building blocks included

[Perrott/Meninger]



Cadence Verilog-A Model

55

VCO (Square Wave) 
Verilog-A Code Snippet



Next Time
• CDRs

• The following slides provide more details 
on PLL circuits.  This 620 material may 
useful for the project, but won’t be covered 
in detail on Exam 2.
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PLL Loop Gain
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Loop Gain Response
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Design Procedure for Max m
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• Design procedure maximizes phase margin for a given fu
and m specification [Hanumolu TCAS1 2004]
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Design Procedure for Max m
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1. Set loop filter capacitor ratio based on m
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Φ ൌ 60° → 𝐾 ൌ 12.9
2. Set loop filter values based on u & with R set for low noise

𝜔௭ ൌ
𝜔௨

1  𝐾

𝐶ଵ ൌ
1
𝜔௭𝑅

,   𝐶ଶൌ
𝐶ଵ
𝐾

𝜔௨ ൌ 2𝜋 ∗ 2𝑀𝐻𝑧 → 𝜔௭ ൌ 2𝜋 ∗ 536𝑘𝐻𝑧
Set 𝑅 ൌ 4𝑘Ω → 𝐶ଵ ൌ 74𝑝𝐹   &    𝐶ଶൌ 5.8𝑝𝐹

3. Set Icp to achieve required loop gain

𝐼 ൌ
N𝐶ଶ𝜔௨ଶ

𝐾ை

𝜔ଷଶ  𝜔௨ଶ

𝜔௭ଶ  𝜔௨ଶ 𝜔ଷ ൌ 2𝜋 ∗ 7.45𝑀𝐻𝑧 → 𝐼 ൌ 310𝜇𝐴



Simulated Responses

• Design achieves fu=2MHz and m=60°
• Closed loop response has f3dB=3.1MHz
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𝐿𝐺 𝑠 ൌ
𝐾𝐾ை 𝑠  𝜔௭
𝑁𝐶ଶ𝑠ଶ 𝑠  𝜔ଷ

𝜙௨௧ 𝑠
𝜙 𝑠 ൌ

𝐾𝐾ை
𝐶ଶ

𝑠  1
𝑅𝐶ଵ

𝑠ଷ  𝐶ଵ  𝐶ଶ
𝑅𝐶ଵ𝐶ଶ

𝑠ଶ  𝐾𝐾ை
𝑁𝐶ଶ

𝑠  𝐾𝐾ை
𝑁𝑅𝐶ଵ𝐶ଶ
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Charge-Pump PLL Circuits
• Phase Detector

• Charge-Pump
• Loop Filter
• VCO
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Phase Detector

• Detects phase difference between feedback clock 
and reference clock

• The loop filter will filter the phase detector output, 
thus to characterize phase detector gain, extract 
average output voltage

• The KPD factor can change depending on the 
specific phase detector circuit

63filter impedance a with usedwhen 

 pump-charge  with thecombined when A/rador  (averaged) rad are units 
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Analog Multiplier Phase Detector

• If 1=2 and filtering out high-frequency term
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[Razavi]



XOR Phase Detector

65

• Assuming logic 1=“+1” and 0=“-1”, the XOR PD will lock 
when the average output is 0
• Generally, /2 is a stable lock point and -/2 is a metastable point

• Sensitive to clock duty cycle

[Razavi]



XOR Phase Detector

66

[Perrott]

Width is same for both 
leading and lagging 
phase difference!



Cycle Slipping
• If there is a frequency difference between the input 

reference and PLL feedback signals the phase detector can 
jump between regions of different gain
• PLL is no longer acting as a linear system

67

[Perrott]

(negative feedback operation)(positive feedback operation)



Cycle Slipping

• If frequency difference is too large the PLL may not lock
68

[Perrott]

Cycle Slipping



Phase Frequency Detector (PFD)
• Phase Frequency Detector allows for 

wide frequency locking range, 
potentially entire VCO tuning range

• 3-stage operation w/ UP & DN outputs
• Rising edge-triggered results in duty 

cycle insensitivity
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Averaged PFD Transfer Characteristic

• Constant slope and polarity asymmetry about zero phase 
allows for wide frequency range operation

• The averaged PFD gain is 1/(2) with units of rad-1
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Phase Detector

• Detects phase difference between feedback clock and reference clock
• The loop filter will filter the phase detector output, thus to characterize 

phase detector gain, extract average output voltage (or current for 
charge-pump PLLs)

71
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PFD Deadzone

• If phase error is small, then short 
output pulses are produced by PFD

• Cannot effectively propagate these 
pulses to switch charge pump

• Results in phase detector “dead 
zone” which causes low loop gain 
and increased jitter

72

D
Q

R

D
Q

Rin

fb

UP

DN
R

C1

C2

ICP

ICP

iCP

CLKIN

CLKFB

UP

DN

Tref

Trst
iCP

te

too narrow

in-fb

avg{ve(t)}

Dead 
Zone

(Zoomed)



PFD Operation w/ Reset Delay
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• Solution is to add delay in PFD 
reset path to force a minimum 
UP and DN pulse length

• In locked state both UP and 
DN current sources are on for 
Trst, but ideally no net current 
is delivered to loop filter



Problems Near 2
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PFD Transfer Characteristic w/ Reset Delay

• PFD reset delay generates wrong frequency information 
• If this becomes a large percentage of the reference cycle, 

then the PFD can fail to acquire frequency lock 
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Charge-Pump PLL Circuits
• Phase Detector

• Charge-Pump
• Loop Filter
• VCO
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Charge Pump
• Converts PFD output 

signals to charge

• Charge is proportional 
to PFD pulse widths
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Simple Charge Pump

• Issues
• Skew between UPB and DN control signals
• Matching of UP/DN current sources
• Clock feedthrough and charge injection from switches onto Vctrl
• Charge sharing between current source drain nodes’ capacitance and Vctrl
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Simple Charge Pump Skew Compensation
• Adding a transmission gate in the 

DN signal path helps to equalize 
the delay with the UPB signal for 
better overlap between the UP 
and DN current sources

• Poor matching of UPB and DN
edge rates
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Charge Pump Mismatch

• PLL will lock with static phase error 
if there is a charge pump mismatch

• Extra “ripple” on Vctrl
• Results in frequency domain spurs 

at the reference clock frequency 
offset from the carrier
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Charge Pump w/ Improved Matching

• Parallel path keeps current 
sources always on

• Amplifier keeps current source 
VDS voltages constant resulting 
in reduced transient current 
mismatch (charge sharing)

81

[Young JSSC 1992]



Digital Leakage Compensation

82

• Charge pump off-state leakage causes PLL 
to lock with static phase error

• Compensated by additional digitally-controlled 
charge pump current pulses

• TDC detects phase error between input 
reference clock and feedback clock

[Fan ISSCC 2019]



Charge Pump w/ Reversed Switches
• Swapping switches 

reduces charge injection
• MOS caps (Md1-4) provide 

extra clock feedthrough 
cancellation

• Helper transistors Mx and 
My quickly turn-off current 
sources

• Dummy branch helps to 
match PFD loading

• Helps with charge 
injection, but charge 
sharing is still an issue
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[Ingino JSSC 2001]
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Charge Pump PLL Passive PI Loop Filter

• Simple passive filter is most commonly used
• Integrates low-frequency phase errors onto C1 to set average frequency
• Resistor (proportional gain) isolates phase correction from frequency 

correction
• Primary capacitor C1 affects PLL bandwidth
• Zero frequency affects PLL stability
• Resistor adds thermal noise which is band-pass filtered by PLL
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Single-Ended Fully Differential



Loop Filter Transfer Function
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• Neglecting secondary capacitor, C2



Loop Filter Transfer Function

87

• With secondary capacitor, C2



Why have C2?
• Secondary capacitor smoothes control voltage ripple
• Can’t make too big or loop will go unstable

• C2 < C1/10 for stability
• C2 > C1/50 for low jitter

88

Control Voltage Ripple



Loop Filter Capacitors
• To minimize area, we would like to use highest density caps

• Thin oxide MOS cap gate leakage can be an issue
• Similar to adding a non-linear parallel resistor to the capacitor
• Leakage is voltage and temperature dependent
• Will result in excess phase noise and spurs

• Metal caps or thick oxide caps are a better choice
• Trade-off is area

• Metal cap density can be <1/10 thin oxide caps

• Filter cap frequency response can be relatively low, as PLL 
loop bandwidths are typically 1-50MHz
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Voltage-Controlled Oscillator

• Time-domain phase relationship
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Laplace Domain Model
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Voltage-Controlled Oscillators (VCO)
• Ring Oscillator
• Easy to integrate
• Wide tuning range (5x)
• Higher phase noise

• LC Oscillator
• Large area
• Narrow tuning range (20-30%)
• Lower phase noise
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Barkhausen’s Oscillation Criteria

• Sustained oscillation occurs if

• 2 conditions:
• Gain = 1 at oscillation frequency 0
• Total phase shift around loop is n360 at oscillation frequency 0

93

 
 

jH
jH

1Closed-loop transfer function:

  1jH

n

[Sanchez]
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Ring Oscillator Example
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LC Oscillator Example
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LC tank impedance

• Oscillation phase shift condition 
satisfied at the frequency when 
the LC (and R) tank load 
displays a purely real 
impedance, i.e. 0 phase shift



LC Oscillator Example
• Transforming the series loss 

resistor of the inductor to an 
equivalent parallel resistance
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LC Oscillator Example
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  12 PmRg

PPCL
1

1 

Loop Gain

• Phase condition satisfied at

• Gain condition satisfied when

[Razavi]

• Can also view this circuit as a parallel 
combination of a tank with loss resistance 
2RP and negative resistance of 2/gm

• Oscillation is satisfied when 

P
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Supply-Tuned Ring Oscillator
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[Sidiropoulos VLSI 2000]



Current-Starved Ring Oscillator

99

[Sanchez]



Capacitive-Tuned Ring Oscillator
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Symmetric Load Ring Oscillator

101

[Maneatis JSSC 1996 & 2003]

• Symmetric load provides frequency tuning at excellent 
supply noise rejection

• See Maneatis papers for self-biased techniques to obtain 
constant damping factor and loop bandwidth (% of ref clk)

2ID



LC Oscillator
• A variable capacitor 

(varactor) is often used to 
adjust oscillation frequency

• Total capacitance includes 
both tuning capacitance and 
fixed capacitances which 
reduce the tuning range
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 fixedtunePPP
osc CCLCL 


11



Varactors
• pn junction varactor

• Avoid forward bias region to prevent oscillator nonlinearity

103

• MOS varactor
• Accumulation-mode devices have better Q than inversion-mode

[Perrott]

n-well
[Razavi]
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Loop Divider

• Time-domain model
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Basic Divide-by-2

• Divide-by-2 can be realized by a 
flip-flip in “negative feedback”

• Divider should operate correctly 
up to the maximum output clock 
frequency of interest PLUS
some margin
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Latch Latch



Divide-by-2 with TSPC FF

• Advantages
• Reasonably fast, compact size, and no static power
• Requires only one phase of the clock

• Disadvantages
• Signal needs to propagate through three gates per input cycle
• Need full swing CMOS inputs
• Dynamic flip-flop can fail at low frequency (test mode) due to leakage, as 

various nodes are floating during different CLK phases & output states
• Ex:  Q_bar is floating during when CLK is low 107

True Single Phase Clock Flip-Flop
Divider Equivalent Circuit
Note: output inverter not in left schematic

Q



Divide-by-2 with CML FF
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• Advantages
• Signal only propagates through two CML gates per input cycle
• Accepts CML input levels

• Disadvantages
• Larger size and dissipates static power
• Requires differential input
• Need tail current biasing

• Additional speedup (>50%) can be achieved with shunt peaking 
inductors
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Binary Dividers:
Asynchronous vs Synchronous
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Asynchronous Divider

Synchronous Divider

• Advantages
• Each stage runs at lower frequency, 

resulting in reduced power
• Reduced high frequency clock 

loading
• Disadvantage 

• Jitter accumulation

• Advantage
• Reduced jitter

• Disadvantage 
• All flip-flops work at maximum 

frequency, resulting in high power
• Large loading on high frequency 

clock

D Q

QB

D Q

QB

D Q

QB

CLK

CLK/8

D Q

QB

D Q

QB

CLK

CLK/8
D Q

QB



Jitter in Asynchronous vs Synchronous Dividers
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Asynchronous

Synchronous

• Jitter accumulates with the 
clock-to-Q delays through 
the divider

• Extra divider delay can also 
degrade PLL phase margin

• Divider output is “sampled” 
with high frequency clock

• Jitter on divider clock is 
similar to VCO output

• Minimal divider delay
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Dual Modulus Prescalers
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2/3

MC=0  3
MC=1  2

15/16

Synchronous 3/4 Asynchronous 4
• For /15, first prescaler circuit divides by 3 once and 4 three times 

during the 15 cycles

[Razavi]

MC=0  15
MC=1  16



Injection-Locked Frequency Dividers

• Superharmonic injection-locked oscillators (ILOs) can 
realize frequency dividers

• Faster and lower power than flip-flop based dividers
• Injection locking range can be limited

112

LC-oscillator type (/2) Ring-oscillator type (/3)

[Verma JSSC 2003, Rategh JSSC 1999] [Lo CICC 2009]


