March 3, 2010 ECEN 689: High-Speed Links Homework #4

Due: 3-10-2010, 5:00PM Homeworks will not be received after due. Instructor: Sam Palermo

This homework requires transistor-level circuit design. You may use any CMOS technology to solve the problem, as long as it is a 90nm or mode advanced technology node (shorter channel length). For students who do not have access to a design kit, instructions on how to access the default 90nm CMOS transistor models are posted on the website. For this 90nm technology assume a nominal 1.2V supply.

- 1. CMOS Technology Characterization. In order to estimate what level of performance is achievable with a given process technology, it is useful to run some initial characterization simulations.
 - a. For both NMOS and PMOS transistors with dimensions W=1 μ m and L=L_{min}, plot f_T versus |V_{GS}| and also versus $I_D - 4$ plots total (2 per transistor). Use the test circuits below. The easiest way to do this is to run a DC sweep with $|V_{GS}|$ varying from 0 to VDD and plot

$$f_T = \frac{g_m}{2\pi C_{gg}}$$

where C_{gg} is the total gate capacitance. For the plot versus $|V_{GS}|$, use a linear scale for both axes. For the plot versus I_{DS}, use a log scale for the x-axis (current) and a linear scale for the y-axis (frequency).

(i) NMOS f_T test circuit

2. 10Gb/s Low-Swing Driver and Termination Design.

- a. Design both a differential current-mode CML driver and a differential low-swing voltage-mode driver to support an output swing of $300 \text{mV}_{\text{ppd}}$.
 - i. For the CML driver, the output tail current source should be implemented at the transistor level, but you may use a current mirror that has an ideal current source to produce the bias for the output stage tail current source.
 - ii. For the voltage-mode driver, any regulator voltage can be implemented with an ideal voltage source, i.e. you don't have to design the regulator.
- b. Include one pre-driver stage before the driver output stage. This may be a simple inverter predriver or something more fancy if you want.
- c. The driver should be terminated on-chip both at the transmitter and the receiver. The termination should be designed to handle a temperature variation from 0 to 100C OR a variation of ±15% from the nominal 25C value if the temperature variation simulation doesn't work. Passive termination may be used, however a realistic model including parasitic capacitance must be used, i.e. from a design kit or taken from the table in lecture 10. Choose whichever termination scheme you think is most appropriate (AC vs DC-coupled, Single-ended vs Differential) and explain your choice.
- d. Since the emphasis of this problem is the driver design, in your simulations use a simple channel consisting of TX output cap = RX input cap = 200fF and an ideal 50 Ω , 1ns transmission line.

Block diagram for Problems 2 &3.

- e. Turn-in the following for your design
 - i. Schematics with details of transistor sizing.
 - ii. A 10Gb/s eye diagram at the RX. Use a pseudo-random input sequence of 2^7 -1 or higher to produce the eye diagram.
 - iii. Plot the return loss versus frequency looking back into the transmitter at 0, 25, and 100C. For this, program the termination to yield the best performance at each temperature. Note: if your temperature variation simulations don't work, then just turn in one plot at 25C and data showing that your termination can tune $\pm 15\%$.¹
 - iv. Compare the power consumption of the two drivers. Break down the power into pre-driver and output stage power.

For the Low-Swing Voltage-Mode Driver, refer to the 2 low-swing voltage-mode papers posted on the website for reference.

¹ Note: $\pm 15\%$ is probably sufficient for only temperature variations. To handle process, voltage, and temperature variations, you would probably need to increase this range to $\pm 30\%$.

3. 10Gb/s High-Swing Driver and Termination Design.

- a. Repeat the steps of problem 2 for both a differential current-mode CML driver and a differential high-swing voltage-mode driver to support an output swing of $1V_{ppd}$.
- b. For the current-mode driver, you can probably use the same driver. You will probably just need to increase the output stage and perhaps the pre-driver sizing.
- c. For the voltage-mode driver, a high-swing architecture will need to be used. Refer to the 2 highswing voltage-mode papers posted on the website for reference.