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Announcements
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• Exam 2 Thursday Nov 30
• One double-sided 8.5x11 notes page allowed
• Bring your calculator
• Covers through Lecture 14

• Project Final Report due Dec 4



Agenda
• Common wireline modulation schemes
• Electrical transmitters
• Electrical channel issues & optical link motivation
• Optical channels & modulation techniques
• Optical transmitter circuits
• Vertical-cavity surface-emitting laser (VCSEL)
• Mach-Zehnder modulator (MZM)
• Electro-absorption modulator (EAM)
• Ring-resonator modulator (RRM)

• Conclusion
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High-Speed Serial I/O
• Found in applications ranging from 

high-end computing systems to 
smart mobile devices

• Typical processor platform
• Processor-to-memory: DDR4
• Processor-to-peripheral: PCIe & USB 
• Storage: SATA
• Network: LAN

• Mobile systems
• DSI : Display Serial Interface
• CSI : Camera Serial Interface
• UniPRO : MIPI Universal Protocol

4

AMD EPYC Rome Platform



High-Speed Electrical Link System
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PAM-2 (NRZ) vs PAM-4 Modulation
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• Binary, NRZ, PAM-2
• Simplest, most common modulation format

• PAM-4
• Transmit 2 bits/symbol
• Less channel equalization and circuits run ½ speed
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Modulation Frequency Spectrum
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Majority of signal power 
in 1GHz bandwidth

Majority of signal power 
in 0.5GHz bandwidth



Nyquist Frequency
• Nyquist bandwidth constraint:

• The theoretical minimum required system bandwidth to detect RS 
(symbols/s) without ISI is RS/2 (Hz)

• Thus, a system with bandwidth W=1/2T=RS/2 (Hz) can support a 
maximum transmission rate of 2W=1/T=RS (symbols/s) without ISI
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• For ideal Nyquist pulses (sinc), the required bandwidth is only 
RS/2 to support an RS symbol rate

Nyquist FrequencyBits/SymbolModulation
Rs/2=1/2Tb1NRZ
Rs/2=1/4Tb2PAM-4



NRZ vs PAM-4

• PAM-4 should be considered when
• Slope of channel insertion loss (S21) exceeds reduction in PAM-4 

eye height
• Insertion loss over an octave is greater than 20*log10(1/3)=-9.54dB

• On-chip clock speed limitations
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NRZ vs PAM-4 – Desktop Channel

• Eyes are produced with 4-tap 
TX FIR equalization

• Loss in the octave between 2.5 
and 5GHz is only 2.7dB
• NRZ has better voltage margin
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Loss at 2.5GHz = -4.8dB

Loss at 5GHz = -7.5dB



NRZ vs PAM-4 – T20 Server Channel

• Eyes are produced with 4-tap 
TX FIR equalization

• Loss in the octave between 2.5 
and 5GHz is 15.8dB
• PAM-4 “might” be a better choice
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Loss at 2.5GHz = -11.1dB

Loss at 5GHz = -26.9dB



Agenda
• Common wireline modulation schemes
• Electrical transmitters
• Electrical channel issues & optical link motivation
• Optical channels & modulation techniques
• Optical transmitter circuits
• Vertical-cavity surface-emitting laser (VCSEL)
• Mach-Zehnder modulator (MZM)
• Electro-absorption modulator (EAM)
• Ring-resonator modulator (RRM)

• Conclusion
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Differential Signaling

• A difference between voltage or current is sent between 
two lines

• Requires 2x signal lines relative to single-ended signaling, 
but less return pins

• Advantages
• Signal is self-referenced
• Can achieve twice the signal swing
• Rejects common-mode noise
• Return current is ideally only DC
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[Sidiropoulos]



Current vs Voltage-Mode Driver
• Signal integrity considerations (min. reflections) requires 

50Ω driver output impedance
• To produce an output drive voltage

• Current-mode drivers use Norton-equivalent parallel termination
• Easier to control output impedance

• Voltage-mode drivers use Thevenin-equivalent series 
termination
• Potentially ½ to ¼ the current for a given output swing
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Push-Pull Current-Mode Driver
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• Used in Low-Voltage Differential Signals (LVDS) standard
• Driver current is ideally constant, resulting in low dI/dt noise
• Dual current sources allow for good PSRR, but headroom can be a 

problem in low-voltage technologies
• Differential peak-to-peak RX swing is IR with double termination



Current-Mode Logic (CML) Driver
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• Used in most high performance serial links
• Low voltage operation relative to push-pull driver

• High output common-mode keeps current source saturated
• Can use DC or AC coupling

• AC coupling requires data coding
• Differential pp RX swing is IR/2 with double termination



Current-Mode Current Levels
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Voltage-Mode Current Levels
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Current-Mode vs Voltage-Mode Summary

• An ideal voltage-mode driver with differential RX 
termination enables a potential 4x reduction in 
driver power

• Actual driver power levels also depend on
• Output impedance control
• Pre-driver power
• Equalization implementation
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Normalized Current LevelCurrent LevelDriver/Termination
1xVd,pp/Z0Current-Mode/SE
1xVd,pp/Z0Current-Mode/Diff

0.5xVd,pp/2Z0Voltage-Mode/SE
0.25xVd,pp/4Z0Voltage-Mode/Diff



Global Resistor Calibration
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• Off-chip precision resistor is used as reference
• On-chip termination is varied until voltages are within an LSB

• Dither filter typically used to avoid voltage noise
• In current-mode drivers, this code is used for the nominal 

load setting

[Chan ASSCC 2016]



• Voltage-mode driver implementation 
depends on output swing requirements

• For low-swing (<400-500mVpp), an all 
NMOS driver is suitable

Low-Swing Voltage-Mode Drivers
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• Voltage-mode driver implementation 
depends on output swing requirements

• For high-swing, CMOS driver is used

High-Swing Voltage-Mode Drivers
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Low-Swing VM Driver Impedance Control
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• A linear regulator sets the output stage supply, Vs
• Termination is implemented by output NMOS transistors
• To compensate for PVT and varying output swing levels, the pre-drive 

supply is adjusted with a feedback loop
• The top and bottom output stage transistors need to be sized 

differently, as they see a different VOD

[Poulton JSSC 2007]



4:1 Output Multiplexing Voltage-Mode TX
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Y.-H. Song, R. Bai, P. Chiang, and S. Palermo, “A 0.47-0.66pJ/bit, 4.8-8Gb/s I/O Transceiver in 65nm-CMOS,” IEEE JSSC, vol. 48,
no. 5, pp. 1276-1289, May 2013.
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• Impedance control is 
achieved independent 
of the pre-driver supply 
by adding additional 
up/down analog-
controlled NMOS 
transistors

• Level-shifting pre-driver 
allows for smaller 
output transistors



Low-Swing Voltage-Mode Driver 
Analog Impedance Control
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Y.-H. Song, R. Bai, P. Chiang, and S. Palermo, “A 0.47-0.66pJ/bit, 4.8-8Gb/s I/O Transceiver in 65nm-CMOS,” IEEE JSSC, vol. 48,
no. 5, pp. 1276-1289, May 2013.

• Replica global impedance control loop provides analog gate voltages to 
the additional top/bottom transistors to set the pull-up/down impedance



High-Swing Voltage-Mode Driver 
Impedance Control
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• Passive resistors + transistors’ triode resistance

• Output impedance will change due to process variation

• Causes reflection and level mismatch

VDD

Rterm
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MN

MP

In Out



High-Swing Voltage-Mode Driver 
Impedance Control
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• Equalization control by setting 
the number of segments 
connected to each tap

• Termination control by setting 
the total number of enabled 
segments

• Disadvantages:
• Transistor stacking in full-rate path
• Extra area due to redundant 

segments
• Extra power consumption because 

pre-driver should be sized to drive 
maximum load

• Sensitive to P/N skew variations



High-Swing Voltage-Mode Driver 
Hybrid Impedance Control Scheme
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• Programmable number of driver slices provides coarse impedance 
control to compensate for resistor variations

• Analog impedance loop provides fine impedance control to 
compensate for NMOS/PMOS variations

• Measured differential mode return loss meets key protocols 
composite return loss mask

Analog Impedance Loop 75 to 85
driver slices 
(10 programmable 
slices with NAND and 
NOR as pre-driver)

[Chan ASSCC 2016]



Current-Mode Driver Example
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Voltage-Mode Driver Example
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Agenda
• Common wireline modulation schemes
• Electrical transmitters
• Electrical channel issues & optical link motivation
• Optical channels & modulation techniques
• Optical transmitter circuits
• Vertical-cavity surface-emitting laser (VCSEL)
• Mach-Zehnder modulator (MZM)
• Electro-absorption modulator (EAM)
• Ring-resonator modulator (RRM)

• Conclusion
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High-Speed Electrical Link System

32
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Electrical Backplane Channel

• Frequency dependent loss
̶ Dispersion & reflections

• Co-channel interference
̶ Far-end (FEXT) & near-end (NEXT) crosstalk
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Channel Performance Impact



Link with Equalization

• A progressive combination of TX-side Finite-
Impulse Response (FIR) filtering and RX-side 
Continuous-Time Linear Equalizers (CTLE) and 
Decision-Feedback Equalizers (DFE) is often 
employed to mitigate channel ISI
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Channel Performance Impact



High-Speed Optical Link System
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Optical Channel• Optical interconnects remove many 
channel limitations
• Allows for dramatically longer reach
• Potential for high information density with 

wavelength-division multiplexing (WDM)



Data Center Links
• Different interconnect 

technologies are used to 
span various distances

• Electrical I/O
• Chip-to-module
• Intra-rack (DAC cables)

• Optical I/O
• Intra-rack (AO cables)
• TOR switch to edge switch

38

[Gigalight]



Data Center Link Length

• Maximum reach scales inversely with data rate
39

[Mellanox]



Wavelength-Division Multiplexing (WDM)
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• WDM allows for multiple high-bandwidth (10+Gb/s) 
signals to be packed onto one optical channel

[Young JSSC 2010]



Agenda
• Common wireline modulation schemes
• Electrical transmitters
• Electrical channel issues & optical link motivation
• Optical channels & modulation techniques
• Optical transmitter circuits
• Vertical-cavity surface-emitting laser (VCSEL)
• Mach-Zehnder modulator (MZM)
• Electro-absorption modulator (EAM)
• Ring-resonator modulator (RRM)

• Conclusion
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Optical Channels
• Short distance optical I/O channels are 

typically either waveguide (fiber)-based or 
free-space

• Optical channel advantages
• Much lower loss
• Lower cross-talk
• Smaller waveguides relative to electrical traces
• Potential for multiple data channels on single 

fiber via WDM
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Optical Fiber Cross-Section

• Optical fibers confine light between a higher 
index core and a lower index cladding via 
total internal reflection

43

[FOA]



Silica Glass Fiber Loss
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• Scattering, absorption by material impurities, and other 
effects cause loss as the signal propagates down the fiber

• Optical fiber loss is specified in dB/km
• Single-Mode Fiber loss ~0.25dB/km at 1550nm
• RF coaxial cable loss ~500dB/km at 10GHz

[Cisco]



Fiber Bandwidth and Dispersion
• While optical fiber has very 

wide bandwidth over which 
there is very low loss, there 
are still limits to high-speed 
communication

• Optical fiber can disperse a 
broadband signal, as different 
spectral components travel at 
different speeds

• This is Chromatic Dispersion 
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[Sackinger]



Two Fiber Bandwidths
• Optical Carrier Bandwidth

• Assuming a spectrally-pure signal, 
this is large (11THz near 1550nm)

• Modulated Signal Bandwidth
• This is often limited by chromatic 

dispersion
• 1km of standard SMF is a few 

10GHz with a laser linewidth of 1nm
• WDM can take advantage of the 

width carrier bandwidth with 
multiple carriers modulated at 
~10Gb/s to achieve overall Tb/s 
communication

46

[Sackinger]



Optical Modulation Techniques

• Two modulation techniques
• Direct modulation of laser
• External modulation of continuous-wave (CW) “DC” 

laser with absorptive or refractive modulators
47
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• Directly modulating laser output power
• Simplest approach
• Introduces laser “chirp”, which is unwanted frequency 

(wavelength) modulation
• This chirp causes unwanted pulse dispersion when passed 

through a long fiber

Directly Modulated Laser

48

[Sackinger]
Din

Laser
Pout

IL



• External modulation of continuous-wave (CW) 
“DC” laser with absorptive or refractive modulators
• Adds an extra component
• Doesn’t add chirp, and allows for a transform limited 

spectrum

Externally Modulated Laser
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[Sackinger]
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Agenda
• Common wireline modulation schemes
• Electrical transmitters
• Electrical channel issues & optical link motivation
• Optical channels & modulation techniques
• Optical transmitter circuits
• Vertical-cavity surface-emitting laser (VCSEL)
• Mach-Zehnder modulator (MZM)
• Electro-absorption modulator (EAM)
• Ring-resonator modulator (RRM)

• Conclusion
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• Light Amplification by Stimulated Emission of Radiation

• Light Oscillation by Stimulated Emission of Radiation
• Lasers are optical oscillators that emit coherent light through the 

process of stimulated emission
• 3 Elements in all lasers

• Amplifying Medium
• Pumping Process
• Optical Feedback (Cavity)

What is a Laser?

51

[Fejer]



Semiconductor Diode Lasers
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• Can be made with simple p-n junction
• Based on transitions between bands

• Direct bandgap materials necessary
• Si isn’t  GaAs, InP

• Pumped electrically with current source
• Efficient device requires confinement of both carriers 

and photons
• Leads to the use of heterostructures

[Verdeyen]



Edge Emitters & VCSELs
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• Edge Emitters
• Advantage

• Historically easier to manufacture
• Disadvantages

• Emit light in an elliptical mode
• Higher testing and packaging costs

• VCSELs – Vertical Cavity Surface 
Emitting Lasers
• Advantages

• Can make 2-D arrays
• Emit light in a circular output mode
• Smaller device  Lower operating 

currents
• Lower testing and packaging costs

• Disadvantage
• Hard to manufacture due to growth of 

high reflective mirrors

[Verdeyen]



VCSEL Light-Current-Voltage (LIV) Curve
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VCSEL Model
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• Capture thermally-dependent electrical and optical dynamics
• Provide dc, small signal, and large-signal simulation capabilities



Temperature-Dependent Performance

• Optical power-current-voltage (L-I-V) response is temperature-
dependent
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23oC

80oC

25Gb/s

• Bandwidth is bias and temperature dependent
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Ib=6mA
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Ts=23oC
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Measured & Simulated 25Gb/s Eye Diagrams



Laser Drivers
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• Current-mode drivers are often used due to the laser’s linear 
L-I relationship

• In addition to the high-speed modulation current Imod, laser 
drivers must also supply a bias current Ibias to ensure a 
minimum frequency response and/or eliminate turn-on delay

Current-Mode VCSEL Driver
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Pout
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25Gb/s VCSEL Link
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• Current-mode output driver
• Bandwidth extension achieved with on-die shunt-peaking 

termination in the output stage and with Cherry-Hooper 
preamplifier stage

[Proesel ISSCC 2012]



Multiplexing FIR Output Driver
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• 4-tap FIR filter 
implemented in driver to 
compensate for VCSEL 
frequency response

[Palermo ESSCIRC 2006]



VCSEL TX Optical Testing
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Wirebonded 
10Gb/s VCSEL



VCSEL 16Gb/s Optical Eye Diagrams
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Iavg=6.2mA, ER=3dB

w/ Equalization

IDC = 4.37mA
IMOD = 3.66mA

IDC = 3.48mA
I= -0.70mA
I0 = 4.36mA
I1 = -0.19mA
I2 = 0.19mA

Equalization increases 
vertical eye opening

45% at 16Gb/s

No Equalization



Equalization Performance
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ER=3dB ER=6dB

14Gb/s
35% less Iavg 

138% increase in MTTF
4Tap Eq

No Eq

• Maximum data rate vs Average current
• Min 80% eye opening & <40% overshoot

• Equalization allows lower average current for a given data rate

• Linear equalizer limited by VCSEL nonlinearity



PAM2 VCSEL Driver w/ 2-Tap Nonlinear FFE
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• VCSEL’s bias-dependent 
frequency response results in 
nonlinear transient pulse 
responses

• A 2-tap non-linear equalizer 
with different equalization taps 
for high and low pulses provides 
performance improvement

[Raj CICC 2015]



PAM4 VCSEL Driver w/ 2.5-Tap Nonlinear FFE

• A 2.5-tap nonlinear equalizer, with the first pre-cursor weight only 
dependent on the MSB, is a good compromise between complexity 
and performance 65
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Serializing VCSEL TX & Output Stage

• VCSEL transmitter serializes 16 bits or 8 PAM-4 symbols

• Output stage is a 5-bit non-uniform current-mode DAC
• MSB and MSB-1 set the main PAM-4 symbol levels
• 3 LSB currents implement the 2.5-tap equalizer with the symbol 

pattern selecting the weighting from the 32X3 LUT
66
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50Gb/s PAM4 Experimental Results

• Core transmitter 
area is 0.2mm2
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No Equalization 2-Tap Linear

2.5-Tap Linear 2.5-Tap Nonlinear

• 2.5 tap nonlinear equalizer improves eye height 
and timing alignment of the 3 PAM4 eyes

[Tyagi PTL 2018]
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Mach-Zehnder Modulator (MZM)
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• An optical interferometer is formed with the incoming light split, 
experiencing phase shifts through the two paths, and then recombined

• Assuming no loss and a perfect 50/50 splitter/combiner

[Webster 
CSICS 2015]
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Silicon Depletion-Mode MZM
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• Here the silicon waveguide is doped as a PN junction
• The depletion region is modulated as a function of the 

applied reverse bias voltage
• The resultant change in the carrier density within the 

depletion region causes the refractive index to change

[Analui JSSC 2006]



Traveling-Wave MZM Driver
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[Analui JSSC 2006]

• Depletion-mode MZM is driven with a 
5Vppd signal



Distributed MZM Driver
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• Allows for CMOS style drivers
• Well suited for a monolithic silicon photonic process
• Hybrid integration requires may pad connections between 

CMOS/silicon photonic die

[Cignoli ISSCC 2015]



PAM4 Level Generation w/ MZMs

• E-DAC PAM4 TX
• PAM4 driver bandwidth and swing limitation
• Multi current/voltage level 

• O-DAC PAM4 TX
• Velocity mismatch between LSB and MSB
• Multi driver design

73



Optical DAC NRZ/PAM4 
Reconfigurable MZM TX

• 5 LSB segments and 9 MSB segments
74

[Li BCICTS 2018]



150uw/div 8ps/div 150uw/div 8ps/div 150uw/div 8ps/div

(a) (b) (c)

56Gb/s PAM4 16nm FinFET CMOS Prototype

Eye heightEYE width RLM ERSegment setting
11.6uW5.12ps0.9426.35dB3 LSB+6 MSB(a)
4.6uW5.01ps0.8968.14dB4 LSB+7 MSB(b)
18.4uW5.7ps0.9448.46dB4 LSB+8 MSB(c)
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• Ring-resonator modulator (RRM)

• Conclusion

76



Electroabsorption Modulator (EAM)

• Electroabsorption modulators operate with voltage-dependent 
absorption of light passing through the device

• The device structure is a reverse-biased p-i-n diode
• The Franz-Keldysh effect describes how the effective bandgap of the 

semiconductor decreases with increasing electric field, shifting the 
absorption edge

• While this effect is weak, it can be enhanced with device structures 
with multiple quantum wells (MQW) through the quantum-confined 
Stark effect 77

[Helman JSTQE 2005]Waveguide EAM [Liu 2008]



EAM Device Types

• EAMs can be waveguide-based or 
surface normal

• Waveguide-based structures typically 
allow for higher extinction ratios due to 
the increased absorption length

• Surface normal devices provide the 
potential for large arrays of optical I/Os
through bonding

78

Surface Normal EAM*

[Helman JSTQE 2005]

Waveguide EAM [Liu 2008]

MQW EAM Array Bonded onto 
a CMOS Chip [Keeler 2002]



EAM Switching Curve

• At low reverse-bias, the device ideally has low absorption 
and most of the light appears at the output

• The absorption increases when a strong reverse-bias is 
applied and less power appears at the output

• EAMs are characterized with a switching voltage VSW that 
corresponds to a given extinction ratio

• Typical switching voltages are 1.5 to 4V 79

VM

Pout/Pin

P0

P1

1

VSW
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EAM Equivalent Model

• Electrically, the EAM is a reverse-based diode
• This is modeled with a reverse-bias diode model 

and a non-linear absorption block FNL(VM) 
• Depending on the integration level with the driver, 

the device may also include a termination resistor
80

Optional (Depending 
on Integration)

Extracted from curve 
fitting measurements

[Deshours JLT 2011]



67GHz Hybrid Silicon (InP) EAM

• EAM is formed with an InP p-
i-n diode bonded onto silicon

• Design for a controlled-
impedance driver

• Nominal 1300nm operation 
with -4V bias and 2V drive 
achieves ~15dB ER

81

50Gb/s

[Tang OFC 2012]



Controlled-Impedance EAM Driver

• If the EAM is not tightly integrated with the driver circuitry, 
then a controlled-impedance driver is required

• Bias current used to set operating point
• The high EAM swings results in large power consumption

82

10Gb/s w/ 2.5V swing 
& -1.7V bias

[Vaernewyck Opt. Exp. 2013]



28Gb/s GeSi EAM on SOI

• EAM is formed with an GeSi p-i-n 
diode fabricated in an SOI platform

• Device is only 50mm long and can be 
driven with a lumped-element driver

• Nominal operation with 3V drive 
achieves 3-6dB ER over a wide 
wavelength range 83

[Feng JSTQE 2013] 28Gb/s w/ 3V Swing



Pulsed-Cascode Output Stage

• Uses only two-transistor stack for maximum speed
• The cascode transistors gates are pulsed during a 

transistion to prevent VDS overstress

84

[Palermo 
ESSCIRC 2006]



30Gb/s Lumped-Element EAM Driver

85

• Using a 5.4V reverse bias and 2Vpp dynamic 
swing to achieve 8dB ER

• Have ~7dB insertion loss

[Dupuis JLT 2015]
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Ring Resonator Filter

• Ring resonators display a high-Q notch filter response at the 
through port and a band-pass response at the drop port

• This response repeats over a free spectral range (FSR)

87



Ring-Resonator Modulator (RRM)

• Refractive devices which modulate by 
changing the interference light coupled into 
the ring with the waveguide light 

• Devices are relatively small (ring diameters 
< 20m) and can be treated as lumped 
capacitance loads (~10fF)

88

[Young ISSCC 2009]



Wavelength Division Multiplexing 
w/ Ring Resonators

• Ring resonators can act as both modulators and add/drop filters to 
steer light to receivers or switch light to different waveguides

• Potential to pack >100 wavelengths, each modulated at more than 
10Gb/s on a single on-chip waveguide 89



Carrier-Depletion Ring Modulator Challenge I: 
Output Swing & Biasing

90

• High-speed depletion-mode ring modulator requires:
̶ Large swing: >4V   
̶ Negative DC-bias: -2V

This WorkISSCC
2013
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Carrier-Depletion Ring Modulator Challenge II: 
Nonlinear Dynamics

91

• Dynamic change of neff → unequal rise/fall times
• Asymmetric equalization for non-linearity cancellation
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Carrier-Depletion Ring Modulator Challenge III: 
Wavelength Stability

92

• Modulation efficiency depends strongly on wavelength
• ER degradation due to temperature fluctuation
• Closed-loop control is necessary for robust operation



AC-Coupled Differential Driver

93

• CC = 3pF → 4.4V differential swing
• ZS < 30Ω to minimize low-pass attenuation
• High-pass cut-off: < 10MHz 

Simulated AC-Response of Output 
Passive Network
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ZS = 15Ω, CS = 150fF
ZS = 30Ω, CS = 75fF  
ZS = 60Ω, CS = 30fF 
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• Merged cascode transistors
• No VDS overstress
• Reduced parasitics and area
• Independent ‘1’-Level and 

‘0’-Level FFE coefficients



Average Power Thermal Stabilization
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Heterogeneous Integration
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• Hybrid CMOS-Photonic packaging (<0.5mm bond-wires)
• Stable optical coupling using vertically-attached fibers



25Gb/s Optical Measurement
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MRM-1, FFE Off, 4.4V Swing
 QF=4.4, ER=5.3dB

MRM-1, FFE On, 4.4V Swing
QF=8.4, ER=6.8dB

500µW 16ps
500µW

16ps

Test Channel 1 
w/o FFE

Test Channel 1 
w/ Asymmetric FFE



Dynamic Thermal Tracking Test
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Dynamic Thermal Tracking Test
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112Gb/s PAM4 Transmitter

100

• Look-up table (LUT) 
DAC-based output stage

• 2-tap linear FFE (21X 
slices)

• Non-linear static pre-
distortion (4.5X slices)

• Nonlinear 2-tap FFE 
(2.25X slices)

[Li ISSCC 2020]



112Gb/s DAC Output

101

• Differential cascade output driver w/ level shifted pre-drivers

• Per-slice series RL and lumped shunt RT improve linearity at 
the cost of reduced output swing (3Vppd)

• Series peaking inductor provides significant bandwidth 
extension



112Gb/s PAM4 Eye Diagrams
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• Utilizing only linear FFE results in significant eye 
skew and poor TDECQ

• Enabling the non-linear pre-distortion and FFE 
aligns the 3 eyes and improves TDECQ by ~1.5dB



Conclusion
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• The desired link reach impacts optical transmitter choice
• High-speed transmitter circuits must be optimized for a 

specific optical source
• VCSELs are typically driven by current-mode drivers and 

employ equalization to extend data rate
• MZMs are relatively large devices that must be driven 

with either controlled impedance drivers or multi-segment 
drivers that are tightly integrated with the PIC

• EAMs are smaller and can be driven as a lumped element 
with high-swing voltage-mode drivers

• RRMs allow for inherent WDM and can be driven as a 
lumped element with high-swing voltage-mode drivers, 
but require resonant wavelength stabilization


