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Announcements
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• Project Preliminary Report (HW5) due Nov 16



Agenda
• Optical Receiver Overview
• Transimpedance Amplifiers

• Common-Gate TIAs
• Feedback TIAs
• Common-Gate & Feedback TIA Combinations
• Differential TIAs

• Integrating Optical Receivers
• Equalization in Optical Front-Ends
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Optical Receiver Technology
• Photodetectors convert optical 

power into current
• p-i-n photodiodes
• Waveguide Ge photodetectors

• Electrical amplifiers then 
convert the photocurrent into a 
voltage signal
• Transimpedance amplifiers
• Limiting amplifiers
• Integrating optical receiver
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p-i-n Photodetector
• A p-i-n photodetector has an 

intrinsic layer (undoped or lightly 
doped) sandwiched between p-
and n-doped material

• This p-n junction operates in 
reverse bias to create a strong 
electric field in the intrinsic region
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[Sackinger]

• Normally incident photons create electron-hole 
pairs in the intrinsic region which are separated 
by the electric drift field, and photocurrent 
appears at the terminals



p-i-n Photodetector Tradeoffs
• There is a tradeoff between 

efficiency and speed set by the 
intrinsic layer width W

• The quantum efficiency  is the 
fraction of photons that create 
electron-hole pairs and is 
determined by W and detector’s 
absorption coefficient 
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[Sackinger]

• A wider W allows for higher , but also results in 
longer carrier transit times which reduces the 
detector bandwidth

We  1



Waveguide p-i-n Photodetector

• A waveguide p-i-n photodetector structure allows 
this efficiency-speed trade-off to be broken

• The light travels horizontally down the intrinsic 
region and the electric field is formed orthogonal 

• Allows for both a thin i-region for short transit 
times and a sufficiently long i-region for high 
quantum efficiency
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15m detector length

[Vivien OptExp 2009]



p-i-n Photodetector Responsivity
• The efficiency at which a photodetector converts 

optical power to electrical current is called 
responsivity R

• As each photon has energy of hc/
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• Example: A photodetector with =0.6 operating 
at 1310nm has R=0.63 A/W

• There is the potential for R>1, with =1 and 
1550nm operation  R=1.24



p-i-n Photodetector Equivalent AC Circuits

• The photodetectors main parasitics are the 
junction capacitance CPD and contact/spreading 
resistance RPD

• Additional LC parasitics are present in packaged 
devices due to wirebonds, etc…
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Bare Photodetector Photodetector + Packaging Parasitics



p-i-n Photodetector Bandwidth

• Two time constants set the bare photodetector bandwidth
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• Key design objectives
• High transimpedance gain
• Low input resistance for high bandwidth and efficient gain 

• For large input currents, the TIA gain can compress 
and pulse-width distortion/jitter can result

Transimpedance Amplifier (TIA)
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• Input Overload Current
• The maximum peak-to-peak input current for which we can 

achieve the desired BER
• Assuming high extinction ratio

• Maximum Input Current for Linear Operation
• Often quantified by the current level for a certain gain 

compression (1dB)

Maximum Currents
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Resistive Front-End

• Direct trade-offs between transimpedance, 
bandwidth, and noise performance
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Agenda
• Optical Receiver Overview
• Transimpedance Amplifiers

• Common-Gate TIAs
• Feedback TIAs
• Common-Gate & Feedback TIA Combinations
• Differential TIAs

• Integrating Optical Receivers
• Equalization in Optical Front-Ends
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Common-Gate TIA

• Input resistance (input bandwidth) and 
transimpedance are decoupled
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Common-Gate TIA Frequency Response

• Often the input pole may dominate due to 
large photodiode capacitance (100 – 500fF)
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Common-Gate TIA Noise
• Both the bias current source 

and RD contribute to the 
input noise current

• RD can be increased to 
reduce noise, but voltage 
headroom can limit this

• Common-gate TIAs are 
generally not for low-noise 
applications

• However, they are relatively 
simple to design with high 
stability
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Regulated Cascode (RGC) TIA
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[Park ESSCIRC 2000]• Input transistor gm is 
boosted by common-
source amplifier gain, 
resulting in reduced input 
resistance

• Requires additional voltage 
headroom 

• Increased input-referred 
noise from the common-
source stage



CMOS 20GHz TIA
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333222 RgARgA mm       

• An additional common-
gate stage in the 
feedback provides 
further gm-boosting 
and even lower input 
resistance

• Shunt-peaking 
inductors provide 
bandwidth extension 
at zero power cost, but 
very large area cost

[Kromer JSSC 2004]
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Feedback TIA w/ Ideal Amplifier

• Input bandwidth is extended by the factor A+1
• Transimpedance is approximately RF
• Can make RF large without worrying about voltage 

headroom considerations 
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Feedback TIA w/ Finite Bandwidth Amplifier
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• Finite bandwidth amplifier 
modifies the transimpedance
transfer function to a second-
order low-pass function



Feedback TIA w/ Finite Bandwidth Amplifier
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• Non-zero amplifier time constant 
can actually increase TIA 
bandwidth!!

• However, can result in peaking in 
frequency domain and 
overshoot/ringing in time domain

• Often either a Butterworth 
(Q=1/sqrt(2)) or Bessel response 
(Q=1/sqrt(3)) is used
• Butterworth gives maximally flat 

frequency response
• Bessel gives maximally flat group-

delay Butterworth

Bessel

[Sackinger]
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Feedback TIA Transimpedance Limit
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• Maximum RT proportional to amp gain-bandwidth product
• If amp GBW is limited by technology fT, then in order to 

increase bandwidth, RT must decrease quadratically!
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Feedback TIA
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• As power supply voltages drop, there is not much 
headroom left for RD and the amplifier gain degrades



• CMOS inverter-based TIAs allow for reduced voltage 
headroom operation

• Cascaded inverter-gm + TIA stage provide additional 
voltage gain

• Low-bandwidth feedback loop sets the amplifier output 
common-mode level

CMOS Inverter-Based Feedback TIA
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[Li JSSC 2014]



• TIA noise is modeled with an input-referred noise current 
source that reproduces the output TIA output noise when 
passed through an ideal noiseless TIA

• This noise source will depend on the source impedance, 
which is determined mostly by the photodetector capacitance

Input-Referred Noise Current

27









Hz

pA2



• Input-referred noise current spectrum typically 
consists of uniform, high-frequency f2, & low-
frequency 1/f components

• To compare TIAs, we need to see this noise graph 
out to ~2X the TIA bandwidth
• Refer to noise bandwidth tables

Input-Referred Noise Current Spectrum
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• The input-referred rms noise current can be calculated by 
dividing the rms output noise voltage by the TIA’s midband
transimpedance value

Input-Referred RMS Noise Current
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• To determine the total optical receiver sensitivity, we need to 
consider the detector noise and responsivity



• TIA noise performance can also be quantified by 
the averaged input-referred noise current density

Averaged Input-Referred Noise Current Density
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• The feedback resistor and amplifier front-end noise 
components determine the input-referred noise 
current spectrum

FET Feedback TIA Input-Referred 
Noise Current Spectrum
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FET Feedback TIA Input-Referred 
Noise Current Spectrum
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Input-Referring the FET Channel Noise
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Total Input-Referred FET Feedback TIA Noise
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Common-Gate & Feedback TIA

36

• Recall that the feedback TIA stability depends on the ratio of the input 
pole (set by CD) and the amplifier pole
• Large variation in CD can degrade amplifier stability

• Common-gate input stage isolates CD from input amplifier capacitance, 
allowing for a stable response with a variety of different photodetectors

• Transimpedance is still approximately RFA/(1+A)

Common-Gate

Feedback TIA

[Mohan JSSC 2000]

RF RF



BJT Common-Base & Feedback TIA
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• Transformer-based negative feedback boosts gm with low 
power and noise overhead

• Input series peaking inductor isolates the photodetector
capacitance from the TIA input capacitance

• High frequency techniques allow for 26GHz bandwidth with 
group delay variation less than 19ps

[Li JSSC 2013]
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Differential TIAs

39

• Differential circuits have superior 
immunity to power 
supply/substrate noise

• A differential TIA output allows 
easy use of common differential 
main/limiting amplifiers
• This comes at the cost of higher 

noise and power
• How to get a differential output 

with a single-ended photocurrent 
input?
• Two common approaches, based on 

the amount of capacitance applied at 
the negative input



Balanced TIA
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• A balanced TIA design attempts 
to match the capacitance of the 
two differential inputs

DX CC 

• This provides the best power 
supply/substrate noise 
immunity, as the noise transfer 
functions are similar

• Due to double the circuitry, the 
input-referred rms noise 
current is increased by sqrt(2)
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Pseudo-Differential TIA

41

• A pseudo-differential TIA design 
uses a very large capacitor at the 
negative input, such that it can 
be approximated as an AC 
ground XC

• While not good to reject power 
supply/substrate noise, it does 
provide significant filtering of 
the RF’ noise

• The differential transimpedance
is approximately doubled 
relative to the single-ended case
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Offset Control

42

• Due to the single-ended 
photodetector signal, the 
differential output signal 
swings from 0 to Vppd, 
which can limit the 
dynamic range

• Adding offset control 
circuitry can allow for an 
output swing of ±Vppd/2



Differential Shunt Feedback TIA
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Optical RX Scaling Issues

 Traditionally, TIA has 
high RT and low Rin
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Integrating Receiver Block Diagram

[Emami VLSI 2002]
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Demultiplexing Receiver

• Demultiplexing with multiple clock phases allows 
higher data rate
̶ Data Rate = #Clock Phases x Clock Frequency
̶ Gives sense-amp time to resolve data
̶ Allows continuous data resolution
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1V Modified Integrating Receiver

 Differential Buffer
 Fixes sense-amp common-mode input for improved 

speed and offset performance
 Reduces kickback charge
 Cost of extra power and noise

 Input Range = 0.6 – 1.1V
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Receiver Sensitivity Analysis
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Integrating Receiver Sensitivity

• Test Conditions
̶ 8B/10B data patterns 

(variance of 6 bits)
̶ Long runlength data 

(variance of 10 bits)

• BER < 10-10

[Palermo JSSC 2008]
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Integrating RX with Dynamic Threshold

• Dynamic threshold 
adjustment allows 
for un-coded data

[Nazari ISSCC 2012]
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Integrating RX with Dynamic Threshold

[Nazari ISSCC 2012]
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Low-BW TIA & CTLE Front-End
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• Improved sensitivity is possible by increasing the first stage 
feedback resistor, resulting in a high-gain low-bandwidth TIA

• The resultant ISI is cancelled by a subsequent CTLE

[Li JSSC 2014]



Active CTLE Example
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Low-BW TIA & CTLE Front-End
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• Significant reduction in feedback 
resistor noise

• Low-frequency input and post 
amplifier noise is also reduced

[Li JSSC 2014]



Low-BW TIA & CTLE Front-End
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[Li JSSC 2014]

25Gb/s Eye Diagram



Low-BW TIA & DFE RX

58

• In a similar manner, a high-gain low-bandwidth TIA is 
utilized

• The resultant ISI is cancelled by a subsequent 1-tap loop-
unrolled DFE

[Ozkaya JSSC 2017]



DFE Example
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• If only DFE equalization, DFE tap coefficients 
should equal the unequalized channel pulse 
response values [a1 a2 … an]

• With other equalization, DFE tap coefficients 
should equal the pre-DFE pulse response values

• DFE provides flexibility in the optimization of other 
equalizer circuits

• i.e., you can optimize a TX equalizer without caring 
about the ISI terms that the DFE will take care of

a1

a2

[w1 w2]=[a1 a2]



Low-BW TIA & DFE RX
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• As RF is increased, the main cursor increases and the SNR 
improves is ISI is cancelled by a DFE

• Large performance benefit with a low-complexity 1-tap DFE

[Ozkaya JSSC 2017]



Low-BW TIA & DFE RX

61

• Self-referenced TIA is used for 
differential generation

• Actual 64Gb/s pulse response has 
a significant pre-cursor ISI tap, 
which requires a 2-tap TX FFE 

[Ozkaya JSSC 2017]

64Gb/s Pulse Response 
& Timing Margin
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