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Outline

• Background
• Concept
• Developed techniques
• Results of experiments
• Conclusions
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• Increasing demands for high I/O bandwidth 
• I/O bandwidth is limited by channel distortion

– Intersymbol Interference (ISI), crosstalk/reflection  
• Channel equalization is a key technique

– Nyquist (zero-ISI) signaling in PAM-2, PAM-4

Background

Channel

Single bit Single bit response

ISI Crosstalk/
Reflection
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PAM-2 Nyquist Signaling

fnyq
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EQ

Transfer function Single bit response
w/ Channel loss

• Channel loss produces ISI: 1+a1z-1+a2z-2+a3z-3+...
• Nyquist-freq. bandwidth, zero ISI (ak=0)

(non-zero ISI)

(zero- ISI)
Eq.

Lower-Nyquist-freq. signaling is required

Time

Cons: High Nyquist rate leads to lower eye height
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PAM-4 Nyquist Signaling

fnyq
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4-level
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EQ
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Transfer function Single bit response

(zero ISI)

w/ Channel loss

• PAM-4 coding halves symbol rate 

Equalized 

00
01
11
10

[U.I.]
Time

Pros: fnyq = 1/2 of PAM-2 Nyquist-freq. , zero-ISI
Cons: Different symbol rate from PAM-2

9-dB-larger crosstalk sensitivity
–1/3 eye height of maximum transition

(non-zero ISI)
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Duobinary Signaling

fnyq

Gain

Freq.0
Binary
(1, -1)

Duobinary
(2, 0, -2)ChannelTX

EQ

(1+z-1)

[U.I.]1 2 3 4 5 6 7 8

RX
EQ

Transfer function Single bit response

• Duobinary allows controlled amount of ISI: 1+z-1

Previous data

Time

Same symbol rate as PAM-2

Cons: 3 level output: 1+(-1) / -1+(1)=0, 1+(1)=2, -1+(-1)=-2
Pros: fnyq = 2/3 of PAM-2 Nyquist-freq.

= 4/3 of PAM-4 Nyquist-freq.

Equalized 

w/ Channel loss
(non-zero ISI)
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Duobinary Signaling (cont.)

• Duobinary interference (1+z-1) is removed 
by precoder in advance 
– Precoder encodes tx data according to 1/(1+z-1) 
– No error propagation
– Binary data is recovered at sampling instant

Pros: No enhanced crosstalk sensitivity
–Duobinary signal includes only adjacent transitions

Duobinary eye

+/- Vref

Channel

Binary
(1, -1)

Binary
(1, -1)XO

R

2

0

-2

TX
RX

1+z-1

Binary
(1, -1)

Precoder
1/(1+z-1)
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Eye Height Comparison with PAM-2 

If gain difference is larger than 3.7dB, Eduo > Epam-2

fpam-2: Nyquist freq. of PAM-2
fduo: Nyquist freq. of Duobinary, 2/3* fpam-2

fpam-2

Epam-2

Eduo
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Freq.0

Channel loss
Duobinary (1+z-1)
PAM-2(cosine roll-off) 

+2.1dB

-1.6dB

fduo

Gain 
difference

Transfer function
Duobinary

PAM-2
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Eye Height Comparison with PAM-4 

fpam-4: Nyquist freq. of PAM-4

PAM-4
(cosine roll-off) 

-7.4dB

Gain

Freq.0

Channel loss

fduofpam-4

If gain difference is less than 5.8dB, Eduo > Epam-4

Gain 
difference

Transfer functionDuobinary

PAM-4 Epam-4

Eduo

Duobinary (1+z-1)

-1.6dB
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Eye Height Comparison
Data rate :12Gb/s, Media: low-ε PCB 

• Duobinary signaling over 75-cm trace
– 3.8-dB larger than PAM-2
– 2.1-dB larger than PAM-4

25 50

–20

–10

75

PAM-4
Duobinary

[cm]

[dB]

PAM-2

Larger eye height

Eye height
(compared with 
input voltage)

Trace length
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Development Problems
1. How can signals be equalized into duobinary?

– X2 oversampled equalization
2. How can clock signals be recovered from 

duobinary signals?
– 2bit-transition-ensured coding

3. How can equalization be optimized?
– Edge equalization

Channel

Equalize
Control

Clock
Recovery

Tx
Equalize

1

2

3

Data

Tap weights

Duobinary
signal
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Development Problems
1. How can signals be equalized into duobinary?

– X2 oversampled equalization
2. How can clock signals be recovered from 

duobinary signals?
– 2bit-transition-ensured coding

3. How can equalization be optimized?
– Edge equalization
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Conventional equalizationIdeal eye opening

Conventional symbol-rate equalization in duobinary
– Cannot cancel Nyquist-frequency phase delay
– Reduces timing margin 

How to Equalize Duobinary Signals?

[U.I.] 

Time

[U.I.] 

Time
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Duobinary Equalization 
• Nyquist interval*, 1/(2fnyq)

– PAM-2/4: 1.0 U.I. 
– Duobinary: 1.5 U.I.

• Equalization
– PAM-2/4: Symbol-rate 
– Duobinary: Fractional-rate

• X2 oversampled equalizer
– Multi-phase clock approach 

* least transition time in signaling

[U.I.] 
1.5

PAM-2 Duobinary

1.0

Sampling
point Time

Nyquist 
interval
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X2 Oversampled Equalizer

φ0 φ90 φ180 φ270

Data 
input

Duobinary 
Single bit 
response

44

Channel

φ45 φ135 φ225 φ3154

5Tap 
Symbol-rate

Equalizer

5Tap 
Symbol-rate

Equalizer

Combined 
output

• Multi-phase clock approach
– 12Gb/s signaling by using 3GHz 8phase clock
– 45 degrees corresponds to 0.5 U.I.

1.5
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4
4

4
4 Mux

Mux
Mux

Output
buffer

4

5-tap
controller 4:1

Mux

4:1Mux

data
φa

φa+90

50 
ohmsData 

input Data 
output

5-tap Symbol-rate Equalizer

4-phase 
clock

4

• 5-tap controller produces delayed data for each tap
• 4:1MUX by using 4-phase clock
• CML output buffer with variable amplitude 

Out.
buf.
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Development Problems
1. How can signals be equalized into duobinary ?

– X2 oversampled equalization
2. How can clock signals be recovered from 

duobinary signals?
– 2bit-transition-ensured coding

3. How can equalization be optimized?
– Edge equalization

Channel

Equalize
Control

Clock
Recovery

Tx
Equalize

1

2

3

Data

Tap weights

Duobinary
signal
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• Oversampling clock recovery
– High speed operation
– PAM-2 compatibility

• Stable sampling at timing φc is required
– 1-bit transition (2002 / -200-2): NG,
– 2-bit transition (20-2 / -202): has to be ensured

(a) 1-bit transition

How to Recover Clock from Duobinary?

(b) 2-bit transition
φd φc φd φc

0

2

-2

0

2

-2
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Ensuring 2-bit Transition
TX

2bit-
transition-
ensuring
encoder

Data 
input

Clock
Recovery

RXPrecoder

Z-1

LSB[1:0] Encoded (A) Precoded (B) Rx input (C)
-1-1 -1-1 1-1 (-1)-1-111 / (1)11-1-1 -2-202 / 220-2
-1 1 -1 1-1 1 (-1)-111-1 / (1)1-1-11 -2020 / 20-20 
1-1 1-1 1-1 (-1)11-1-1 / (1)-1-111 020-2 / 0-202
1 1 -1 1-1-1 (-1)-1111 / (1)1-1-1-1 -2022 / 20-2-2

A

2-bit transition is ensured by using simple encoding

Coding example:

(1, -1)

2-bit transition

n
n+2

1+z-1

B C
Half-rate transition
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Clock Recovery in Duobinary Signaling

φd
φc

Clock recovery

Up/Down
counterPD

For data 
recovery

D
em

ux
D

em
ux

Phase
interpolator

in inb
out outb2bit-transition-

ensured input

4-phase
clock

from PLL

φd φc

• Phase-interpolator-based clock recovery is adopted 
• Duobinary signal is sampled at φd and φc

Up/Down
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Development Problems
1. How can signals be equalized into duobinary?

– X2 oversampled equalization
2. How can clock signals be recovered from 

Duobinary signals?
– 2bit-transition-ensured coding

3. How can equalization be optimized?
– Edge equalization

Channel

Equalize
Control

Clock
Recovery

Tx
Equalize
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2
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Data

Tap weights

Duobinary
signal
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How to Optimize Equalization?

• Equalization error information is required   
– Level comparator
– Reference voltage (expected amplitude)

• PAM-2
– 1 reference voltage
– 1 comparator  

• Duobinary 
– 3-leveled signal

• Edge equalization PAM-2 unequalized eye

expected

actual
error
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(b) Non-optimum equalization 

0
Sampled edge

Nyquist Interval > 1.5

>0

Edge Equalization

Nyquist Interval = 1.5
• Non-optimum eq. produces non-zero sampled edge 
• Sampled edge can be used as error signal 

(a) Optimum equalization 

single bit 
response

0

Superposition of 
single bit responses

[U.I.] 
Time

[U.I.] 
Time
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Edge Equalization (cont.)

Sampled edge
Duobinary

signal Tap
weights

Equalize
ControlAdaptation Logic

• Sampled edge can be obtained from CR front-end 
– No additional component

• Successful optimization by edge equalization

After optimizationBefore optimization

φd

Clock 
recovery 

(CR)

PD
PI
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Duobinary Signaling System

Vref

φd

φc

Equalizer
controller

+
-

Data in

Data 
out

Adaptation logic

φd

φd

φd φc

C
R

D
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erPrecoder

2bit-
transition-
ensuring
encoder

Channelbuf
Transmitter

w/  x2 
oversampling

equalizer

φcφd

+Vref

-Vref

• Moderate design complexity against PAM-2
– Equalizer, Precoder, and Data decision circuit  
– Test chip includes transmitter and clock recovery 
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Chip Micrograph

600um

300um
RX TX

490um

235um

• Features 
– 90nm CMOS 6 Metal Layer, Vdd: 1.0V
– TX: 133 mW, 0.18mm2

– RX: 97 mW, 0.055mm2
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Eye Diagrams

(b) Duobinary(a) PAM-2
20ps

50mV 50mV
20ps

• 12Gb/s signaling over 75-cm low-ε PCB
– 49mV x 35ps (PAM-2),  73.5mV x 52ps (Duobinary)
– Duobinary eye height/width: 3.5 dB/1.5 times larger 
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• 12Gb/s signaling over 25-cm low-ε PCB
• PAM-2 has larger eye opening than duobinary

Eye Diagrams (cont.)

20ps100mV

• 12Gb/s signaling over 50-cm low-ε PCB
• Duobinary and PAM-2 have comparable eye openings

20ps100mV
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Conclusions

• Duobinary signaling
– Allows controlled amount of ISI to reduce 

signaling bandwidth
– Better compatibility to PAM-2
– Better crosstalk/reflection immunity

• Developed techniques
– X2 oversampled equalization
– 2bit-transition-ensured coding
– Edge equalization

• Measured results
– Fabricated with 90nm CMOS
– 3.5dB x 1.5 times larger eye-opening than PAM-2
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