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Abstract—This paper presents a 28-Gb/s transceiver in 32-nm
SOI CMOS technology for chip-to-chip communications over
high-loss electrical channels such as backplanes. The equalization
needed for such applications is provided by a 4-tap baud-spaced
feed-forward equalizer (FFE) in the transmitter and a two-stage
peaking amplifier and 15-tap decision-feedback equalizer (DFE)
in the receiver. The transmitter employs a source-series termi-
nated (SST) driver topology which doubles the speed of existing
half-rate designs. The high-frequency boost provided by the
peaking amplifier is enhanced by adopting a structure with ca-
pacitively coupled parallel input stages and active feedback. A
capacitive level-shifting technique is introduced in the half-rate
DFE which allows a single current-integrating summer to drive
the four parallel paths used for speculating the first two DFE taps.
Error-free signaling at 28 Gb/s is demonstrated with the trans-
ceiver over a channel with 35 dB loss at half-baud frequency. In a
four-port core configuration, the power consumption at 28 Gb/s is
693 mW/lane.

Index Terms—Active feedback, backplane, capacitive level
shifter, chip-to-chip communications, current-integrating summer,
decision-feedback equalizer (DFE), feed-forward equalizer (FFE),
peaking amplifier, serial link, source-series terminated (SST)
driver, transceiver.

I. INTRODUCTION

W ITH the proliferation of digital devices accessing
advanced network services such as multimedia-on-de-

mand and the predicted rise of cloud computing, the I/O
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Fig. 1. Chip-to-chip serial link across PCB.

bandwidth requirements of systems such as routers and servers
are expected to grow rapidly. To expand I/O capacity, serial
link data rates are now being pushed up to 25–28 Gb/s, as
exemplified by recent and upcoming standards such as OIF
CEI-25G-LR and CEI-28G-SR [1], 32GFC [2], IEEE 802.3bj
[3], and InfiniBand EDR [4]. Such data rates represent a
near doubling of the state-of-the-art for fully integrated back-
plane transceivers, which have been previously reported up to
16 Gb/s [5]–[7]. With technology scaling no longer providing
large gains in raw device speed [8], significant design advances
must be made to attain the desired data rates.
Adding to the design challenge is the difficulty of electrical

channel characteristics at data rates approaching 30 Gb/s. For
a 1–m-long printed circuit board (PCB) trace or backplane, the
loss at half-baud frequency may exceed 30 or even 35 dB. A
common practice in backplane transceiver design [5]–[7], [9],
[10] is to employ a feed-forward equalizer (FFE) in the trans-
mitter and a decision-feedback equalizer (DFE) in the receiver.
To handle higher channel loss, the number of taps in the FFE and
DFE can be increased, but at the cost of extra circuit power and
area. A previous system-level study [11] of electrical links oper-
ating at 25 Gb/s showed that a 4-tap FFE provides close-to-op-
timal performance, while both vertical and horizontal eye open-
ings benefit from increasing the number of DFE taps to at least
20. While the transceiver developed in this work [12], [13] does
include a 4-tap FFE in its transmitter, the DFE in its receiver
only has 15 taps. The number of required DFE taps is reduced
in this design by including a wide-range ( 10 dB) peaking am-
plifier in the receiver (a feature not assumed in the study of [11]).
The linear equalization provided by the peaking amplifier helps
compensate for intersymbol interference (ISI) outside the time
span of the DFE. This usage of a linear equalizer to reduce the
DFE tap requirements is conceptually similar to that described
in [14], but the equalizer employed here has amore conventional
response, with the gain peaked at high frequency rather than at
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Fig. 2. Top-level architecture of four-port I/O transceiver.

low frequency. The high-frequency gain of the peaking ampli-
fier reduces the amount of de-emphasis needed in the transmitter
FFE. Using less de-emphasis in the transmitter and more linear
equalization in the receiver increases the average signal level at
the receiver input and helps reduce high-frequency jitter ampli-
fication by high-loss channels [15].
The need to compensate ISI arising from package escape re-

flections prevents one from reducing the number of DFE taps
too much. Consider, for instance, the chip-to-chip link depicted
in Fig. 1. Because of the impedance discontinuities introduced
by the core via of the package, the solder ball, and the PCB via,
some of the signal launched by the transmitter (TX) is reflected
at the package-to-PCB interface. Due to imperfect output return
loss, the transmitter does not completely absorb the reflection,
and a reflected signal appears at the input of the receiver (RX).
The delay of this reflected signal (relative to that of the main
cursor) equals , where and are the package trace length
and wave velocity, respectively. Assuming a maximum package
trace length of 25 mm, may be as large as 450 ps with typ-
ical package materials, which corresponds to 12.6 unit intervals
(UIs) at 28 Gb/s. This reflection (as well as the corresponding
one inside the receiver package) can be effectively cancelled
with a 15-tap DFE.
These system-level considerations require that a 28-Gb/s

backplane transceiver have greater equalization capabili-
ties than the previously reported transceivers operating at
14–16 Gb/s [5]–[7]. The design techniques used to implement
a 28-Gb/s transceiver with such equalization performance
in 32-nm silicon-on-insulator (SOI) CMOS technology are
the major focus of this paper, which is organized as follows.
Section II presents the architectures of the transmitters and

receivers of the I/O core. Sections III and IV describe the cir-
cuit design details of the transmitter and receiver, respectively.
Experimental results are discussed in Section V, and Section VI
concludes with a summary.

II. TRANSCEIVER ARCHITECTURE

Fig. 2 presents the top-level architecture of the transceiver,
which is configured as a four-port I/O core. Two phase-locked
loops (PLLs) with 2:1 dividers generate the half-rate (C2) clocks
which are distributed to the four transmitters and four receivers.
Each PLL includes two different LC voltage-controlled oscilla-
tors (VCOs) so that the oscillator frequency can be varied over
a range of 14–28.05 GHz. The transmitters and receivers both
employ half-rate architectures, which are described in the fol-
lowing subsections.

A. Transmitter

The transmitter consists of three main circuit blocks: a data
path, a clock generator, and a segmented source-series termi-
nated (SST) driver. The data path includes a 32:4 serializer and
a shift register that produces time-delayed quarter-rate tap data
streams for a baud-spaced 4-tap FFE. The tap data streams are
then distributed to a set of weighted SST driver segments, which
perform the final serialization to the data output. Asymmetric
T-coils are used to compensate for driver output capacitance and
parasitics of the electrostatic discharge (ESD) device (low-ca-
pacitance silicon-controlled rectifier) and to provide wideband
impedance matching [16].
The clock generator produces the subrate clocks needed in

the serializer stages and provides a mechanism for adjusting the
duty cycles of the performance-critical half-rate clocks. For this
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Fig. 3. Evolution of the SST driver speed optimization. (a) Original stacked structure. (b) Stacked structure with single shared linearization resistor. (c) Final
structure.

prototype, the duty cycle control bits are set manually (after
measuring the transmitter outputs with an oscilloscope), but
adding closed-loop duty cycle correction (DCC), such as that
described in [6], would be straightforward. Facilitated by the
pseudodifferential structure of the SST drivers, an optional fea-
ture of the clock generator adds a variable delay between the
half-rate clocks of the true and complement outputs (TX_outP,
TX_outN) which can be used to compensate length mismatches
in cable pairs or differential skew in long PCB traces [17]. As
an experiment, this optional feature was implemented (as an
open-loop adjustment) in a separate breakout test site of the
transmitter but was not included in the fully integrated trans-
ceiver. Insertion of a current-mode logic (CML) phase rotator
in the clock path allows the C32 clock for the data serializer to
be aligned with a clock (C32in) forwarded from logic outside
the I/O core. During initial link setup, the clock alignment is
checked with a latch used as a bang-bang phase detector (not
shown in the figure), and on-chip logic determines the best ro-
tator setting for capturing the input data; once established, this
setting is fixed during normal data transmission.
A separate supply strategy helps mitigate supply noise-in-

duced jitter without needing on-chip voltage regulation. While
the data path and SST drivers are powered from a data supply
(AVDDt), the clock generation and distribution circuits are pow-
ered from a separate clock supply (CVDD). The two supplies
have the same nominal value (1.05 V) and are kept separate up
to the board level to minimize interference.

B. Receiver

The major functional blocks of the receiver are similar
to those in [6], but their underlying circuits are extensively

modified to support higher data rates. Inductive peaking is used
heavily to extend the bandwidths of the variable gain amplifier
(VGA) and peaking amplifier. Another inductor (actually,
pair of inductors since the signals are differential) is placed
in series with the VGA input to provide some fixed passive
peaking (about 3–4 dB boost at 12.5–14 GHz), which helps
compensate for package losses. The two-stage peaking ampli-
fier provides up to 12 dB of gain boost at half-baud frequency.
The 15-tap DFE employs two redundant banks (A and B),

each of which is realized as a half-rate structure. As in the de-
sign of [6], the two banks can be swapped between the functions
of data detection and adaptation/calibration. CML-based phase
rotators generate the half-rate clocks for the two DFE banks and
the phase detector that provides edge samples for a digital clock
and data recovery (CDR) loop. Each DFE bank clock (e.g,
for bank B) can be independently swept relative to the other
clocks (e.g., and ) to monitor the horizontal eye opening,
and the information gained from such measurements is used to
position the DFE bank clocks for optimal sampling of the equal-
ized data eye. The system is not sensitive to static phase offsets
between the data samples and the (non-DFE-equalized) edge
samples [6]. In an analogous manner, the vertical eye opening
is monitored for asymmetry, which is corrected by applying a
compensating dc offset inside the VGA.
In contrast with the transmitter, the receiver features closed-

loop DCC of clocks , , and , based on the circuits pre-
sented in [6]. In particular, an offset-compensated comparator is
used to detect the difference in the average voltages of a clock
and its complement (near the end of the clock distribution, in-
side the DFE), and a low-bandwidth digital control loop adjusts
the duty cycle (in a stage after the CML-to-CMOS converter) to
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Fig. 4. SST driver segment with tap selection and pre-driver circuitry.

compensate for any duty cycle distortion (DCD) accumulated
in the distribution. As the data-dependent supply current vari-
ations of the DFE are not as large as those of the SST driver
in the transmitter, the receiver data path and clock circuits are
powered from a single supply (AVDDr), with a nominal value
of 1.05 V. Synthesized logic executes the algorithms used for
CDR, DFE adaptation, and analog circuit calibrations and op-
erates from the main digital supply (VDD) of the chip, with a
nominal value of 0.85 V.

III. TRANSMITTER CIRCUITS

A. SST Driver

An important decision in the design of a half-rate transmitter
is the location of the final 2:1 multiplexer (MUX) in the output
signal chain. Placing a lower power MUX early in the chain,
followed by a full-rate SST driver, is certainly attractive from
a power perspective since the multiplexing half-rate clock does
not need to be powered up to the final driver size, and the full-
rate SST driver switches are typically smaller than the stacked
switches of a multiplexed half-rate SST driver [18]. However,
multiple full-rate buffer stages would be exposed to delay vari-
ations due to noise on the data supply, ISI, and floating-body

effects in partially depleted SOI technologies [19]. To avoid de-
grading the output signal, a half-rate SST driver has been chosen
for this design, in which the output timing is tightly controlled
by a low-jitter half-rate clock.
Fig. 3 depicts the optimization steps which have been ap-

plied in doubling the speed of existing half-rate SST drivers
[18]. Fig. 3(a) shows the original structure along with the asso-
ciated 28-Gb/s eye diagram. The driver incorporates a stacked
MUX that is selected by a complementary clock signal (C2/
C2B) and driven with half-rate even (dep, den) and odd (dop,
don) data streams. A variable data transistor width is used for
driver impedance tuning. The corresponding eye suffers from
limited slew rate, incomplete settling, and data-dependent jitter.
The root cause of this degradation is parasitic capacitors within
the driver stack which may become undriven and store data-de-
pendent charges. As an example, consider the parasitic capac-
itor highlighted in gray in Fig. 3(a). During a pull-up operation,
this capacitor is charged upwards relatively slowly through the
pull-down resistor, and the current flowing through this para-
sitic path contributes to sluggish settling. This particular source
of slow settling can be eliminated by converting the separate
pull-up and pull-down resistors to a single shared resistor, as
shown in Fig. 3(b). The parasitic capacitance behind the re-
sistor still exists but is now always driven high or low actively.
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Fig. 5. Clock generator of transmitter.

The corresponding eye is substantially improved but still ex-
hibits some data-dependent components, which are due to other
parasitic capacitors [highlighted in gray in Fig. 3(b)]. One of
these capacitors may become undriven when a clock transistor
is turned off. In the final step of the optimization [Fig. 3(c)],
the clock transistors (now operating as transmission gates) are
relocated between the even/odd branches and the single shared
resistor. The SST driver has effectively been transformed from
a stacked MUX to a passgate MUX with programmable vari-
able width inverters for the even and odd data. There are no un-
driven circuit nodes in this very simple structure. The clean data
eye confirms the superior performance of the proposed circuit,
which has been adopted here for the transmitter driver segments.
A single SST driver segment is shown in Fig. 4. Each driver

segment is independently configurable as one of the four FFE
taps or as a terminating static high or low segment, which is
accomplished with a static tap selection MUX. After being con-
verted to half-rate by 4:2 MUXes, the data streams are retimed
to clocks C2T and C2C, which control the timing of the true and
complement transmitter outputs (TX_outP, TX_outN), respec-
tively. As an optional feature, C2T and C2Cmay be skewed by a
programmable amount up to about 20 ps. The retimed data
bits are thenmultiplied by pull-down and pull-up

impedance tuning vectors in the pre-driver and
delivered to the SST driver circuits. The complete driver is com-
posed of 24 weighted SST driver segments. A driver segment
weighting of 8 8, 4 4, 4 2 and 8 1 segments has
been chosen, which results in an SST driver with 96 equivalent
segments.

B. Clock Generator

The clock generator circuitry is shown in Fig. 5. An ac-cou-
pled inverter with resistive feedback restores the incoming dif-
ferential half-rate clock C2in to rail-to-rail levels and drives

Fig. 6. Duty-cycle adjust circuit for half-rate clocks of transmitter.

three clock paths. The first and second paths generate the dif-
ferential clocks C2T and C2C mentioned above. The third path
produces sub-rate clocks for the data serializer stages. The delay
in each path may be varied by up to 20 ps, resulting in a max-
imum differential skew between C2T and C2C of 20 ps.
The variable delay is implemented with current-starved buffers
controlled in 13 programmable monotonic steps.
Half-rate transmitter architectures are sensitive to DCD in the

clock signals. A mismatch analysis of the clock paths has shown
that an accurate duty cycle is not guaranteed at the maximum
clock frequency (14 GHz). The clock generator includes circuits
for adjusting the duty cycles of C2T and C2C. Fig. 6 shows
the schematic of the duty-cycle adjust circuit, which is based
on tuning the trip points of two ac-coupled inverters with resis-
tive feedback. If the current digital-to-analog converter (IDAC)
is set to zero, no currents are driven through the resistors ,

, and the inverters are biased at their natural trip point
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Fig. 7. Analog data path of receiver.

Vtrip (equilibrium point for 50% duty cycle), which is gener-
ated with a self-biased replica inverter. If the IDAC is set to a
nonzero code, currents are driven through the resistors , and
voltages Vcntrl and Vcntrlb are moved away from Vtrip by
and , respectively, which effects differential tuning of the
output duty cycles (with a nominal range of 6% at the max-
imum clock frequency). The polarity of is set with control
bits dir/dirb.

IV. RECEIVER CIRCUITS

A. Analog Data Path

The key challenges in designing the analog data path of the
receiver are extending its bandwidth and increasing the peaking
available at half-baud frequency. Inductors are often employed
for bandwidth extension of differential amplifiers [20] and CML
circuits [21], and their usage here is illustrated in Fig. 7, which
shows a single-ended representation of the analog data path. As
in the amplifier of [20], both shunt and series inductors are used
in broadening the bandwidths of the VGA and peaking ampli-
fier. In the differential implementation, there are a total of 12
peaking inductors (not counting the T-coils). To save area, these
inductors are realized as stacked spirals, as depicted in Fig. 8.
As an example, each inductor (0.89 nH) is formed as a
three-turn spiral on three metal levels, which fits within an area
of 20 m 20 m. With the spaces between inductors equal
to at least half their linear dimensions, the electromagnetic cou-
pling between inductors is weak enough [22] to have negligible
effect on the frequency responses of the amplifier stages.
To accommodate a wide range of input signal levels, the

VGA employs a parallel amplifier architecture [23] in which
one differential amplifier receives the full input signal while
another receives a resistively divided version. The second stage
of the peaking amplifier employs a conventional zero-peaked
topology with switched capacitive degeneration. A fundamental
limitation of this topology is that its high-frequency gain cannot
exceed the dc gain of a non-degenerated CML stage, and even
that gain ( 6 dB) cannot be obtained given bandwidth limita-
tions. Better peaking is achieved in the first stage by adopting
a structure with capacitively coupled parallel input stages and
active feedback, whose operation is now explained.
Let each differential stage of the peaking amplifier be iden-

tified by its transconductance, as indicated in Fig. 9. The bias
current consumed by each differential stage is also labeled in the

Fig. 8. Three-turn stacked spiral inductor on three metal levels.

figure. At low frequencies, input stage is isolated from the
rest of the circuit by capacitor , and the active feedback struc-
ture operates like the broadband amplifier described in [24]. Ap-
plying standard feedback equations to stage 1 shows that its dc
gain equals

(1)

The ratio of to is chosen so that is at least
0 dB when the circuit is simulated across all process, voltage,
and temperature (PVT) corners. (As in [23], the use of propor-
tional-to-absolute-temperature (PTAT) bias currents helps re-
duce the variation of device transconductance over tempera-
ture.)
At high frequencies, capacitor couples together the out-

puts of the parallel input stages, and the extra input transcon-
ductance increases the voltage gain. Mathematically, a zero and
pole are added to the transfer function so that (ignoring parasitic
capacitances and the shunt inductor)

(2)

where . While expressions for and can be derived,
more insight into the essential advantage of this circuit is gained
by examining the high-frequency gain limit . Since
capacitor can be considered a short at such high frequencies,
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Fig. 9. Block diagram of peaking amplifier showing power allocation among stages.

Fig. 10. Frequency response of peaking amplifier stage with active feedback
(stage 1).

and in (1) can be replaced by and
, respectively, to yield the high-frequency gain limit

(3)

Because the value of is significantly lower than that of
, the loop gain term in the denominator of (3) is much

smaller than the corresponding term in (1) and is, in fact, less
than unity. Therefore, (3) can be approximated as

(4)

Thus, the high-frequency gain of stage 1 may approach the dc
gain of two cascaded CML stages. Intuitively, with strong ca-
pacitive coupling, operation of stage 1 is effectively open loop
because the high-power stage overwhelms the feedback
from the much weaker stage. As depicted in Fig. 10, the
peaking is adjusted by switching the value of the capacitor .
Fig. 11 shows the detailed implementation of the peaking

amplifier. RC degeneration is employed in the , ,
and stages for improved linearity and bandwidth exten-
sion. The low-pass filters reduce the feedback factor
at high frequencies for a small ( 1 dB) enhancement of the
maximum peaking. The value of capacitor is set by ther-
mometer-coded Peaking control bits. Except for inverted po-
larity, these same Peaking bits are used to switch the capacitive
degeneration in stage 2. In addition, there are Un-Peaking con-
trol bits for reducing the peaking; when asserted, these bits con-

nect differential resistances across the shunt inductors, thereby
de-Qing them. By controlling both Peaking and Un-Peaking
bits, 17 levels of peaking are obtained.
Extracted simulations were performed to study the perfor-

mance of the analog data path (from input pad to peaking ampli-
fier output). Fig. 12 presents the simulated frequency responses
at slow, nominal, and fast PVT corners. The black curves show
the effects of changing the Peaking bits, while the lighter gray
curves show the effects of changing the Un-Peaking bits. At the
slow corner, up to 11 dB of peaking is achieved at 12.5 GHz.
Considerably higher peaking at 12.5 GHz is achieved at the
nominal and fast corners (19 and 23 dB, respectively). Due to
the parasitic resistances of the shunt inductors (stacked spirals),
asserting the Un-Peaking bits reduces the differential load im-
pedances of the peaking amplifier stages even at dc; these par-
asitic resistances are only a small fraction of the total load re-
sistance, however, so the resulting modulation of dc gain is less
than 0.5 dB [Fig. 12(a)]. While modeled in the simulations, the
variations of these parasitic resistances are only a minor con-
tributor to the overall PVT corner dependence of the peaking
responses.

B. DFE

To relax DFE feedback timing requirements, the first two taps
(H1 and H2) are realized speculatively (loop unrolled). Limiting
the power and area consumed by high-speed circuits in four par-
allel speculative paths is a critical design challenge. Previous
works [25], [26] have shown that DFE power consumption can
be reduced with the use of current-integrating summers, but in
such designs a separate summer was employed for each specu-
lative path. This overhead quickly becomes excessive as more
taps are speculated.
In principle, the dc offsets representing the H1 and H2 com-

pensation can be added into the decision-making latches them-
selves [27], but inserting extra devices into a latch increases
its internal parasitics, which is undesirable at these data rates.
As shown in Fig. 13, which presents the block diagram of a
DFE half (of one bank), the dc offsets in this design are stored
across series capacitors placed between the output of a cur-
rent-integrating summer and the CML buffers which stabilize
the input common-mode presented to the latches. This capac-
itive level-shifting technique allows dc offsets to be added to
the received data signal with good linearity and without com-
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Fig. 11. Detailed schematic of peaking amplifier.

Fig. 12. Simulated frequency responses of analog data path with 17 different peaking settings. (a) Slow PVT corner. (b) Nominal PVT corner. (c) Fast PVT corner.

promising latch performance. Using a single summer to drive
all four parallel paths eliminates potential mismatches between
summers and saves area. Sense amplifiers producing rail-to-rail
outputs are used as the decision-making latches, and the DFE
feedback logic is implemented in domino and static CMOS cir-
cuitry. DominoMUXes are used to select the data decision from
the speculative path with the correct H1 and H2 compensation.
Static CMOS MUXes are inserted in the DFE feedback paths
so that the control logic can apply static feedback bits (H1data,
H2data, H3data) during operations such as eye monitoring [6].
While current-integrating summers offer good power effi-

ciency, integrating the analog input signal for 1 UI introduces
frequency-dependent loss amounting to 3.9 dB at half-baud
frequency [28]. Such loss would be a significant penalty in a
receiver intended to equalize high-loss channels. Fig. 14 shows
two solutions for eliminating this loss penalty. In the sampled
integrating amplifier [Fig. 14(a)], a passgate sample-and-hold
(S/H) is placed in front of the amplifier so that it integrates a
held signal. This completely eliminates the systematic loss of

integration [28], but including a S/H has a couple of significant
drawbacks. The kT/C noise of a low-capacitance sampler may
degrade SNR, and kickback from the sampling switch disturbs
the previous stage, which may have difficulty recovering by
the next sampling interval (especially at these data rates). The
S/H and its associated difficulties are eliminated in the peaked
integrating amplifier [Fig. 14(b)]. In this approach, the input
stage is peaked with an RC degeneration network, whose values
are chosen to provide about 3.9 dB of peaking at half-baud
frequency. Because the required RC time constant depends on
the half-baud frequency, the degeneration capacitor must be
switched to support different data rates. This peaked integrator
approach has been adopted here for the DFE summers.
The schematic of the DFE summer is shown in Fig. 15(a).

The H3-H15 tap circuits employ a return-to-zero (RZ) structure
[6]. Because the glitches on the tap tail nodes occur every clock
cycle and are independent of data pattern, this RZ structure gen-
erates accurate integration currents with virtually no positive
setup time requirement on the DFE feedback signal. For the th
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Fig. 13. Block diagram of even DFE half.

Fig. 14. Two solutions to integrator loss. (a) Sampled integrating amplifier. (b) Peaked integrating amplifier.

DFE tap , the sign of its coefficient can be either positive or
negative depending on whether programmable tail current
is greater or less than programmable tail current . At high
data rates, integration times are short, and integrator gain is re-
duced. Boosting integration currents can help restore gain but
causes excessive common-mode drop on the summer output,
which degrades linearity. This limitation is overcome by intro-
ducing a PMOS injector circuit which is capacitively coupled
to the summer output nodes. As shown in the timing diagram of
Fig. 15(b), nodes and are
grounded during integrator reset. During the integration period,
the NMOS reset switches inside the PMOS injector are shut off,
and currents from sources are driven (through cou-
pling capacitors) into the summer output nodes, which raises
their common-mode. A similar PMOS injector is discussed in
[29]. As proposed in [25], a calibration circuit based on a replica
integrator is used to set all of the summer bias currents (in-
cluding ) so that the desired output common-mode is
obtained over process variations and different data rates.
The switches inside the box labeled Capacitive Level Shifters

are used to establish the dc offset voltages stored across the se-
ries capacitors. Because the voltages stored on the capacitors

are only modified slowly (on the time scale of DFE adaptation),
the charging circuitry for the capacitors can afford to be rela-
tively sluggish, so its switches are minimum size devices (for
small parasitic loading), and its bias voltage generators have rel-
atively high output impedances (for low power dissipation). It is
important that data-dependent signals not modulate the voltages
stored on the capacitors, for such errors could create ISI with a
time duration (due to sluggish recharging) which exceeds the
correction range of the 15-tap DFE.
During integrator reset, the left sides of the capacitors are

pulled up to the supply. Because the bias currents of the
input stage are not shut off during integrator reset, the reset of
nodes INTOUTP and INTOUTNmay be incomplete. To prevent
these data-dependent errors (e.g., 20mVdifferential) frommod-
ulating the capacitor voltages, the left sides of the capacitors are
pulled up to the supply by dedicated switches in an Enhanced
Reset Circuit, which ensures proper nulling of the differential
voltage between nodes VSWP and VSWN. After such nulling
has occurred, the right sides of the capacitors are connected to
bias voltages (VBP and VBN) representing the desired H1, H2,
and offset compensation. As indicated in the timing diagram, in-
tentional skew between the falling edges of clock signals CLK
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Fig. 15. Current-integrating summer of DFE. (a) Summer schematic. (b) Timing diagram. (c) Bias voltage generator for producing VBP and VBN.

and CLK’ provides a protective delay against making these con-
nections too early (avoiding data-dependent disturbances of bias
voltages VBP and VBN). During the integration period, CLK’
is high, so the voltages (or charges) stored on the series capaci-
tors are held constant until the next charging cycle (leakage cur-
rents are negligible at data rates above a few Gb/s). As shown
in Fig. 15(c), voltages VBP and VBN are generated across load
resistors by summing together currents from the IDACs used to
program the H1 tap, H2 tap, and offset compensation. This bi-
asing arrangement allows the H1 and H2 IDACs to be shared
among multiple speculative paths.

V. EXPERIMENTAL RESULTS

Fig. 16 shows a micrograph of the four-port I/O core, which
was fabricated in a 32-nm SOI CMOS process. With the PLL
overhead amortized over four lanes, the area of a single trans-
mitter/receiver pair is 0.81 mm . The test chip holding the four-
port I/O core was attached with controlled collapse chip con-
nection (C4) technology to a flip-chip plastic ball grid array
(FCPBGA) package, which was then mounted on a socketed
evaluation board.
In addition to the fully integrated I/O core, a separate

breakout test site containing one transmitter was built. The
breakout test site was not packaged but was characterized
on a wafer probe station with high-bandwidth probes. In this

Fig. 16. Micrograph of four-port I/O core.

setup, a differential half-rate clock is provided externally from
a low-noise clock synthesizer, and an on-chip programmable
pattern generator supplies data to the transmitter. The char-
acterization of the transmitter with the breakout test site is
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Fig. 17. Measured differential output eye diagrams of transmitter on breakout test site. (a) 28-Gb/s PRBS31 data pattern .
(b) 32-Gb/s PRBS15 data pattern .

Fig. 18. Measured skew between true and complement outputs of transmitter
as function of skew setting.

discussed next, and then the measurement results of the fully
integrated I/O core are presented.

A. Transmitter Measurements With Breakout Test Site

Fig. 17(a) shows the measured differential data eye of a
PRBS31 pattern at 28 Gb/s with a 1.1-V supply voltage.
Measured peak-to-peak (p-p) jitter is below 6 ps. To over-
come cable losses, the FFE tap coefficients have been set to

. Taking into account the de-emphasis
factor of 76/96, the transmitter output amplitude is 1.046 V
peak-to-peak differential (Vppd), which is close to the 1.1-V
supply voltage (the ideal amplitude for an impedance-matched
voltage-mode driver). The measured power consumption of
the transmitter is 217 mW at 28 Gb/s with a 1.1-V supply. An
output eye diagram with a 32-Gb/s PRBS15 data pattern is
displayed in Fig. 17(b). With a 1.2-V supply voltage and FFE
tap coefficients of , the transmitter output
amplitude is 1.14 Vppd. Total jitter (TJ) is extrapolated to be
7.7 ps p-p at a bit error rate (BER) of , of which 4.6 ps
p-p stems from ISI.
Fig. 18 shows the measured differential skew between the

true and complementary outputs as a function of the digital skew

Fig. 19. Measured duty cycle at transmitter output as function of duty-cycle
adjust setting with 25-Gb/s 0-1-0-1 sequence.

setting. Differential skew up to 28 ps can be compensated,
corresponding to a maximum cable length difference of about
5 mm. The measured duty cycle of a 25-Gb/s 0-1-0-1 sequence
as a function of the digital adjustment setting is shown in Fig. 19.
The tuning range is about 3.5%, which is on the low end of
that predicted by corner simulations but still sufficient to cover
the DCD due to device mismatches.

B. Measurements With Four-Port I/O Core

Fig. 20 shows a 28-Gb/s differential output eye diagram gen-
erated by a transmitter on the fully integrated I/O core. Even
with FFE de-emphasis, the ISI at eye center is visibly greater
than in the breakout test site measurement [Fig. 17(a)]. This
small loss of eye quality is accurately predicted by a link sim-
ulation tool with -parameter models for the package, evalua-
tion card, and cabling. On the other hand, the measured random
jitter (RJ) at the transmitter output is 450 fs rms, about twice
that predicted in circuit simulations. Such jitter is not a fun-
damental limitation of the LC-VCO-based PLLs in this tech-
nology, as significantly lower RJ ( 250 fs rms) has been re-
cently achieved with an updated version of the PLL (including
layout refinements).
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Fig. 20. Measured 28-Gb/s differential output eye diagram of transmitter on
fully integrated I/O core vertical scale 200 mV/div. . The data pattern is
PRBS31.

Fig. 21. Measured receiver responses with 17 different peaking settings. (a)
Time-domain responses to single “one” bit at 28 Gb/s. (b) Derived frequency
responses.

Receiver characteristics have been studied by applying clean
data to its inputs. Oscilloscope measurements of data signals
transmitted across calibration traces on the evaluation card are
used to set the FFE tap coefficients so that the loss of a short
channel (including transmitter package) is equalized. Loss of
the receiver package, however, is not corrected for. With (al-
most) clean data and the VGA set to maximum gain, the mea-

Fig. 22. Measured internal eye of receiver demonstrating equalization of 38-dB
loss channel at 25 Gb/s.

Fig. 23. Equalization experiment with test channel including 15-in trace on
PCB. (a) -parameters of 15-in PCB trace, interconnect cables, and evaluation
card. (b) Equalized bathtub curve with 28-Gb/s PRBS31 data pattern.

sured input sensitivity of the receiver at 28 Gb/s is 15 mVppd
at a BER of 10 . An internal eye monitor of the receiver is
used to measure its transient responses. Fig. 21(a) shows the
receiver responses to a single “one” bit at 28 Gb/s with 17 dif-
ferent settings of the peaking amplifier. Fourier transforms can
be used to derive the frequency responses of the receiver. Since
each response in Fig. 21(a) is the convolution of the receiver
impulse response with a 1-UI-wide pulse, its Fourier transform

, where is the receiver frequency re-
sponse, and . Calculating

for each response in Fig. 21(a) and solving for yields
the frequency responses shown in Fig. 21(b). The maximum
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TABLE I
PERFORMANCE SUMMARY FOR COMPLETE TRANSCEIVER

peaking is about 11 dB at 12.5 GHz and 7 dB at 14 GHz. Ac-
counting for the receiver package loss, the maximum peaking at
14 GHz is close to 10 dB.
The internal eye monitor is also used to measure the equal-

ized eye of the receiver (i.e., after DFE taps are applied). Fig. 22
shows the equalized eye in a 25-Gb/s experiment in which the
channel loss is 33 dB (38 dB with transmitter and receiver
package losses). With a least significant bit (LSB) value of
about 2.5 mV, the vertical eye opening exceeds 150 mVppd.
Finally, Fig. 23 presents the results of a 28-Gb/s equalization

experiment with a test channel including a 15-in trace on PCB
(Megtron 6 material with HTE4P foil), 3.7 in of evaluation card
traces, and interconnect cables (12 in from evaluation card to
PCB and 12 in from PCB to evaluation card) with mini-SMP
connectors. -parameter measurements [Fig. 23(a)] of this test
channel show a loss of 29 dB at 14 GHz; the losses of the trans-
mitter and receiver packages bring the total to 35 dB. Fig. 23(b)
shows the equalized bathtub curve with a 28-Gb/s PRBS31 data
pattern. The horizontal eye opening is 35.6% at a BER of 10 ,
and operation is error-free BER 10 at eye center. The
measured power consumption is 693 mW per lane (211 mW
for transmitter, 392 mW for receiver, and 90 mW for amortized
PLL). (This experiment was conducted at nominal temperature
and supply voltages, and the process split of the test chip was
also close to nominal.) The use of known power management
schemes could reduce this power but was not exercised for this
prototype. As an example, both DFE banks were always pow-
ered up during the experiments. If one of the DFE banks were
shut off when it is not needed, a conservative estimate of the
power savings would be 40 mW. The performance of the inte-
grated transceiver is summarized in Table I.

VI. CONCLUSION

This paper has presented a 4-tap FFE/15-tap DFE transceiver
in 32-nm SOI CMOS technology with a maximum data rate of
28 Gb/s, which is almost two times higher than that of other

fully integrated backplane transceivers published to date. Key
circuit techniques have been developed to achieve such data
rates. The proposed SST driver topology eliminates the main
speed bottlenecks of previous half-rate designs. The peaking
amplifier based on an active feedback structure provides
greater high-frequency gain than a conventional zero-peaked
differential amplifier. The use of capacitive level-shifters fa-
cilitates efficient implementation of DFE architectures with
multiple speculative taps. The equalization performance of the
transceiver at 28 Gb/s has been demonstrated with error-free
operation over a channel with 35-dB loss.
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