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Agenda

e Phase Noise Definition and Impact
e |ldeal Oscillator Phase Noise
e | eeson Model

e Hajimiri Model



Phase Noise Definition

Ideal Oscillator Actual Oscillator
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e An ideal oscillator has an impulse shape in the frequency domain

e A real oscillator has phase noise “skirts” centered at the carrier frequency

* Phase noise is quantified as the normalized noise power in a 1Hz
bandwidth at a frequency offset Ao from the carrier

L(Aa))=1OIog[PS‘d‘9bﬁ‘”OI (a;’ +AD, 1Hz)j (dBc/Hz)
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Phase Noise Impact in RF Communication
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e At the RX, a large interferer can degrade the
SNR of the wanted signal due to “reciprocal
mixing” caused by the LO phase noise

e Having large phase noise at the TX can degrade
the performance of a nearby RX



Jitter Impact in HS Links

Tx Data
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e RX sample ¢
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ock jitter reduces the timing margin

of the system for a given bit-error-rate
e TX jitter also reduces timing margin, and can be

amplified by

low-pass channels



|deal Oscillator Phase Noise
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The tank resistance will introduce thermal noise
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Tank Impedance Near Resonance

Noiseless Energy Restorer
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Consider frequencies close to resonance w = @, + A
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|deal Oscillator Phase Noise
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The Equipartition Theorem [Lee JSSC 2000] states that, in equilibrium,
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amplitude and phase - noise power are equal. Therefore, this noise power is split

evenly@j between amplitude and phase.
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Phase noise due to thermal noise will display a - 20dB/dec slope away from the carrier
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Other Phase Noise Sources

[Perrott]
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Tank thermal noise is only one piece of the
phase noise puzzle

e Osclillator transistors introduce their own thermal
noise and also flicker (1/f) noise
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Leeson Phase Noise Model
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—‘"3 e Leeson’s model modifies the
N previously derived expression to
- |-2 account for the high frequency
Lecson lU+lug(2;k noise floor and 1/f noise
| | o> upconversion
ao, 5, log Aw A empirical fitting parameter F is
20 Eqn. 12 Introduced to account for

increased thermal noise

e Model predicts that the (1/A®)3
region boundary is equal to the
1/f corner of device noise and
the oscillator noise flattens at
half the resonator bandwidth
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A 3.5GHz LC tank VCO Phase
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VCO Output Spectrum Example
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L eeson Model Issues

e The empirical fitting
parameter F is not known
In advance and can vary
with different process
technologies and
oscillator topologies

e The actual transition

frequencies predicted by
the Leeson model does
not always match
measured data
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Harjimiri’s Model (T. H. Lee)

4 Injection at Peak (amplitude noise only)
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A time-Varying Phase Noise model: Hajimiri-Lee model

Impulse applied to the tank to measure its sensitivity
function
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The impulse response for the phase variation can be represented as
Fwot)
he(t, T) = u(lt — 1),
4 max
I' is the impulse sensitivity function ISF

gmax, the maximum charge displacement across the capacitor, is a normalizing factor
15 ELENG620-IC Design of Broadband Communication circuit



ISF Model

d The phase variation due to injecting noise can be
modeled as:

Ad = I(wyT)2X Aq

—— = T(w,7)

X max

AG « G oy

d The function, ['(X), is the time-varying proportionality
factor and called the “impulse sensitivity function”.

d The phase shift is assumed linear to injection charge.

d ISF has the same oscillation period T of the oscillator
itself.

d The unity phase impulse response can be written as:
I'(wyT)

};¢{:T1'} = ul(r—1)
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How to obtain the Impulse sensitivity function
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Consider the effect on phase noise of each noise source
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Typical ISF Example
d The ISF can be estimated analytically or calculated
from simulation.

d The ISF reaches peak during zero crossing and zero
at peak.
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Typical ISF for (a) LC, (b) Bose and (c) ring oscillators.
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Phase Noise Computation

The impulse sensitivity function is used to obtain the phase noise impulse function

h¢(t,f)zr(qLof)u(t_f)

The phase noise can then be computed by the superposition (convolution) integral of the

any arbitrary noise current with the phase noise impulse function

#(0)= [h oM = [Tl

qmax —00

r t
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l Integration Modulation
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ISF Decomposition w/ Fourier Series

In order to gain further insight, and because the ISF is periodic, it may be expressed as a Fourier series

INaw,r)= (;’ + icn cos(new,z +6,)

n=1

where the coefficients ¢, are real and 6, is the phase of the nth ISF harmonic.
The phase noise can then be computed by

#(t)= 1{ I )dr+ZcJ'(rcosna)r

qmax —00
This allows the excess phase from an arbitrary noise source to be computed once the ISF Fourier
coefficients are deteremined. Essentially, the current noise is mixed down from different frequency bands

and scaled according to the ISF coefficients.

- .

¢y cos(mﬂt + 01)
Ymax . == o(t) V(L)
7 " € nCOS(Net+6,) cos[@gt + ¢(1) J—>
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Phase Noise Frequency Conversion

First consider a simple case where we have a sinusoidal noise current whose frequency is near an

integer multiple m of the oscillation frequency

i(t)=1_cos[(me, + Aw)t]

When performing the phase noise computation integral, there will be a negligible contribution from all terms

other thann=m

| c_sin(Awt
(O(I)z m2m ( (1))
qmaan)

The resulting frequency spectrum will show two equal sidebands at + Aw. Assuming a sinusoidal waveform

v, (t) = cos[a,t + ¢(t)], there will be two equally weighted sidebands symmetricabout the carrier with power

2
I mcm
P (Aw)~10 Iog(4qmawaj

2
Note that this power is proportional to (Al ) .
w
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Phase Noise Due to White & 1/f Sources

Extending the previous analysis to the general case of a white noise source resultsin
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Here noise components near integer multiples of the carrier frequency all fold near the carrier
1 2
itself and are weighted by () .
Aw

Noise near dc gets upconverted, weighted by coefficient c,,s01/ f noise becomes?/ f ° noise near the carrier.

Noise near the carrier stays there. White noise near higher integer multiples of the carrier gets downconverted

and weighted by 1/ f 2.
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How to Minimize Phase Noise?

In order to minimize phase noise, the ISF coefficients ¢, should be minimized. Using Parseval's theorem

0 2
k= 1 IF(X)de =21
m=0 T 0

rms

The spectrum in the 1/ f  region can be expressed as
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L(Aw)=10log

Thus, reducing I, . will reduce the phase noise at all frequencies.

ms
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1/t Corner Frequency

Consider current noise which includes1/ f content

_ij/f
nyf — In Aw
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where @, ; is thel/ f corner frequency

From the previousslide |
- L(AT) .30 dB/decade
i
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Thus, thel/ f ° corner frequency is
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This is generally lower than the 1/ f device/circuit noise corner. If T, is minimized

through rise - and fall - time symmetry, then there is the potential for dramatic reductionsinl/ f noise.
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Cyclostationary Noise Treatment

Transistor drain current, and thus noise, can change dramatically over an oscillator cycle.
The LTV model can easily handle this by treating it as the product of stationary white noise
and a periodic function.
i (t)=i  (t)e(opt)
Herei , is a stationary white noise source whose peak valueis equal to that of the cyclostationary
noise source, and a(x)is a periodic unitless function with a peak value of unity. Using this, we can

formulate an effective ISF

L (X) = T(X)er(x)

=
L % ) %1 M
T VTANK .
Tonas /\

EANAY
|

/\ -
"o

<
D

@
>
-
Il
Il
@]
[ 8]

()

n

25



Key Osclillator Design Points

e As the LTI model predicts, oscillator signal power
and Q should be maximized

e Ideally, the energy returned to the tank should be
delivered all at once when the ISF Is minimum

e Oscillators with symmetry properties that have small
["y. will provide minimum 1/f noise upconversion
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Phasor-Based Phase Noise Analysis

Physical Processes of Phase Noise in Differential LC Oscillators
J.J.Rael and A. A. Abidi
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e Models noise at 2 sideband frequencies
with modulation terms a,f m %L,m @

e The a, and a, terms sum co-linear with o0, oo _—
the carrier phasor and produce /:'\ (3 i 7
amplitude modulation (AM) - :\:‘3 -

e The ¢, and ¢, terms sum orthogonal b) Jw "

with the carrier phasor and produce
phase modulation (PM)
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Phasor-Based LC Oscillator Analysis

e This phasor-based approach
can be used to find closed-
form expressions for LC
oscillator phase noise that
provide design insight

e In particular, an accurate
expression for the Leeson
model F parameter Is obtained

L{Aa)}zlolog{ZFkT( “Zwﬂ (dBc/Hz)



LC Oscillator F Parameter
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e 1st Term = Tank Resistance Noise
e 2nd Term = Cross-Coupled Pair Noise
e 3rd Term = Tall Current Source Noise

e The above expression gives us insight on how to optimize
the oscillator to reduce phase noise

e The tail current source is often a significant contributor to

total noise s



Taill Current Noise

dThe switching differential pair can be modeled as a
mixer for noise in the current source

dOnly the noise located at even harmonics will

roduce phase noise.
P P Current Noise PSD
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Loading in Current-Biased Oscillator

e The current source

T T
l
plays 2 roles é T T Q é /1|\ ™ %
e It sets th illator bi X Y X !
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e Provides a high impedance
in series with the Hoiseless
switching transistors to
prevent resonator loading
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Noise Filtering in Oscillator

A Only thermal noise in the current source transistor around 2nd
harmonic of the oscillation causes phase noise.

QIn balanced circuits, odd harmonics circulate in a differential
path, while even harmonics flow in a common-mode path

A A high impedance at the tail is only required at the 2"d harmonic
to stop the differential pair FETs in triode from loading the
resonator.
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Noise Filtering in Oscillator

4 Tail-biased VCO with noise filtering.

High impedance
at2 w,

2" harmonic
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Phase Noise w/ Tail Current Filtering
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e Tail current noise filtering provides near 7dB improvement
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Noise Filtering in Oscillator

A top-biased VCO often provides improved substrate
noise rejection and reduced flicker noise
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Next Time

e Divider Circuits

36



In general the impulse sensitivity function is periodic with a
fundamental frequency equal to the oscillating frequency

The input sensitivity function can be characterized as a Fourier Series:

Co =
[Nwyt) = 5 + Z Cp COS(NWoT + G,),
n=1
An the phase noise is then

G(1) = f he(t, T)i(r)dt = ——-——1—~—— HNwgt)i(t) dr.

o0 dmax J—co

Therefore:

1 Co t - o0 ! .
¢(t) = m[——z-— ﬁwz(r)dr +;Cn /_ooz(r) cos(na)gr)dr].

d max



If the input noise is represented as i(t) = I, cos[(mwg + Aw)i
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1 r
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n=| —oQ

(1) =

Due to the periodicity of the terms, the series converge to (n=m term only):
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If the input noise is represented by its power distribution function

Qmax

1 [eo [7 . - L
() = [2 [mz(r)dr+écn [_ooz(r)cos(na)gr)dr].

N(w)
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For small noise level j K ]

Vou = Vo COS(a)Ot + ¢(t))
V. =V, cos(a,t)—V, sin(m,t)sin(a(t

out —

V,, =V, cos(m,t)— V,(sin(a,t))s(t)
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