Texas A&M University Department of Electrical and Computer Engineering

ECEN 720 – High-Speed Links

Spring 2025

Exam #2

Instructor: Sam Palermo

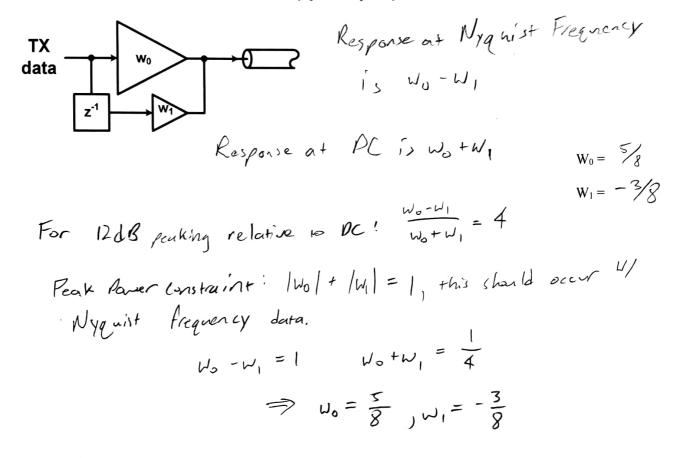
- Please write your name in the space provided below
- Please verify that there are 7 pages in your exam
- Good Luck!

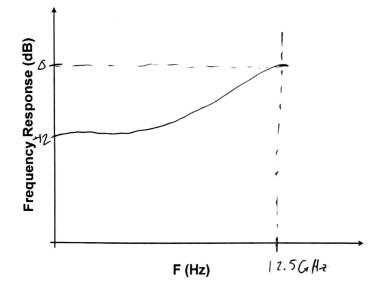
Problem	Score	Max Score
1		35
2		35
3		30
Total		100

SAM PALERMO Name:

UIN:

- C

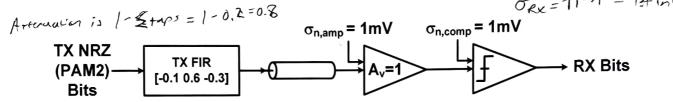

BER	Q_{BER}	BER	Q_{BER}	BER	Q_{BER}
$ \frac{1 \times 10^{-3}}{1 \times 10^{-4}} \\ \frac{1 \times 10^{-5}}{1 \times 10^{-5}} \\ \frac{1 \times 10^{-5}}{1 \times 10^{-7}} \\ \frac{1 \times 10^{-3}}{1 \times 10^{-9}} $	6.180 7.438 8.530 9.507 10.399 11.224 11.996	$ \begin{array}{r} 1 \times 10^{-10} \\ 1 \times 10^{-11} \\ 1 \times 10^{-12} \\ 1 \times 10^{-13} \\ 1 \times 10^{-14} \\ 1 \times 10^{-15} \\ 1 \times 10^{-16} \\ \end{array} $	12.723 13.412 14.069 14.698 15.301 15.882 16.444	$ \begin{array}{r} 1 \times 10^{-17} \\ 1 \times 10^{-13} \\ 1 \times 10^{-10} \\ 1 \times 10^{-20} \\ 1 \times 10^{-21} \\ 1 \times 10^{-22} \\ 7.7 \times 10^{-24} \end{array} $	16.987 17.514 18.026 18.524 19.010 19.484 20.000


TABLE 13-1. Q_{BER} as a Function of the Bit Error Rate

Problem 1 (35 points)

TX FIR Equalization

- a) Give the equalizer coefficients to realize 12dB of frequency peaking at the Nyquist frequency (relative to the DC response) for 50Gb/s PAM4 modulation. Assume that $|W_0| + |W_1| = 1$.
- b) Sketch the equalizer magnitude response out to the Nyquist frequency. Label the magnitude value in dB at low frequencies and at the Nyquist frequency.

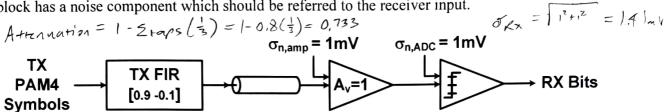


3

Problem 2 (35 points)

This problem compares the voltage noise budgeting of a serial link system with PAM2 and PAM4 modulation. Here we will conservatively assume that all distributions combine in a worst-case manner.

PAM2 System



Complete the following noise budget table assuming a TX peak differential swing of $1V_{ppd}$ and a target BER=10⁻¹². You can refer to the Q_{BER} table on page 2 if needed. (10 points)

Parameter	Kn	RMS	Value (BER=10 ⁻¹²)
Peak Differential Swing, V _{swing}			1V
RX Offset + Sensitivity			5mV
Power Supply Noise			5mV
Residual ISI	0.05		= 50 m
Crosstalk	0.05		= 50~V
Random Noise		= 1.41 m	= 19.9mV
Attenuation (TX FIR)	= 0,3		= 800mV
Total Noise			= 929.9 mV = 70.1 mV
Differential Eye Height Margin			= 70,1mV

PAM4 System

The system consists of a transmitter with a 2-tap FIR filter which sends PAM4 symbols over a channel to a receiver modeled as a simple amplifier followed by a 2-bit ADC. Each receiver block has a noise component which should be referred to the receiver input.

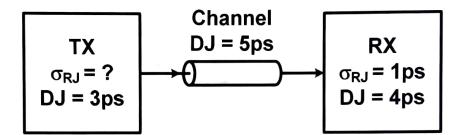
Complete the following noise budget table assuming a TX peak differential swing of $1V_{ppd}$ and a target BER=10⁻¹². You can refer to the Q_{BER} table on page 2 if needed. (10 points)

Paraméter	Kn	RMS	Value (BER=10 ⁻¹²)
Peak Differential Swing, V _{swing}			1V
RX Offset + Sensitivity			5mV
Power Supply Noise	ξ.		5mV
Residual ISI (compute from max. transition)	0.05		= 50mV
Crosstalk (compute from max. transition)	0.05		= 50mV
Random Noise		= 1,41mV	= 19,9ml
Attenuation (TX FIR and modulation)	= 0,733		= 733mV
Total Noise			= 862.9mV
Differential Eye Height Margin			= 137.1mV

What is the minimum peak differential swing, V_{swing} , for a **BER=10⁻¹²**, i.e. as the differential eye height margin goes to zero for both the PAM2 and PAM4 systems? (10 points)

$$V_{swing} \left(1 - \xi K_{W}\right) \stackrel{\geq}{=} F_{IXed} N_{0}$$

$$V_{swing} \stackrel{\geq}{=} \frac{F_{IXed} N_{0}}{1 - \xi K_{W}}$$


$$V_{swing} \stackrel{\geq}{=} \frac{Z_{9.9mV}}{1 - 0.9} = 2.99 \text{ mV}$$

$$PAM \xi \stackrel{\scriptscriptstyle <}{:} V_{swing} \stackrel{\geq}{=} \frac{Z_{9.9mV}}{1 - 0.8^{23}} = 1.79 \text{ mV}$$

Min.
$$V_{swing}$$
 (PAM2) = $299mV$
Min. V_{swing} (PAM4) = $179mV$

Problem 3 (30 points)

This problem involves designing a TX PLL loop bandwidth to satisfy a system jitter budget, given the following jitter components from the TX, channel, and RX. What is the maximum TX random rms jitter, $\sigma_{RJ,TX}$, for a BER=10⁻¹² at a 25Gb/s data rate? Assume that the only source of random noise in the TX PLL below is from the VCO, which has $\kappa = 10^{-8}\sqrt{s}$, and that the jitter σ of interest is closed-loop and referenced to an ideal clock. What is the necessary TX PLL loop bandwidth to satisfy the system jitter budget?

$$DJ_{j+0+} + Q\sigma_{j+0+} = \frac{1}{DR}$$

$$\overline{\mathcal{O}}_{j+0+} = \frac{1}{\underline{\partial R}} - DJ_{j+0+} = \frac{40ps - 12ps}{|4,069|} = 1,99ps$$

 $\partial_{j, +o+} = 7 \partial_{Tx}^{2} + \partial_{Rx}^{2} \implies \sigma_{Tx} = 7 \partial_{j, +o+}^{2} - \partial_{Rx}^{2} = \sqrt{1.99}, -l_{p_{3}}^{2} = l_{1}, 72p_{3}$

$$\sigma_{X} = K \sqrt{\frac{1}{2\pi f_{LL}}}$$

$$f_{PLL} = \frac{K^{2}}{2\pi \sigma^{2}} = \frac{(10^{-8} f_{S})^{2}}{2\pi (1.72 p_{S})^{2}} = 5.38 \text{ mHz}$$

Max $\sigma_{RJ,TX}$ (w/ DR=25Gb/s) = $1.7 2 \mu s$

PLL Loop Bandwidth (Hz) = 5.38_{M} Hz