4

Texas A&M University Department of Electrical and Computer Engineering

ECEN 720 – High-Speed Links

Spring 2023

Exam #1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 7 pages in your exam
- Good Luck!

Problem	Score	Max Score
1		30
2		20
3		25
4		25
Total		100

Name: SAM PALERMO

UIN:_____

Problem 1 (30 points)

- a) A 1V step is launched onto the channel below at t=0ns. (20 points)
 - i. Calculate the reflection coefficient at the source, k_{rS} , at the middle point for right traveling signals, $k_{rM,R}$, and left traveling signals, $k_{rM,L}$, and the end termination, k_{rT}
 - ii. Fill in the lattice diagram below until t=4ns.
- iii. Also plot the source voltage, V_S, and the termination voltage, V_T until 4ns.

b) For the circuit below, design a three-terminal resistive matching network to eliminate any reflections in any direction and make $V_{01}=V_{02}$. If a 1V step is launched onto the network, what is the step value at the two outputs? (10 points)

$$V_{0_1} = V_{0_2} = \left(\frac{s_0}{s_0 + s_{1/3}}\right) \left(\frac{s_0 + r_{0/3}}{2}\right) = 0.25V$$

$$V_{0_1} = V_{0_2} = \left(\frac{s_0}{s_0 + s_0}\right) \left(\frac{s_0 + s_0}{2}\right) = 0.25V$$

$$S_0 + \frac{s_0}{3} + \frac{s_0 + \frac{s_0}{3}}{2} = 0.25V$$

Problem 2 (20 points)

A channel has the pulse response, $y^{(1)}$, below for a "1" bit.

a. Find the channel's worst-case eye height at this bit rate.

b. Give the channel's worst-case bit pattern at this bit rate.

Worst-Case Eye Height =
$$0.6$$
 (usors
Worst-Case Bit Pattern = $\begin{bmatrix} -1 & -1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}$ Worst-case $\frac{1}{1}$ (1)
 $\begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix}$ Worst-case $\frac{1}{1}$ (1)
Worst-case $\frac{1}{1}$ (1)

Problem 3 (25 points)

Answer the following questions for the pull-only, differential current-mode driver shown below.

- a. What is the peak-to-peak differential output swing, $V_{d,1} V_{d,0}$?
- b. What is the average power consumption of the driver?

$$V_{d,1} - V_{d,0} = IR - (-IR) = 2IR = 2(5\pi A)(5dR) = 500mV$$

$$V_{out,dpp} = V_{d,1} - V_{d,0} = 500mV$$

$$R_{avdy} = 5\pi A(0,5V) = 2.5mW$$
Average Power = 2.5mW

Now consider the push-pull differential current-mode driver shown below. Note that the bias current has been reduced from 5mA to 2.5mA.

$$2IR - (-2IR) = 4IR$$

= $4(25mA)(50N) = 500ml$

- /

c. What is the peak-to-peak differential output swing, $V_{d,1} - V_{d,0}$?

d. What is the average power consumption of the driver?

$$P_{avg} = 2.5mA(1V) = 2.5nW$$

$$V_{out,dpp} = V_{d,1} - V_{d,0} = 500mV$$

$$Average Power = 2.5mW$$

e. Why doesn't this push-pull driver dissipate half the power of the pull-only driver, for the same signal swing? In particular, explain the factor that constrains the supply voltage (1V) or the termination voltage (0.5V).

1

Problem 4 (25 points)

The NMOS sampler below is used to sample a 5GHz sinusoidal signal at t=0. Assume that the sampler displays the triangular sampling function, h(t).

- i. Setup, but do not calculate, the integral expression for the sampled output voltage.
- ii. Calculate the sampler aperture time from the sampling function. Assume that the aperture time is defined as the time where 80% of the sampler sensitivity is confined.

I. Sampled Vout =
$$\int_{\infty}^{\infty} V_{n(t)} h(t) dt$$

$$= \int_{-10p_{5}}^{0} \cos\left(2\pi(5\times10^{9})+\right) \left[10^{22}+10^{11}\right] d+ + \int_{0}^{10p_{5}} \cos\left(2\pi(5\times10^{9})+\right) \left[-10^{22}+10^{11}\right] d+$$

ii. Need to find how much the =
$$10\%$$
 of area or 0.1 because
 $\int_{0.5}^{\infty} h(t) = 1$

$$Area = 0.1 \quad \frac{1}{2} (10^{22} +)(+) = 0.1 \Rightarrow += 4.47p. \text{ for 10%}$$

$$Aperture time = 20ps - 2(4.47ps)$$

Ξ

11.1ps

Key MOS Equations & Scratch Paper

