Texas A&M University Department of Electrical and Computer Engineering

ECEN 720 - High-Speed Links

Spring 2019

Exam #2

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 6 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

Problem	Score	Max Score
1		30
2		35
3		35
Total		100

Name:	SAM	PALERMO	
UIN:			

TABLE 13-1. $Q_{\rm BER}$ as a Function of the Bit Error Rate

BER	$Q_{\mathtt{BER}}$	BER	$Q_{\mathtt{BER}}$	BER	$Q_{\mathtt{BER}}$
$ \begin{array}{r} 1 \times 10^{-3} \\ 1 \times 10^{-4} \\ 1 \times 10^{-5} \\ 1 \times 10^{-6} \\ 1 \times 10^{-7} \\ 1 \times 10^{-8} \\ 1 \times 10^{-9} \end{array} $	6.180 7.438 8.530 9.507 10.399 11.224 11.996	$ \begin{array}{c} 1 \times 10^{-10} \\ 1 \times 10^{-11} \\ 1 \times 10^{-12} \\ 1 \times 10^{-13} \\ 1 \times 10^{-14} \\ 1 \times 10^{-15} \\ 1 \times 10^{-16} \end{array} $	12.723 13.412 14.069 14.698 15.301 15.882 16.444	$ \begin{array}{c} 1 \times 10^{-17} \\ 1 \times 10^{-18} \\ 1 \times 10^{-19} \\ 1 \times 10^{-20} \\ 1 \times 10^{-21} \\ 1 \times 10^{-22} \\ 7.7 \times 10^{-24} \end{array} $	16.987 17.514 18.026 18.524 19.010 19.484 20.000

Problem 1 (30 points)

A channel has the pulse response, $y^{(1)}$, below for a "1" bit. A DFE with FIR feedback filter is used for equalization. Assume ideal delay cells.

- a) What is the minimum number of DFE taps required for a worst-case eye height of 0.4V? What are the tap values?
- b) Assume that you can have as many FIR feedback taps in the DFE as you would like. What is the best (worst-case) eye height that you can achieve with only this DFE equalization?

Problem 2 (35 points)

This problem involves the voltage noise budgeting of a serial link system. Here we will conservatively assume that all distributions combine in a worst-case manner. The system consists of a transmitter with a 2-tap FIR filter which sends NRZ bits over a channel to a receiver modeled as a simple amplifier followed by a comparator. Each receiver block has a noise component which should be referred to the receiver input.

Complete the following noise budget table assuming a TX peak differential swing of $1V_{ppd}$ and a target BER= 10^{-12} . You can refer to the Q_{BER} table on page 2 if needed. (15 points)

Parameter	K _n	RMS	Value (BER=10 ⁻¹²)	
Peak Differential Swing, V _{swing}			1V	
RX Offset + Sensitivity			5mV	
Power Supply Noise			5mV	
Residual ISI	0.05		= 50mV	
Crosstalk	0.05		= 50mV	
Random Noise		= 0.707mV	= 9.95mV	
Attenuation (TX FIR)	= 0.7		= 800mV	
Total Noise			= 919,95mV	
Differential Eye Height Margin			= 80.05mV	

What is the minimum peak differential swing, V_{swing} , for a **BER=10**⁻¹², i.e. as the differential eye height margin goes to zero? (15 points)

Vsuing
$$(1-\xi K_n)$$
 - Fixed Noise ≥ 0
Vswing $\geq \frac{Fixed\ Noise}{1-\xi K_n} = \frac{19.95nV}{1-0.9} = 199.5mV$

What is the minimum peak differential swing, V_{swing} , for a **BER=10**-15, i.e. as the differential eye height margin goes to zero? (5 points)

For BER =
$$10^{5}$$
 Random Noise = $15.882(0.707) = 11.23 \text{mV}$
 $V_{Sung} \ge \frac{21.23 \text{mV}}{1-0.9} = 212.3 \text{mV}$

Problem 3 (35 points)

This problem involves computing a jitter budget for the system below, which should operate at a 10⁻¹⁵ BER.

- a) Complete the system jitter budget table below.
- b) What is the maximum possible data rate?

Parameter	Term	σ _{RJ} (ps)	DJ ₈₈ (ps)	TJ (BER=10 ⁻¹⁵)
Reference Clock	$\mathrm{TJ}_{\mathrm{refclk}}$	2.1	27.9	61,25
Transmitter	$\mathrm{TJ}_{\mathrm{TXgen}}$	1.3	30.1	50.75
Channel	TJ _{ISI+xtalk}	0	43	43
Receiver	TJ_{RXgen}	1.5	65.7	89.52
TOTAL (BER=10 ⁻¹⁵)		2.89	166.7	212.60

Scratch Paper