12Gb/s Duobinary Signaling with x2 Oversampled Edge Equalization

Kōichi Yamaguchi, Kazuhisa Sunaga, Shun'ichi Kaeriyama, Taka'aki Nedachi, Makoto Takamiya, Koichi Nose, Yoshihiro Nakagawa, Mitsutoshi Sugawara[†], Muneo Fukaishi

> NEC Corporation [†]NEC Electronics America

Outline

- Background
- Concept
- Developed techniques
- Results of experiments
- Conclusions

Background

- Increasing demands for high I/O bandwidth
- I/O bandwidth is limited by channel distortion – Intersymbol Interference (ISI), crosstalk/reflection
- Channel equalization is a key technique
 - Nyquist (zero-ISI) signaling in PAM-2, PAM-4

PAM-2 Nyquist Signaling

- Channel loss produces ISI: $1+a_1z^{-1}+a_2z^{-2}+a_3z^{-3}+...$
- Nyquist-freq. bandwidth, <u>zero ISI</u> (a_k=0)

Cons: High Nyquist rate leads to lower eye height Lower-Nyquist-freq. signaling is required

PAM-4 coding halves symbol rate

Pros: f_{nyq} = 1/2 of PAM-2 Nyquist-freq., <u>zero-ISI</u> Cons: Different symbol rate from PAM-2 9-dB-larger crosstalk sensitivity –1/3 eye height of maximum transition

Duobinary SignalingTransfer functionSingle bit response

Duobinary allows <u>controlled amount of ISI: 1+z⁻¹</u>

Cons: 3 level output: 1+(-1) / -1+(1)=0, 1+(1)=2, -1+(-1)=-2

Pros: f_{nyq} = 2/3 of PAM-2 Nyquist-freq. Previous data = 4/3 of PAM-4 Nyquist-freq. Same symbol rate as PAM-2

Duobinary Signaling (cont.)

Pros: No enhanced crosstalk sensitivity

-Duobinary signal includes only adjacent transitions

- Duobinary interference (1+z⁻¹) is removed by precoder in advance
 - Precoder encodes tx data according to $1/(1+z^{-1})$
 - No error propagation
 - Binary data is recovered at sampling instant

Eye Height Comparison with PAM-2

Eye Height Comparison with PAM-4

If gain difference is less than 5.8dB, $E_{duo} > E_{pam-4}$

Eye Height Comparison

- Duobinary signaling over 75-cm trace
 - 3.8-dB larger than PAM-2
 - 2.1-dB larger than PAM-4

Development Problems

- 1. How can signals be equalized into duobinary?
 - X2 oversampled equalization
- 2. How can clock signals be recovered from duobinary signals?
 - 2bit-transition-ensured coding
- 3. How can equalization be optimized?
 - Edge equalization

Development Problems

- 1. How can signals be equalized into duobinary?
 - X2 oversampled equalization
- 2. How can clock signals be recovered from duobinary signals?
 - 2bit-transition-ensured coding
- 3. How can equalization be optimized?
 - Edge equalization

How to Equalize Duobinary Signals?

Conventional symbol-rate equalization in duobinary

- Cannot cancel Nyquist-frequency phase delay
- Reduces timing margin

Duobinary Equalization

- Nyquist interval*, 1/(2f_{nyq})
 - PAM-2/4: 1.0 U.I.
 - <u>Duobinary: 1.5 U.I.</u>
- Equalization
 - PAM-2/4: Symbol-rate
 - Duobinary: Fractional-rate
- X2 oversampled equalizer
 - Multi-phase clock approach

X2 Oversampled Equalizer

- Multi-phase clock approach
 - 12Gb/s signaling by using 3GHz 8phase clock
 - 45 degrees corresponds to 0.5 U.I.

5-tap Symbol-rate Equalizer

- 5-tap controller produces delayed data for each tap
- 4:1MUX by using 4-phase clock
- CML output buffer with variable amplitude

Development Problems

- 1. How can signals be equalized into duobinary ?
 - X2 oversampled equalization
- 2. How can clock signals be recovered from duobinary signals?
 - 2bit-transition-ensured coding
- 3. How can equalization be optimized?
 - Edge equalization

How to Recover Clock from Duobinary?

- Oversampling clock recovery
 - High speed operation
 - PAM-2 compatibility
- Stable sampling at timing φc is required
 - 1-bit transition (2002 / -200-2): NG,
 - 2-bit transition (20-2 / -202): has to be ensured

Ensuring 2-bit Transition

Coding example:		Half-rate transition 2-bit transition	
LSB[1:0]	Encoded (A)	Precoded (B)	Rx input (C)
-1-1	-1-1 1-1	(-1) <u>-1-111</u> / (1) <u>11-1-1</u>	-2 <u>-202</u> / 2 <u>20-2</u>
-1 1	-1 1-1 1	(<u>-1)-111</u> -1 / (<u>1)1-1-1</u> 1	<u>-202</u> 0 / <u>20-2</u> 0
1-1	1-1 1-1	(-1 <u>)11-1-1</u> / (1 <u>)-1-111</u>	020-2 / 0-202
11	-1 1-1-1	(<u>-1)-111</u> 1 / (<u>1)1-1-1</u> -1	<u>-202</u> 2 / <u>20-2</u> -2

2-bit transition is ensured by using simple encoding

Clock Recovery in Duobinary Signaling

- Phase-interpolator-based clock recovery is adopted
- Duobinary signal is sampled at ϕd and ϕc

Development Problems

- 1. How can signals be equalized into duobinary?
 - X2 oversampled equalization
- 2. How can clock signals be recovered from Duobinary signals?
 - 2bit-transition-ensured coding
- 3. How can equalization be optimized?
 - Edge equalization

How to Optimize Equalization?

- Equalization error information is required
 - Level comparator
 - Reference voltage (expected amplitude)
- PAM-2
 - 1 reference voltage
 - 1 comparator
- Duobinary
 - 3-leveled signal
- Edge equalization

PAM-2 unequalized eye

Edge Equalization

- Non-optimum eq. produces non-zero sampled edge
- Sampled edge can be used as error signal

Edge Equalization (cont.)

- Sampled edge can be obtained from CR front-end
 No additional component
- Successful optimization by edge equalization

Duobinary Signaling System

- Moderate design complexity against PAM-2
 - Equalizer, Precoder, and Data decision circuit
 - Test chip includes transmitter and clock recovery

Chip Micrograph

- Features
 - 90nm CMOS 6 Metal Layer, Vdd: 1.0V
 - TX: 133 mW, 0.18mm²
 - RX: 97 mW, 0.055mm²

Eye Diagrams

(b) Duobinary

- 12Gb/s signaling over 75-cm low- ϵ PCB
 - 49mV x 35ps (PAM-2), 73.5mV x 52ps (Duobinary)
 - Duobinary eye height/width: 3.5 dB/1.5 times larger

Eye Diagrams (cont.)

- 12Gb/s signaling over 50-cm low-ε PCB
- Duobinary and PAM-2 have comparable eye openings

- 12Gb/s signaling over 25-cm low-ε PCB
- PAM-2 has larger eye opening than duobinary

Conclusions

- Duobinary signaling
 - Allows controlled amount of ISI to reduce signaling bandwidth
 - Better compatibility to PAM-2
 - Better crosstalk/reflection immunity
- Developed techniques
 - X2 oversampled equalization
 - 2bit-transition-ensured coding
 - Edge equalization
- Measured results
 - Fabricated with 90nm CMOS
 - 3.5dB x 1.5 times larger eye-opening than PAM-2

